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Abstract 

In this paper, we propose intersection-movement-based models to formulate dynamic system optimum 

simultaneous route and departure time choice (DSO-SRDTC) problems over general networks and 

compare the models with the link-based and path-based counterparts. Each of these three types of 

models has four variants, which are formed by whether to consider first-in-first-out (FIFO) constraints 

and non-vehicle holding (NVH) constraints. In all three types of DSO-SRDTC models and their 

variants, the link transmission model (LTM) is incorporated as their traffic flow model. The 

DSO-SRDTC problems without FIFO constraints are formulated as linear programming (LP) 

problems, while the DSO-SRDTC problems with FIFO constraints are formulated as non-convex 

non-linear programming problems. We find that existing link-based NVH constraints cannot 

completely eliminate vehicle holding (VH) solutions, and propose both intersection-movement-based 

and path-based NVH constraints, which can completely eliminate VH solutions. We also prove that the 

link-based, intersection-movement-based, and path-based models of DSO-SRDTC problems without 

FIFO constraints are equivalent in terms of obtaining the same optimal total system travel cost (TSTC). 

However, the three types of models for DSO-SRDTC problems with FIFO constraints can obtain 

different optimal TSTCs. Based on the solution properties of the DSO-SRDTC problems with FIFO 

constraints, branch-and-bound algorithms are modified to solve the DSO-SRDTC problems with FIFO 

constraints for global optima. Numerical examples are set up to demonstrate the properties and 

performance of the proposed models. To the best of our knowledge, we are the pioneers to provide 

intersection-movement-based formulations for DSO-SRDTC problems and analyze their mathematical 

properties. 

Keywords: Dynamic traffic assignment; system optimum; link transmission model; intersection 

movement; vehicle holding problem; first-in-first-out. 
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1. Introduction 

Dynamic traffic assignment (DTA) is long recognized as a key component for network planning and 

transport policy evaluations as well as for real-time traffic operation and management (Szeto and Lo, 2006). 

System optimum DTA (SO-DTA) is a special case of DTA based on the dynamic extension of Wardrop’s 

(1952) second principle. SO-DTA aims to predict an optimal time-dependent traffic state with minimum total 

system travel time (TSTT) spent or total system travel cost (TSTC) borne by all travelers in the network. It 

can give insights into the optimal performance of a traffic system, and hence can further provide a benchmark 

for controlling and managing dynamic traffic networks (Ma et al., 2014). SO-DTA has been widely used for 

road congestion pricing (e.g., Yang and Meng, 1998; Carey and Watling, 2012), signal control (e.g., Lo, 2001; 

Lin and Wang, 2004; Yu et al., 2018), network design problems (e.g., Waller and Ziliaskopoulos, 2001; Waller 

et al., 2006), emergency evacuation traffic management (e.g., Liu et al., 2006; Chiu et al., 2007), etc. 

According to the travel choice dimension, SO-DTA problems can be classified into three categories: (1) 

the pure departure time choice problems (e.g., Vickrey, 1969; Liu et al., 2015), (2) the pure route choice 

problems (e.g., Merchant and Nemhauser, 1978a,b; Ghali and Smith, 1995; Peeta and Mahmassani, 1995; 

Ziliaskopoulos, 2000; Nie, 2011; Zhu and Ukkusuri, 2013; Zheng et al., 2015; Long et al., 2016; Ngoduy et al., 

2016), and (3) the simultaneous route and departure time choice (SRDTC) problems (e.g., Chow, 2009a,b; 

Doan and Ukkusuri, 2012; Qian et al., 2012; Ma et al., 2014, 2017; Zhu and Ukkusuri, 2017). The first two 

categories of SO-DTA problems are special cases of the last category of problems. If physical-queue traffic 

flow models, such as the cell transmission model (CTM) (Daganzo, 1995; Ziliaskopoulos, 2000; Nie, 2011; 

Zhu and Ukkusuri, 2013), the link transmission model (LTM) (Yperman, 2007; Long et al., 2016; Ngoduy et 

al., 2016; Long and Szeto, 2017), and double queue models (Osorio et al., 2011, Ma et al., 2014, 2017) are 

applied, departure time choice must be integrated into DSO models (Ma et al., 2014). This is because any 

predefined departure profile (i.e., demand profile) may not be realized by the traffic flow model due to 

possible spillbacks at the origins. 

SO-DTA problems can be formulated as either continuous-time models (e.g., Ma et al., 2014, 2017) and 

discrete-time models (e.g., Merchant and Nemhauser, 1978a,b; Ziliaskopoulos, 2000; Chow, 2009a,b; Nie, 

2011; Doan and Ukkusuri, 2012; Qian et al., 2012; Zhu and Ukkusuri, 2013; Zheng et al., 2015; Long et al., 

2016). The continuous-time SO-DTA models treat the variables as functions of time and usually formulate the 

SO-DTA problems as optimal control problems (Ma et al., 2014, 2017). The discrete-time SO-DTA models 

adopt a set of discretized variables at each time step and usually formulate the SO-DTA problems as  

finite-dimensional mathematical programs (e.g., Merchant and Nemhauser, 1978a,b; Ziliaskopoulos, 2000; 

Nie, 2011; Doan and Ukkusuri, 2012; Zhu and Ukkusuri, 2013; Long et al., 2016). An important reason why 

modeling continuous-time SO-DTA problems is that time is continuous by nature and it is natural to formulate 
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SO-DTA problems in continuous time (Ma et al., 2014). However, time discretization is always needed to 

solve continuous-time SO-DTA models, since there are no known methods for solving complex 

continuous-time models analytically. Therefore, most SO-DTA problems are formulated in discrete-time, or 

formulated in continuous-time and finally solved in discrete-time. 

There are two major approaches to model SO-DTA problems: (1) formulating them as standard user 

equilibrium DTA (UE-DTA) problems (e.g., Ghali and Smith, 1995; Peeta and Mahmassani, 1995; Shen et al., 

2007; Qian et al., 2012), and (2) formulating them as mathematical programming problems (e.g., Merchant 

and Nemhauser, 1978a,b; Ziliaskopoulos, 2000; Chow, 2009a,b; Nie, 2011; Zheng and Chiu, 2011; Doan and 

Ukkusuri, 2012; Zhu and Ukkusuri, 2013; Ma et al., 2014; Long et al., 2016; Long and Szeto, 2017). The first 

approach commonly adopts marginal path travel times\costs to formulate the SO-DTA problems as standard 

UE-DTA problems, and any solution algorithms developed for UE-DTA problems (e.g., Friesz et al., 1993; 

Huang and Lam, 2002; Lo and Szeto, 2002; Ban et al., 2008; Carey and Ge, 2012; Long et al., 2013; Han et 

al., 2013, 2015) can be used to solve the SO-DTA problems. However, the evaluation of marginal path travel 

times is notoriously difficult in general networks (Qian et al., 2012). The second approach usually formulates 

the SO-DTA problems as mathematical programming problems. Whether it is easy to solve the resultant 

models highly depends on the underlying DNL models, such as point queue models (e.g., Huang and Lam, 

2002; Ban et al., 2012), exit flow models (e.g., Merchant and Nemhauser, 1978a,b; Carey and Srinivasan, 

1993; Wie et al., 2002), link delay model (e.g., Friesz et al., 1993), and kinematic wave models (e.g., Newell, 

1993; Daganzo, 1995; Lo and Szeto, 2002; Yperman, 2007; Nie, 2011; Zheng et al., 2015). The SO-DTA 

models incorporating the exit flow functions are usually formulated as non-convex nonlinear programming 

problems (e.g., Merchant and Nemhauser, 1978a,b) that are difficult to solve. In contrast, the SO-DTA models 

incorporating the kinematic wave models can lead to a linear programming (LP) formulation, which makes 

the formulation computationally efficient and solvable for a reasonable size network (Zhu and Ukkusuri, 

2013). 

The traffic flow models used in DTA models, including SO-DTA models, should have some desirable 

properties to capture actual traffic behavior, such as queue spillback (e.g., Daganzo, 1995; Lo and Szeto, 2002; 

Szeto and Lo, 2004; Ma et al., 2014), first-in-first-out (FIFO) (e.g., Carey, 1992; Astarita, 1996; Wu et al., 

1998; Huang and Lam, 2002; Carey et al., 2014; Long and Szeto, 2017), and non-vehicle holding (NVH) (e.g., 

Ziliaskopoulos, 2000; Nie, 2011; Zheng and Chiu, 2011; Doan and Ukkusuri, 2012; Zhu and Ukkusuri, 2013; 

Long et al., 2016, 2017). Queue spillback refers to the end of queue spilling backward in the network. This 

property can be easily captured in SO-DTA models by incorporating a physical-queue traffic flow model. 

FIFO implies that vehicles that enter a link earlier will leave it sooner (Wu et al. 1998; Lo and Szeto, 2002; 

Long et al., 2011; Carey et al., 2014). It is well known that the FIFO requirement can yield a non-convex 

constraint set in DTA models, especially if there are multiple destinations or commodities (Carey, 1992). 
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Explicitly imposing this category of constraints may increase the complexity of solving the DTA models. 

Vehicle holding (VH) implies that traffic flows are reluctant to move forward from upstream links to their 

downstream links even if there are vacant spaces on the downstream links. The VH problem often occurs due 

to relaxation (i.e., replacing the nonlinear equality constraints with inequality ones) or linearization, and is a 

well-known problem for SO-DTA models in the literature (e.g., Merchant and Nemhauser, 1978a; Carey and 

Subrahmanian, 2000; Ziliaskopoulos, 2000; Nie, 2011; Doan and Ukkusuri, 2012; Zhu and Ukkusuri, 2013; 

Long et al., 2016; Long and Szeto, 2017). VH is not a critical issue when SO-DTA is only used to provide a 

benchmark for developing network management strategies. However, VH should be considered when some 

specific schemes (such as pricing or incentives) to control traffic to reach the dynamic system optimal (DSO) 

state. This is because the DSO state achieved by these schemes is also a dynamic user optimal (DUO) state 

from the point of view of travelers, and VH represents an unrealistic traffic flow phenomenon for the DUO 

state and should be completely eliminated. 

According to the choice of decision variables used in the formulation, existing SO-DTA models can be 

broadly classified into two categories: link-based models (e.g., Merchant and Nemhauser, 1978a,b; 

Ziliaskopoulos, 2000; Nie, 2011; Doan and Ukkusuri, 2012; Zhu and Ukkusuri, 2013; Ma et al., 2014, 2017; 

Zheng et al., 2015; Long et al., 2016; Long and Szeto, 2017) and path-based models (e.g., Ghali and Smith, 

1995; Peeta and Mahmassani, 1995; Chow, 2009a,b; Doan and Ukkusuri, 2012; Qian et al., 2012). Link-based 

models do not require having the path set information in advance, in which the path set can be large even for a 

medium-scale highway network. Hence, they can avoid path enumeration and path set generation heuristic in 

the solution procedure of SO-DTA problems and have the potential to be applied to large-scale highway 

networks. However, traditional link-based SO-DTA models cannot explicitly model traffic movements at 

intersections, and their optimal link-based traffic flow patterns do not contain detailed path information. As a 

result, traditional link-based SO-DTA models cannot capture queue spillback, unlike a few recent link-based 

SO-DTA models (e.g., Ma et al., 2014, 2017) that have been developed to overcome this issue. In contrast, 

because path-based models have important information, such as path inflows and the path set, to explicitly 

model traffic movements at diverges and merges, path-based models can capture queue spillback easily when 

a physical-queue traffic flow model is encapsulated. Nevertheless, the main disadvantage of path-based 

models is that they require an explicit enumeration of the path choice set, which can be very time-consuming, 

even for medium networks. 

To retain the advantages of both link-based and path-based DSO models, intersection-movement-based 

DSO models can be developed, by drawing upon the development of dynamic user equilibrium or dynamic 

user optimal (DUO) route choice models (e.g., Long et al., 2013; Jiang et al., 2016). In 

intersection-movement-based DUO route choice models, two adjacent links are used to define an intersection 

movement. An intersection-movement-based flow pattern implicitly contains the travelers’ path information 

since a path can be deduced by checking the downstream links involved in intersection-movement-based 

flows from the origin to the destination. As a result, this type of model can retain the advantages of both the 

link-based and the path-based DTA models: Path enumeration and path generation heuristics can be avoided in 
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the solution procedure, and queue spillback can be easily captured when a physical-queue traffic flow model 

is encapsulated. Therefore, intersection-movement-based DUO route choice models are superior to the 

link-based and path-based DUO route choice models. However, the intersection-movement-based approach 

has been only extended to formulate stochastic DUO (SDUO) route choice problems (e.g., Long et al., 2015). 

Whether this approach can be applied to modeling DSO-SRDTC problems and the resultant problems have 

good mathematical properties is questionable.  

In this paper, we formulate and analyze dynamic system optimum SRDTC (DSO-SRDTC) problems using 

the intersection-movement-based approach. Yperman’s (2007) link transmission model (LTM) is incorporated 

into the resultant DSO-SRDTC models. The LTM relies on Newell’s (1993) simplified kinematic wave theory 

when the fundamental diagram is assumed to be triangular. Because each whole link can be treated as one cell, 

the computational efficiency of the LTM is much higher than that of classic numerical solution schemes for 

the Lighthill-Whitham-Richards (LWR) model, whilst retaining the same accuracy (Yperman, 2007). Same as 

the CTM, the LTM can also lead to an LP formulation for the DSO-SRDTC problem without the 

considerations of FIFO and NVH, which is referred to as the relaxed DSO-SRDTC (R-DSO-SRDTC) problem. 

For comparison purposes, we also present link- and path-based R-DSO-SRDTC formulations. We are the 

pioneers to provide intersection-movement-based formulations for DSO-SRDTC problems and analyze their 

mathematical properties. To the best of our knowledge, the connections between different SO-DTA 

formulations have not been discussed in the literature. Compared with link-based DSO-SRDTC models, 

intersection-movement-based models have travelers’ path information, and can easily trace how queues spill 

backward over links when a physical-queue traffic flow model is encapsulated. This is particularly useful for 

queue management, e.g., in signal control. Compared with path-based DSO-SRDTC models, 

intersection-movement-based models do not require path enumeration and path generation heuristics in the 

solution procedure and can be solved more efficiently. This computation efficiency is essential for real-time 

applications. 

We further provide definitions on NVH-DSO solutions and formulate NVH constraints as a set of 

mixed-integer linear inequality constraints (e.g., Lo, 2001; Pavlis and Recker, 2009; Han et al., 2014, 2016; 

Long et al., 2016; Long and Szeto, 2017). We find that existing link-based NVH constraints (e.g., Zheng and 

Chiu, 2011; Long et al., 2016; Long and Szeto, 2017) cannot completely eliminate VH solutions. Instead, our 

proposed intersection-movement-based NVH constraints and path-based NVH constraints can completely 

eliminate VH solutions. By integrating link-based, intersection-movement-based, and path-based NVH 

constraints into the proposed R-DSO-SRDTC formulations, we obtain NVH-DSO-SRDTC models. 

Equivalent NVH-DSO-SRDTC models can be obtained by introducing an additional product of a sufficiently 

small coefficient and the sum of cumulative link outflows into the objective function of the R-DSO-SRDTC 

formulations. The resultant models do not need to include the NVH constraints and are thus linear. We prove 

that the proposed models can obtain NVH-DSO solutions when the coefficient of the penalty term is positive 
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and sufficiently small. Furthermore, we prove that without the FIFO consideration, the 

intersection-movement-based DSO-SRDTC model gives the same optimal TSTC as the link-based and 

path-based DSO-SRDTC models, no matter whether NVH is considered or not. 

To consider FIFO in DSO models, we use entry time to define link-based, intersection-movement-based, 

and path-based FIFO conditions and formulate the corresponding FIFO constraints, which contain bi-linear 

terms and lead to a non-convex feasible solution set. By integrating the FIFO constraints into the 

corresponding LP formulation of the R-DSO-SRDTC problems, we obtain a non-convex nonlinear program 

for the FIFO-DSO-SRDTC problem. To further consider NVH, we integrate both NVH and FIFO constraints 

into the corresponding LP formulation of the R-DSO-SRDTC problems to obtain a non-convex nonlinear 

mixed-integer program for the NVH-FIFO-DSO-SRDTC problem, in which the integer variables are 

introduced due to the NVH constraints. Usually, existing solution algorithms for non-convex mixed-integer 

nonlinear programs can only be used to obtain a local optimum for the FIFO- and NVH-FIFO-DSO-SRDTC 

problems. Based on the optimality condition of these two problems, the branch-and-bound algorithm proposed 

by Long and Szeto (2017) is extended to solve them. The merit of the proposed branch-and-bound algorithm 

is that it can obtain a global optimum. Finally, numerical examples are developed to illustrate the properties 

and performance of the proposed models. 

The contributions of this paper include the following:  

First, to the best of our knowledge, we are the pioneers to provide intersection-movement-based 

formulations for DSO-SRDTC problems and analyze their mathematical properties. The connections of 

intersection-movement-based DSO-SRDTC models with the link-based and path-based DSO-SRDTC models 

are clarified. The proposed intersection-movement-based DSO-SRDTC models lead to new analytical results 

compared to their link-based counterparts and can be solved more efficiently compared to their path-based 

counterparts.  

Second, we find that existing link-based NVH constraints (Long and Szeto, 2017) cannot completely 

eliminate VH solutions. We propose intersection-movement-based and path-based NVH constraints, which 

can completely eliminate VH solutions. 

Third, we prove that link-based, intersection-movement-based, and path-based DSO-SRDTC models 

without FIFO constraints are equivalent in terms of obtaining the same optimal TSTC, and illustrate that the 

three types of formulations of DSO-SRDTC problems with FIFO constraints can obtain different optimal 

TSTCs because link-based, intersection-movement-based, and path-based FIFO are not equivalent. 

Link-based FIFO is weaker than intersection-movement-based FIFO, and the intersection-movement-based 

FIFO is weaker than path-based FIFO. These properties lead to the resulting TSTC for a link-based 

DSO-SRDTC problem with FIFO constraints is no more than the intersection-movement-based counterpart, 

and the intersection-movement-based counterpart is no more than the path-based counterpart. 
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Fourth, we illustrate that cyclic flows can exist in optimal solutions to DSO-SRDTC problems in a general 

network with time-varying link capacities. This implies that path-based DSO-SRDTC models may not be able 

to be used for cyclic networks with time-varying link capacities because there can be too many 

time-dependent cyclic paths to be enumerated first. In contrast, link-based and intersection-movement-based 

DSO-SRDTC models can be used in general networks with time-varying link capacities and can be solved 

more efficiently than path-based counterparts. 

The rest of this paper is organized as follows: in the next section, the DSO-SRDTC problems without 

FIFO constraints are formulated as LP problems. The DSO-SRDTC problems with FIFO constraints are 

formulated as non-convex nonlinear programs or non-convex nonlinear mixed-integer programs in Section 3. 

Numerical examples are given in Section 4, and finally, conclusions are provided in Section 5. 

2. The DSO-SRDTC problems without FIFO constraints 

2.1. Notations 

We consider a network G (N, A) with multiple origins and destinations, where N  and A  are defined 

as the set of nodes and the set of arcs (links), respectively. R  and S  denote the set of origin nodes and the 

set of destination nodes, respectively. It is assumed that R S   , i.e., none of the origins are destinations. 

If a node is neither an origin nor a destination, it is referred to as a general node. We assume there are three 

types of links in the network: source links, destination links, and general links. Each source (destination) link 

connects only to one origin (destination) in the network, and each origin (destination) connects only to one 

source (destination) link. Both source and destination links are dummy links. All source links have infinite 

inflow capacity and all destination links have infinite storage capacity. Similar to the concept of destination 

cells in the cell-based DSO-SRDTC problems (e.g., Ziliaskopoulos, 2000; Zhu and Ukkusuri, 2013), we 

assume that vehicles finally enter destination links and stay on these links. We discretize the time period T of 

interest into a finite set of time intervals { 1,2, , }K k K   . Let   be the interval length such that 

K T  . As suggested by Ma et al. (2014), the interval length should be chosen such that the free flow travel 

time and backward shock-wave travel time (i.e., the travel time required by the backward shock-wave from 

the exit to the entry of a link) of each link are multiples of the time interval. Without loss of generality, we let 

  = 1. The following notations are adopted throughout this paper: 

Sets  

RA  set of origin links 

SA  set of destination links 

( )A i  set of links whose tail node is i  

( )B i  set of links whose head node is i  
sP  set of routes to destination s 
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( )a  set of successor links of link a (downstream links directly connected to link a) 
1( )a  set of predecessor links of link a (upstream links directly connected to link a) 

  set of index pairs {( , ) : \ , }Sa k a A A k K   

L  set of index pairs {( , , ) : , \ , }Ss a k s S a A A k K    

L  set of index pairs {( , , ) : , , }s a k s S a A k K    

I  set of index pairs {( , , , ) : , \ , ( ), }Ss a b k s S a A A b a k K     

P  set of index pairs {( , , ) : \ , }Ss p k a A A k K   

Parameters  

aL  length of link a 

av  free flow speed of vehicles on link a 

a  free flow travel time of vehicles on link a 

aw  backward shock-wave speed of traffic on link a 

a  travel time required by the backward shock-wave from the exit to the entry of link a 

jam  jam density  

( )aQ k  link inflow capacity during interval k 

( )aC k  link outflow capacity during interval k 
s
aD  total demand between the entry of origin link a and destination s 

Variables  

( )aU k  cumulative number of vehicles (flow) that enter link a by the end of interval k 

( )s
aU k  cumulative number of vehicles that enter link a to destination s by the end of interval k 

( )s
abU k  

cumulative number of vehicles that enter link a by the end of interval k and pass through link

( )b a  to destination s. 

( )s
apU k  cumulative number of vehicles on route sp P  entering link a by the end of interval k 

( )aV k  cumulative number of vehicles that leave link a by the end of interval k 

( )s
aV k  cumulative number of vehicles that leave link a to destination s by the end of interval k 

( )s
abV k  

cumulative number of vehicles that leave link a by the end of interval k and pass through link

( )b a  to destination s. 

( )s
apV k  cumulative number of vehicles on route sp P  leaving link a by the end of interval k 

Vectors  

U  [ ( ), , , ]s
aU k s S a A k K    

V  [ ( ), , \ , ]s
a SV k s S a A A k K    

x  link-based solution vector [ , ]x U V  

U  [ ( ), , \ , ( ), ]s
ab SU k s S a A A b a k K     

V  [ ( ), , \ , ( ), ]s
ab SV k s S a A A b a k K     
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y  intersection-movement-based solution vector [ , ]y U V  

U  [ ( ), , , , ]s s
apU k s S p P a A k K     

V  [ ( ), , , \ , ]s s
ap SV k s S p P a A A k K     

z  path-based solution vector [ , ]z U V   

Acronyms of the DSO-SRDTC problems  

R-DSO-SRDTC DSO-SRDTC problem without both NVH and FIFO constraints 

NVH-DSO-SRDTC DSO-SRDTC problem with NVH constraints 

FIFO-DSO-SRDTC DSO-SRDTC problem with FIFO constraints 

NVH-FIFO-DSO-SRDTC DSO-SRDTC problem with NVH and FIFO constraints 

Following Yperman (2007) and Long et al. (2011), a linear interpolation procedure is applied to calculate 

cumulative flows at non-integer time instants. For example, the cumulative flows of link a at time instant 

)( k  with 0 1   can be formulated as follows: 

( ) (1 ) ( ) ( 1),

( ) (1 ) ( ) ( 1).

s s s
a a a

s s s
a a a

U k U k U k

V k V k V k

  

  

     


    
 (1) 

2.2. An overview of the link transmission model 

The LTM integrates a triangular shaped fundamental diagram and Newell’s (1993) simplified method to 

determine sending and receiving flows (Yperman, 2007). The sending flow of a link is constrained both by the 

boundary conditions at the upstream end of the link and the outflow capacity of the link. According to 

Newell's (1993) simplified theory, if a free-flow traffic state occurs at the downstream link boundary at the 

end of interval k, then this state must have been emitted from the upstream boundary /a aL v  time units 

earlier (i.e., a free-flow travel time a ). The sending flow of link a during interval k can be mathematically 

expressed as follows (Yperman, 2007): 
( ) min{ ( ) ( 1), ( )}a a a a aS k U k V k C k    . (2) 

The receiving flow of a link is constrained both by the boundary conditions at the downstream end of the 

link and the inflow capacity of the link. According to Newell's (1993) simplified theory, if a congested traffic 

state occurs at the upstream boundary at the end of interval k, then this state must have been emitted from the 

downstream boundary /a aL w  time units earlier (i.e., backward shock-wave travel time a ), since a 

congested traffic state travels with a negative speed aw . The receiving flow of link a during interval k can be 

mathematically expressed as follows (Yperman, 2007): 
( ) min{ ( ) ( 1), ( )}a a a a jam a aR k V k L U k Q k      . (3) 

For each link, its inflow and outflow during an interval should be restricted by its sending and receiving 

flows during that interval. Hence, we have 

( ) ( 1) ( ), ,a a aU k U k R k a A k K       and (4) 

( ) ( 1) ( ), \ ,a a a SV k V k S k a A A k K      . (5) 
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Substituting Eqs. (2) and (3) into inequalities (4) and (5), we can obtain the following system of 

LTM-based flow constraints: 

( ) ( ), \ , ,

( ) ( 1) ( ), \ , ,

( ) ( ) , \ , ,

( ) ( 1) ( ), , .

a a a S

a a a S

a a a a jam S

a a a

V k U k a A A k K

V k V k C k a A A k K

U k V k L a A A k K

U k U k Q k a A k K



 

    
      
      
      

 (6) 

2.3. Feasible solution sets 

2.3.1. The link-based feasible solution set 

By definition, we have 

( ) ( ), ,s
a a

s S

U k U k a A k K


     and (7) 

( ) ( ), \ ,s
a a S

s S

V k V k a A A k K


    . (8) 

Substituting Eqs. (7) and (8) into the system of inequalities (6), we have 

( ) ( ), \ , ,

( ) ( 1) ( ), \ , ,

( ) ( ) , \ , ,

( ) ( 1) ( ), , .

s s
a a a S

s S s S

s s
a a a S

s S

s s
a a a a jam S

s S s S

s s
a a a

s S

V k U k a A A k K

V k V k C k a A A k K

U k V k L a A A k K

U k U k Q k a A k K



 

 



 



     

        


     

        

 



 



 (9) 

The cumulative link outflow disaggregated by destination should also be constrained by the boundary 

condition at the upstream end of the link, and hence we have 

( ) ( ), , \ ,s s
a a a SV k U k s S a A A k K      . (10) 

Traffic flows in the LTM should also satisfy the FIFO, flow conservation, and definitional constraints. In 

this section, we do not consider FIFO constraints, but they will be left to be formulated in the next section. 

The flow conservation constraints require that the flow that enters any node (except the destination node), 

together with the demand generated at that node, must all exit from that node. All traffic demands should enter 

the network and arrive at their destinations during the studied period. Hence, we have 

( ) , ,s s
a a RU K D a A s S     and (11) 

( ) , ,
R

s s
a b S

b A

U K D a A s S


    . (12) 

Different from the CTM treating cells as ordinary, merging, and diverging cells, we adopt a general node 

model to describe traffic transmission from link to link, which does not distinguish ordinary, merging, and 

diverging links. Because general nodes do not generate traffic demand, we have the following flow 

conservation constraint: 
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( ) ( )

( ) ( ), , \{ , },s s
a a

a B i a A i

V k U k s S i N R S k K
 

      . (13) 

Definitional constraints are used to describe the nonnegative and non-decreasing properties of cumulative 

link inflows and outflows disaggregated by destination, and given as follows: 

( ) ( 1) 0, , ,s s
a aU k U k s S a A k K       , and (14) 

( ) ( 1) 0, , \ ,s s
a a SV k V k s S a A A k K       . (15) 

Constraints (14) and (15) imply that the cumulative flows disaggregated by destination are non-decreasing. 

Initially, the disaggregated cumulative flows equal zero: 

(0) 0, ,s
aU s S a A    , and (16) 

(0) 0, , \s
a SV s S a A A    . (17) 

We note that the initial conditions (16) and (17) are inputs to constraints (14) and (15) for 1k  , respectively.  

Definition 1 (Link-based feasible solution set): Constraints (9)-(15) form a feasible solution set for the 

link-based DSO-SRDTC problem. The set is formulated as follows: 

{ |  x constraints (9)-(15) hold}. (18) 

2.3.2. The intersection-movement-based feasible solution set 

By definition, we have 

( )

( ) ( ), , \ ,s s
a ab S

b a

U k U k s S a A A k K


     , (19) 

1 ( )

( ) ( ), , ,s s
a ba S

b a

U k V k s S a A k K


     , and (20) 

( )

( ) ( ), , \ ,s s
a ab S

b a

V k V k s S a A A k K


     . (21) 

Definition 2 (Transfer function from an intersection-movement-based solution vector to a link-based solution 

vector). A transfer function from an intersection-movement-based solution vector to a link-based solution 

vector is defined as follows: 

1( )x φ y , (22) 

where 1( )φ y  is a point-to-point mapping and defined by Eqs. (19)-(21). 

Substituting Eqs. (19)-(21) into constraints (9), (11), and (12), we have 

( ) ( )

( )

( ) ( )

( )

( ) ( ), \ , ,

( ) ( 1) ( ), \ , ,

( ) ( ) , \ , ,

( ) ( 1) (

s s
ab ab a S

s S b a s S b a

s s
ab ab a S

s S b a

s s
ab ab a a jam S

s S b a s S b a

s s
ab ab a

s S b a

V k U k a A A k K

V k V k C k a A A k K

U k V k L a A A k K

U k U k Q



 

   

 

   

 

    

       

     

    

   

 

   

  ), , ,k a A k K









   

 (23) 
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( )

( ) , ,s s
ab a R

b a

U K D s S a A


    , and (24) 

1 ( )

( ) , ,
R

s s
ba b S

b Ab a

V K D s S a A
 

     . (25) 

The cumulative link outflows disaggregated by intersection movement and destination should also be 

constrained by the boundary condition at the upstream end of the link, and hence we have 

( ) ( ), , \ , ( ),s s
ab ab a SV k U k s S a A A b a k K       . (26) 

The intersection-movement-based flow conservation constraint can be formulated as follows: 

1 ( )( )

( ) ( ), , \ ,s s
ba ab S

b ab a

V k U k s S a A A k K
 

      . (27) 

The non-negative and non-decreasing properties of cumulative link inflows and outflows disaggregated by 

intersection movement and destination can be formulated as the following constraints: 

( ) ( 1) 0, , \ , ( ),s s
ab ab SU k U k s S a A A b a k K         and (28) 

( ) ( 1) 0, , \ , ( ),s s
ab ab SV k V k s S a A A b a k K        . (29) 

The initial conditions for constraints (28) and (29) are given as follows, respectively: 

(0) 0, , \ , ( )s
ab SU s S a A A b a      and (30) 

(0) 0, , \ , ( )s
ab SV s S a A A b a     . (31) 

Definition 3 (Intersection-movement-based feasible solution set): Constraints (23)-(29) form a feasible 

solution set for the intersection-movement-based DSO-SRDTC problem. The set is formulated as follows: 

{ |  y constraints (23)-(29) hold}. (32) 

Proposition 1: For all y , we have 1( ) x φ y . 

The proof is given in Appendix A.1. 

Proposition 2: For any x , there exists a vector y  such that x  and y  satisfy Eqs. (19)-(21), i.e., 

1( )x φ y . 

The proof is given in Appendix A.2. 

Proposition 1 implies that any feasible intersection-movement-based solution vector can be transformed 

into a unique feasible link-based solution vector. Proposition 2 implies that a link-based solution vector can be 

obtained from multiple intersection-movement-based solution vectors. The proof of Proposition 2 provides a 

method to retrieve a feasible intersection-movement-based solution vector from a feasible link-based solution 

vector. 

2.3.3. The path-based feasible solution set 

By definition, we have 
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( ) ( ), , ,
s

s s
a ap

p P

U k U k s S a A k K


     , (33) 

( ) ( ), , \ ,
s

s s
a ap S

p P

V k V k s S a A A k K


     , (34) 

( ) ( ), , \ ,
s

s s
ab abp ap S

p P

U k U k s S a A A k K


     , and (35) 

( ) ( ), , \ ,
s

s s
ab abp ap S

p P

V k V k s S a A A k K


     , (36) 

where 1abp   if link b is the next link after leaving link a along route p; otherwise, 0abp  . 

Definition 4 (Transfer function from a path-based solution vector to an intersection-movement-based solution 

vector). A transfer function from a path-based solution vector to an intersection-movement-based solution 

vector is defined as follows: 

2 ( )y φ z , (37) 

where 2 ( )φ y  is a point-to-point mapping, and defined by Eqs. (35) and (36). 

Substituting Eqs. (33) and (34) into constraints (9), (11), and (12), we have 

( ) ( ), \ , ,

( ) ( 1) ( ), \ , ,

( ) ( ) , \ , ,

[ ( ) ( 1)] ( ), , ,

s s

s

s s

s

s s
ap ap a S

s S s Sp P p P

s s
ap ap a S

s S p P

s s
ap ap a a jam S

s S s Sp P p P

s s
ap ap a

s S p P

V k U k a A A k K

V k V k C k a A A k K

U k V k L a A A k K

U k U k Q k a A k K



 

  

 

  

 

     

       


     

     

 



 













 (38) 

( ) , ,
s

s s
ap a R

s S p P

U K D s S a A
 

    , and (39) 

( ) , ,
s

R

s s
ap b S

b Ap P

U K D s S a A


     . (40) 

The cumulative link outflow disaggregated by path should also be constrained by the boundary condition 

at the upstream end of the link and hence we have 

( ) ( ), , , \ ,s s s
ap ap a SV k U k s S p P a A A k K       . (41) 

The path-based flow conservation constraint can be formulated as follows: 

( )

( ) ( ), , , \ , .s s s
ap abp bp S

b a

V k U k s S p P a A A k K


       (42) 

The non-negative and non-decreasing properties of cumulative link inflows and outflows disaggregated by 

path can be formulated as the following constraints: 

( ) ( 1) 0, , , ,s s s
ap apU k U k s S p P a A k K         and (43) 

( ) ( 1) 0, , , ,s s s
ap apV k V k s S p P a A k K        . (44) 

The initial conditions for constraints (43) and (44) are given as follows, respectively: 
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(0) 0, , ,s s
apU s S p P a A      and (45) 

(0) 0, , , \s s
ap SV s S p P a A A     . (46) 

Definition 5 (Path-based feasible solution set): Constraints (38)-(44) form a feasible solution set for the 

path-based DSO-SRDTC problem. The set is formulated as follows: 

{ |  z constraints (38)-(44) hold}. (47) 

Proposition 3: If z  , we have 2 ( ) y φ z  and 1 2( ( )) x φ φ z . 

The proof is given in Appendix A.3. 

Proposition 4: For any y , there exists a vector z   such that 2 ( )y φ z . 

The proof is given in Appendix A.4. 

Proposition 5: For any x , there exists a vector z   such that 1 2( ( ))x φ φ z . 

This proposition follows directly from Propositions 2 and 4. 

Proposition 3 implies that any feasible path-based solution vector can be transformed into a unique 

intersection-movement-based solution vector and a unique feasible link-based solution vector. Proposition 4 

implies that an intersection-movement-based solution vector can be obtained from multiple path-based 

solution vectors. The proof of Proposition 4 provides a method to retrieve a feasible path-based solution 

vector from a feasible intersection-movement-based solution vector. Proposition 5 implies that a link-based 

solution vector can be derived from multiple path-based solution vectors. 

2.4. Non-vehicle holding constraints 

Constraints (2) and (3) in the LTM are relaxed to a set of less-than-or-equal-to constraint (9) in the 

link-based DSO-SRDTC models that will be introduced later. For an optimal solution to the link-based 

DSO-SRDTC models, if there exists an index pair ( , )a k   such that all of the constraints in condition (9) 

fall into the inequality region, vehicles are held on link a without moving forward to their successor link 

( )b a  during interval k, even if there is enough capacity in successor link b during interval k. Such a 

solution property is referred to as the link-based VH problem. The definition of the link-based VH problem 

directly follows the definition introduced by Shen et al. (2007), Zheng and Chiu (2011), and Zhu and 

Ukkusuri (2013). According to this definition, Long and Szeto (2017) developed link-based NVH constraints 

by using the big-M method. 

In the following subsections, we will separately define an NVH solution vector for link-based, 

intersection-movement-based, and path-based DSO-SRDTC problems. There are two major reasons for the 

separate definitions. Firstly, the decision variables of link-based, intersection-movement-based, and 

path-based DSO-SRDTC problems are different. Secondly, a link-based solution vector does not contain path 

information, and the link-based NVH solution vector is defined on each link and its downstream links directly 
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connected to it. However, both intersection-movement-based and path-based solution vectors contain path 

information, and the intersection-movement-based and path-based NVH solution vectors can be defined on 

each intersection movement. We will point out that the existing link-based NVH constraints (Long and Szeto, 

2017) cannot completely eliminate VH solutions and we will prove that the proposed 

intersection-movement-based and path-based NVH constraints can completely eliminate VH solutions. Due to 

different definitions on NVH solution vectors, we will develop different big-M methods to formulate 

intersection-movement-based and path-based NVH constraints. 

Section 2.4 contains four subsections. In Section 2.4.1, we first provide an overview on the existing 

definitions of link-based NVH and VH solution vectors, which are referred to as weak link-based NVH and 

strong link-based VH solution vectors, respectively, to distinguish from the proposed definitions of strong 

link-based NVH and weak VH solution vectors in Section 2.4.4. Note that a strong solution vector is obtained 

under a tighter or more restricted condition than a weak solution vector. We then introduce existing link-based 

NVH constraints, which are referred to weak link-based NVH conditions, as they are looser than the proposed 

link-based NVH conditions. In Section 2.4.2, the existing definitions of weak link-based NVH and strong 

link-based VH solution vectors are extended to define weak intersection-movement-based NVH and strong 

intersection-movement-based VH solution vectors, and the intersection-movement-based NVH constraints are 

formulated. In Section 2.4.3, the existing definitions of weak link-based NVH and strong link-based VH 

solution vectors are extended to define weak path-based NVH and strong path-based VH solution vectors, and 

the path-based NVH constraints are formulated. In Section 2.4.4, we first propose definitions of strong 

link-based NVH, weak link-based VH, strong intersection-movement-based NVH, weak 

intersection-movement-based VH, strong path-based NVH, and weak path-based VH solution vectors. We 

then illustrate that there are differences between the classical and proposed NVH definitions and the 

differences in the definitions between the terms “strong NVH”, “weak NVH”, “strong VH”, and “weak VH”. 

We finally formulate the strong intersection-movement-based and path-based NVH conditions. Again, 

“strong” herein means “tight” or “restricted”. 

2.4.1. An overview of existing link-based non-vehicle holding constraints 

According to the definition of the link-based VH problem, weak link-based NVH and strong link-based 

VH solution vectors can be stated as follows (Long and Szeto, 2017): 

Definition 6 (Weak link-based NVH and strong link-based VH solution vectors). Let x  be a feasible 

solution vector. x  is defined as a weak link-based NVH solution vector if it satisfies the condition that, for 

all \ Sa A A  and k K , at least one of the following less-than-or-equal-to inequalities becomes binding 

(i.e., the equality holds in at least one of the following inequalities): 
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( ) ( ),

( ) ( 1) ( ),

( ) ( ) , ( ),  

( ) ( 1) ( ), ( ).

s s
a a a

s S s S

s s
a a a

s S

s s
b b b b jam

s S s S

s s
b b b

s S

V k U k

V k V k C k

U k V k L b a

U k U k Q k b a



 

 



 



  

     


    

       

 



 



 (48) 

Otherwise, x  is defined as a strong link-based VH solution vector. 

Definition 6 implies that an upstream link can have vehicles not discharged due to congestion of one or 

some downstream links, but not necessarily all downstream links directly connected to the upstream link. In 

other words, this definition allows the existence of vehicles on upstream links that do not move forward to 

their own downstream link even if there is no congestion on their own downstream link. 

For any link a (except destination links) with | ( ) |a  successor links, the first two inequalities in the 

system (48) restrict the sending flow of link a, and the last two inequalities in the system (48) restrict the 

receiving flows of all successor links of link a. Hence, the number of constraints in the system (48) with 

respect to interval k is 2 2 | ( ) |a  . The weak link-based NVH conditions require that the equality holds in 

at least one of the 2 2 | ( ) |a   constraints. The weak link-based NVH conditions can be formulated within 

the mixed integer programming (MIP) framework using the well-known “Big M” method, which introduces a 

large positive coefficient, M, to the constraints, as follows (Pavlis and Recker, 2009; Long and Szeto, 2017):  

0

1

( ) ( ) ( ) ( )
am

i s s
a a a a a

i

k k M V k U k  


 
     
 

 ,  (49a) 

0

1

1 ( ) ( ) ( ) ( 1) ( )
am

i s s
a a a a a

i s S

k k M V k V k C k 
 

 
          

 
  ,  (49b) 

0

1 1

( ) (2 1) ( ) ( ) ( ) ,
a a

j j j j

m m
j j i s s

i a i a b b b b jam a
i i s S s S

k k M U k V k L j J     
   

 
          
 
    ,  (49c) 

0

1 1

1 ( ) (2 1) ( ) ( ) ( 1) ( ),
a a

j j j

m m
j j i s s

i a i a b b b a
i i s S

k k M U k U k Q k j J   
  

                 
    , (49d) 

0

2 ( ) 1 2 | ( ) |
am

i i
a

i

k a


   , and  (49g) 

( ) {0,1}, 0,1, ,i
a ak i m     ,  (49h) 

where {1, 2, ,| ( ) |}aJ a   is an index set for successor links of link a. jb  is the j-th link in ( )a . 

 1arg min 2 2 2 | ( ) |m
a m

m a    . j
i  equals 0 or 1 such that 1

1
2am i j

ii
j


 , which implies that the 

value of j
i  is unique and can be predetermined. Introducing j

i  in the NVH constraints aims to reduce 

the number of binary variables ( )i
a k  used. For each interval k, there are 1am   binary variables in the 

system (49), which can form 12 am   combinations. There are 2 2 | ( ) |a   LTM-based flow constraints in 
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the system (48). Constraint (49g) implies that we only use 2 2 | ( ) |a   combinations of the binary 
variables. 

2.4.2. Intersection-movement-based non-vehicle holding constraints 

The definitions of weak link-based NVH and strong link-based VH solution vectors can be modified to 

define weak intersection-movement-based NVH and strong intersection-movement-based VH solution vectors 

as follows: 

Definition 7 (Weak intersection-movement-based NVH and strong intersection-movement-based VH solution 

vectors). Let y  be a feasible solution vector. y  is defined as a weak intersection-movement-based 

NVH solution vector if it satisfies the condition that, for all \ Sa A A  and k K , at least one of the 

following less-than-or-equal-to inequalities becomes binding: 

( ) ( )

( )

( ) ( )

( )

( ) ( ),

( ) ( 1) ( ),

( ) ( ) , ( ),  

( ) ( 1) ( ), ( ).

s s
ab ab a

s S b a s S b a

s s
ab ab a

s S b a

s s
bc bc b b jam
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 (50) 

Otherwise, y  is defined as a strong intersection-movement-based VH solution vector. 

Proposition 6: If y  is a weak intersection-movement-based NVH solution vector, then 1( )x φ y  is a 

weak link-based NVH solution vector. 

The proof is given in Appendix A.5. 

Similar to the link-based NVH constraint (49), the intersection-movement-based NVH conditions for any 

link \ Sa A A  and interval k K  can be formulated within the MIP framework as follows: 
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( ) {0,1}, 0,1, ,i
a ak i m     .  (51h) 
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2.4.3. Path-based non-vehicle holding constraints 

The definitions of weak link-based and weak intersection-movement-based NVH solution vectors and 

strong link-based and strong intersection-movement-based VH solution vectors can be modified to define 

weak path-based NVH and strong path-based VH solution vectors as follows: 

Definition 8 (Weak path-based NVH and strong path-based VH solution vectors). Let z   be a feasible 

solution vector. z  is defined as a weak path-based NVH solution vector if it satisfies the condition that, for 

all \ Sa A A  and k K , at least one of the following less-than-or-equal-to inequalities becomes binding: 
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 (52) 

Otherwise, z  is defined as a strong path-based VH solution vector. 

Proposition 7: If z   is a weak path-based NVH solution vector, then 2 ( )y φ z  is a weak 

intersection-movement-based NVH solution vector, and 1 2( ( ))x φ φ z  is a weak link-based NVH solution 

vector. 

The proof is given in Appendix A.6. 

Similar to the link-based NVH constraint (49) and the intersection-movement-based NVH constraint (51), 

the weak path-based NVH conditions can be formulated within the MIP framework as follows: 
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i i
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
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( ) {0,1}, 0,1, ,i
a ak i m     .  (53h) 

2.4.4. The proposed definitions of strong NVH solution vectors 

According to the definition of VH, we propose the definition of a strong link-based NVH solution vector 
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as follows: a solution vector of the link-based DSO-SRDTC problem is defined as a strong link-based NVH 

solution vector if no more vehicles can move forward from an upstream link to their own downstream link. 

This differs from the weak link-based NVH solution vector in the literature mentioned earlier. Because the 

FIFO requirement is not considered in this section, FIFO violations can exist in a strong link-based NVH 

solution vector. Similarly, FIFO violations can exist in a weak link-based NVH solution vector. 

Mathematically, strong link-based NVH and weak link-based VH solution vectors can be defined as follows: 

Definition 9 (Strong link-based NVH and weak link-based VH solution vectors). Let x  be a link-based 

feasible solution vector. x  is defined as a weak link-based VH solution vector if there exists a link-based 

feasible solution vector x  such that x x  and x x . Otherwise, x  is defined as a strong 

link-based NVH solution vector. 

Because x , x , and x x , the flow conservation constraint implies that x  and x  have the 

same cumulative link flow by the end of the last time interval K , i.e., we have 

( ) ( ), ,s s
a aU K U K s S a A    , and ( ) ( ), , \s s

a a SV K V K s S a A A    . This implies that the total inflow 

and outflow of the whole studied period of each link are the same for both solution vectors. Moreover, the 

condition x x  can ensure that the cumulative flows of all routes in solution vector x  are not less than 

those in solution vector x , and the routes of all vehicles in solution vector x  are the same as those in 

solution vector x . In addition, x x , x x , and the flow conservation constraint (13) imply that there 

exists an index pair { , , } Ls a k   such that ( ) ( )s s
a aV k V k  , which indicates that some more vehicles can 

move forward from upstream links to their downstream links. Note that because the FIFO requirement is not 

considered in Definition 9, FIFO violations can exist in a strong link-based NVH solution vector. This implies 

that vehicles on an upstream link can overpass the vehicles on the same upstream link with different 

downstream links (including those congested downstream links) and can be discharged to their own 

downstream links. Hence, it is possible that under Definition 9, an upstream link has vehicles discharged to 

their own downstream link when other downstream links are congested.  

Proposition 8: Any strong link-based VH solution vector x  defined by Definition 6 satisfies the weak 

link-based VH condition defined by Definition 9, and any strong link-based NVH solution vector x  

defined by Definition 9 satisfies the weak link-based NVH condition defined by Definition 6. 

The proof is given in Appendix A.7. 

Let 11  be the set of weak link-based NVH solution vectors defined by Definition 6, and 12 be the set 

of strong link-based VH solution vectors defined by Definition 6. Based on Definition 6, we have 

11 12    and 11 12    . Let 21  be the set of strong link-based NVH solution vectors defined 

by Definition 9, and 22  be the set of weak link-based VH solution vectors defined by Definition 9. Based 

on Definition 9, we have 21 22    and 21 22    . Based on Proposition 8, we have 

21 11   and 12 22   . This is consistent with the definition that a strong solution vector is obtained 
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under a tighter or more restricted condition than a weak solution vector. As will be shown by Example 1 in 

Section 4, a weak link-based VH solution vector defined by Definition 9 may not satisfy the strong link-based 

VH condition defined by Definition 6, and a weak link-based NVH solution vector defined by Definition 6 

may not satisfy the strong link-based NVH condition defined by Definition 9.  

Similar to the definition of strong link-based NVH solution vectors, strong intersection-movement-based 

and strong path-based NVH solution vectors can be defined as follows: 

Definition 10 (Strong intersection-movement-based NVH and weak intersection-movement-based VH 

solution vectors). Let y  be an intersection-movement-based feasible solution vector. y  is defined as a 

weak intersection-movement-based VH solution vector if there exists an intersection-movement-based 

feasible solution vector y  such that y y  and y y . Otherwise, y  is defined as a strong 

intersection-movement-based NVH solution vector. 

Definition 11 (Strong path-based NVH and weak path-based VH solution vectors). Let z   be a 

path-based feasible solution vector. z  is defined as a weak path-based VH solution vector if there exists a 

path-based feasible solution vector z   such that z z  and z z . Otherwise, z  is defined as a 

strong path-based NVH solution vector. 

Similar to Proposition 8, we can prove that any strong intersection-movement-based NVH solution vector 

defined by Definition 10 satisfies the weak intersection-movement-based NVH condition defined by 

Definition 7, and any strong path-based NVH solution vector defined by Definition 11 satisfies the weak 

path-based NVH condition defined by Definition 8. The proofs basically follow the proof of Proposition 8 

with changes in notations and are omitted. 

Because intersection-movement-based solution vectors contain path information, a strong 

intersection-movement-based NVH solution vector can be equivalently defined on each intersection 

movement and we have the following proposition: 

Proposition 9: Let y  be a feasible solution vector. y  is a strong intersection-movement-based NVH 

solution vector if and only if y  satisfies the condition that, for all \ Sa A A , ( )b a , and k K , at 

least one of the following less-than-or-equal-to inequalities becomes binding: 

( )

( ) ( )

( )
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 (54) 

The proof is given in Appendix A.8. 

Due to different definitions of intersection-movement-based NVH solution vectors (see Definition 7 and 
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Proposition 9), we develop different big-M methods to formulate the strong intersection-movement-based 

NVH conditions. Using the “Big M” method, the strong intersection-movement-based NVH conditions can be 

formulated within the MIP framework, as follows: 
1

( )

( ) ( 1) [1 ( )] ( ), \ ,s s
ab ab a a S

s S b a

V k V k k M C k a A A k K
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1 2 3( ) ( ) ( ) ( ) 1, \ , ( ),a b b ab Sk k k k a A A b a k K           , (55e) 

( ) {0,1}, , , {1,2,3}i
a k a A k K i      , and (55f) 

( ) {0,1}, \ , ( ),ab Sk a A A b a k K      . (55g) 

Constraint (55e)-(55g) implies that for all \ Sa A A , ( )b a , and k K , at least one of the 

less-than-or-equal-to inequalities in (54) becomes binding. 

Because path-based solution vectors contain path information, a strong path-based NVH solution vector 

can be equivalently defined by each intersection movement, and we have the following proposition: 

Proposition 10: Let z   be a feasible solution vector. z  is a strong path-based NVH solution vector if 

and only if z  satisfies the condition that, for all \ Sa A A , ( )b a , and k K , at least one of the 

following less-than-or-equal-to inequalities becomes binding: 
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 (56) 

The proof is similar to that of Proposition 9. 

Proposition 11: If z   is a strong path-based NVH solution vector, then 2 ( )y φ z  is a strong 

intersection-movement-based NVH solution vector. 

The proof is given in Appendix A.9. 

Similar to the strong intersection-movement-based NVH conditions, the strong path-based NVH 

conditions can be formulated as follows: 
1( ) ( 1) [1 ( )] ( ), \ ,

s

s s
ap ap a a S

s S p P

V k V k k M C k a A A k K
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3[ ( ) ( 1)] [1 ( )] ( ), ,
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( ) {0,1}, , , {1,2,3}i
a k a A k K i      , and  (57f) 

( ) {0,1}, \ , ( ),ab Sk a A A b a k K      .  (57g) 

Constraint (57e) implies that, for all \ Sa A A , ( )b a  and k K , at least one of the 

less-than-or-equal-to inequalities in (56) becomes binding. 

We have the following two propositions: 

Proposition 12: If y  and a vector [ ( ), ( )]i
a abk k ω  satisfying the intersection-movement-based 

NVH constraint (55), then y  is a strong intersection-movement-based NVH solution vector. 

The proof is given in Appendix A.10. 

Proposition 13: If z   and a vector [ ( ), ( )]i
a abk k ω  satisfying the path-based NVH constraint (57), 

then z  is a strong path-based NVH solution vector. 

The proof is similar to that of Proposition 12. 

Propositions 12 and 13 imply that the intersection-movement-based NVH constraint (55) and the 

path-based NVH constraint (57) can completely eliminate weak VH solutions. 

2.5. The DSO-SRDTC models without FIFO constraints 

2.5.1. Total system travel cost 

In this paper, the generalized travel cost for travelers consists of three components: (1) the monetary value 

of the trip travel time, (2) the penalty cost of schedule delay early, and (3) the penalty cost of schedule delay 

late. It is assumed that travelers have a desired arrival time period, which is expressed as the arrival time 

window * *[ , ]s sk k , where *
sk  and *

sk  represent the earliest and latest official work start time window for 

travelers to destination s, respectively. 

The TSTC for the whole network can be formulated as follows: 
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(58) 

where   is the unit cost of travel time, and   and   are the unit costs of schedule delay early and late, 

respectively. According to empirical results (Small, 1982), we have 0      . The three terms on the 

right-hand side of the first equation of Eq. (58) are the total monetary value of the trip travel time, the total 
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penalty cost of schedule delay early, and the total penalty cost of schedule delay late, respectively. 

Substituting Eqs. (7), (8), and (12) into Eq. (58) and rearranging the resultant equation, we have the TSTC 

in terms of a link-based solution vector as follows: 

* *
0

\

( ) [ ( ) ( )] ( ) ( )
S S s s

s s s s
a a a a

s S a A A k K a A k k k k
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    

     x , (59) 

where *
0 ( 1 ) .

S R

s
s b

s S a A b A

K k D 
  

     Because all parameters in this equation are predetermined, 0  is 

a constant. 

Substituting Eqs. (19)-(21) into Eq. (59), we have the TSTC in terms of an intersection-movement-based 

solution vector as follows: 

1 * *
0

\ ( ) ( )

( ) [ ( ) ( )] ( ) ( )
S S s s

s s s s
ab ab ba ba

s S a A A k K b a a A b a k k k k

U k V k V k V k    
       

         
    

       y . (60) 

Substituting Eqs. (33) and (34) into Eq. (59), we have the TSTC in terms of a path-based solution vector 

as follows: 

* *
0

\

( ) [ ( ) ( )] ( ) ( )
s

S S s s

s s s s
ap ap ap ap

s S a A A k K a Ap P k k k k

U k V k U k U k    
     

         
    

      x  . (61) 

Proposition 14: For all y , we have 1( ) ( ( )) y φ y . 

The proof is given in Appendix A.11. 

Proposition 15: For all z  , we have 2 1 2( ) ( ( )) ( ( ( )))   z φ z φ φ z . 

The proof is given in Appendix A.12. 

2.5.2. Linear programming formulation for the R-DSO-SRDTC problems 

Expressing the TSTC in terms of a link-based solution vector, we can formulate the link-based 

R-DSO-SRDTC problem, which considers neither FIFO constraints nor NVH constraints, as the following LP 

problem: 

min ( ) 



x

x . (62) 

Similarly, we can formulate the intersection-movement-based and path-based R-DSO-SRDTC problems 

without the considerations of FIFO constraints and NVH constraints as the following LP problems, 

respectively: 

min ( ) 



y

y  and (63) 

min ( ) 



z

z

  . (64) 

2.5.3. Formulations for the NVH-DSO-SRDTC problems 

Integrating the link-based NVH constraint (49) into LP problem (62), we can formulate the link-based 
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NVH-DSO-SRDTC problem as the following mixed-integer LP (MILP) problem: 

,
min ( ) 



x θ

x  (65) 

Subject to: Constraint (49) for all \ ,Sa A A k K  ,  

where the vector [ ( )]i
a kθ . 

Integrating the intersection-movement-based NVH constraint (55) into LP problem (63), we can formulate 

the intersection-movement-based NVH-DSO-SRDTC problem as the following MILP: 

,
min ( ) 



y ω

y  (66) 

Subject to: Constraint (55).  
Integrating the path-based NVH constraint (57) into LP problem (64), we can formulate the path-based 

NVH-DSO-SRDTC problem as the following MILP: 

,
min ( ) 



z ω

z

   (67) 

Subject to: Constraint (57).  

The following LP problem is proposed to completely address the VH problem in the link-based 

DSO-SRDTC problems: 

Proposition 16. Any optimal solution to the following LP problem is a strong link-based NVH solution 

vector: 

\

max ( ) ( )
R

s
a

s S k K a A A

V k


  

 
x

x , (68) 

Subject to: *( ) x , (69) 

where *  is the value of the objective function for an optimal solution to LP problem (62), i.e., the minimum 

TSTC of the link-based R-DSO-SRDTC problem (62). 

The proof is given in Appendix A.13.  

Proposition 16 implies that LP problem (68)-(69) can completely eliminate VH solutions. According to 

Propositions 8 and 16, optimal solutions to LP problem (68)-(69) satisfy the weak link-based NVH condition 

defined by Definition 6. Because MILP problem (65) integrates the weak link-based NVH condition, optimal 

solutions to the MILP problem (65) satisfy the weak link-based NVH condition. Hence, we have the following 

proposition: 

Proposition 17. Let *x  be an optimal solution to LP problem (68)-(69). Then, there exists a vector *θ  such 

that * *[ , ]x θ  is an optimal solution to MILP problem (65). 

The proof is given in Appendix A.14. 

Before solving LP problem (68)-(69), we should solve LP problem (62) to obtain the minimum TSTC * . 

This implies that two LP problems should be solved sequentially to obtain an optimal solution to LP problem 

(68)-(69). To enhance computational efficiency for solving the link-based NVH-DSO-SRDTC problem, the 
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following LP problem can be used to address the VH problem: 

Proposition 18. For a given 0  , let *x  be an optimal solution to the following LP problem: 

\

min ( ) ( )
S

s
a

a A A k K s S

V k  


  

   
x

x . (70) 

If *x  is also an optimal solution to LP problem (62), then *x  is also an optimal solution to LP problem (68)

-(69) and all optimal solutions to the following LP problem are also optimal to LP problem (68)-(69): 

\

ˆmin ( ) ( )
S

s
a

a A A k K s S

V k  


  

   
x

x , (71) 

where ˆ0    . 

The proof is similar to that of Proposition 1 in Long and Szeto (2017). 

The results presented in Proposition 18 indicate that we can select a small enough positive parameter   

and solve only one LP problem to obtain a link-based NVH system optimum solution vector. Similarly, the 

MILPs (66) and (67) for the intersection-movement-based and path-based NVH-DSO-SRDTC problems can, 

respectively, be reformulated as follows: 

\ ( )

min ( ) ( )
S

s
ab

k K s S a A A b a

V k  


   

    
y

y  and (72) 

\

min ( ) ( )
S

ap
a A A k K p P

V k  


  

   
z

z


 , (73) 

where   is a sufficiently small positive coefficient. The proofs basically follow the proof of Proposition 18 

with changes in notations and are omitted. 

Theorem 1. Let * , * , and *  be the optimal TSTCs of the link-based, intersection-movement-based, 

and path-based R-DSO-SRDTC problems, respectively. Let *
N , *

N , and *
N  be the optimal TSTCs of the 

link-based, intersection-movement-based, and path-based NVH-DSO-SRDTC problems, respectively. We 

have * * * * * *
N N N           . 

The proof is given in Appendix A.15. 

Theorem 1 implies that the three formulations of the DSO-SRDTC problem without FIFO constraints are 

equivalent in terms of obtaining the same optimal TSTC. This is consistent with Shen et al. (2007) that an 

optimal solution to single-destination SO-DTA problems that maintain the NVH property always exists. In 

other words, SO-DTA problems without NVH constraints can have multiple optimal solutions and at least one 

of them is an NVH-SO flow pattern. Therefore, if SO-DTA is only used to provide a benchmark for 

developing network management strategies, any one of the three formulations of the DSO-SRDTC problem 

without FIFO constraints can be applied. 

3. The DSO-SRDTC problems with FIFO constraints 

3.1. FIFO conditions and FIFO solution vectors 

3.1.1. An overview of link-based FIFO conditions and FIFO solution vectors 

Cumulative link inflows and outflows can be related to link travel times as follows (Long et al., 2011; 
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Carey et al., 2014): 

( ) ( ( )), , [0, ],a a aU V a A T s S         . (74) 

Using the link travel times of vehicles that travel to each destination, the weak link-based FIFO condition 

and a FIFO solution vector can be defined as follows (Long and Szeto, 2017): 

Definition 12 (Link-based FIFO condition): Traffic flow on link a satisfies the link-based FIFO condition if 

and only if  

1 2
1 2( ) ( ), , , [0, ], [0, ]s s

a a s S s S T T                         . (75) 

where 1 ( )s
a   ( 2 ( )s

a  ) is the link travel time of the vehicles entering link a to destination 1s  ( 2s ) at time 

instant   (  ). 

Definition 13 (Link-based FIFO solution vector): A solution vector x  is a FIFO solution vector if a 

vector of link travel times [ ( )]s
aτ   exists such that τ  satisfies the link FIFO condition (75) for all 

\ Sa A A  and the following condition is satisfied: 

( ) ( ( )), , \ , [0, ]s s s
a a a SU V s S a A A T         . (76) 

The following two propositions can be used to identify FIFO violations (Long and Szeto, 2017): 

Proposition 19: For a given link-based solution vector x  and an index pair ( , )a k  , if at least one 

destination s  exists such that *
,( ) ( )s s

a a k aU V k , where *
,a k  is a critical time instant (i.e., the earliest 

entry time of vehicles that leave link a at the end of interval k, which may not be an integer) and 
*
, arg max{ ( ) ( ), }

a

s s
a k a a

k
U V k s S

 
   

  , (77) 

then x  involves FIFO violations. 

Proposition 20: For a given solution vector x  and an index pair ( , )a k  , if at least one destination 

s  exists such that *
,( ) ( )s s

a a k aU V k , where *
,a k  is a critical time instant (i.e., the latest entry time of 

vehicles that leave link a at the end of interval k, which may not be an integer) and 

*
,

0
arg min{ ( ) ( ), }s s

a k a aU V k s S


   


  , (78) 

then x  involves FIFO violations. 

Definition 14 (Link entry time): ( )s
ae k  is defined as the time instant at which vehicles enter link a to 

destination s and leave the link at the end of interval k.  

According to Definition 14, we have ( ) ( ( ))s s s
a a ak e k e k  , and can equivalently reformulate Eq. (76) as 

follows: 

( ( )) ( ), , \ ,s s s
a a a SU e k V k s S a A A k K     . (79) 

Proposition 21: For any given link-based FIFO solution vector x , there must exist a vector of entry 

times [ ( )]ae ke  such that 
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( ) ( ( )), , \ ,s s
a a a SV k U e k s S a A A k K     . (80) 

Both Propositions 19 and 20 can be used to prove this proposition. See Long and Szeto (2017) for the 

detailed proof. According to Proposition 21, a link-based FIFO solution vector can also be redefined as 

follows (Long and Szeto, 2017): 

Definition 15 (Alternative link-based FIFO solution vector): A solution vector x  is a link-based FIFO 

solution vector if a vector of entry times [ ( )]ae ke  exists such that condition (80) is satisfied. 

3.1.2. Definitions of intersection-movement-based and path-based FIFO solution vectors 

Similar to the alternative definition of a link-based FIFO solution vector, intersection-movement-based 

and path-based FIFO solution vectors can be defined as follows: 

Definition 16 (Intersection-movement-based FIFO solution vector): A solution vector y  is an 

intersection-movement-based FIFO solution vector if a vector of entry times [ ( )]ae ke  exists such that  

( ) ( ( )), , \ , ( ),s s
ab ab a SV k U e k s S a A A b a k K      . (81) 

Definition 17 (Path-based FIFO solution vector): A solution vector z   is a path-based FIFO solution 

vector if a vector of entry times [ ( )]ae ke  exists such that  

( ) ( ( )), , , \ ,s s s
ap ap a SV k U e k s S p P a A A k K      . (82) 

Proposition 22: If y  is an intersection-movement-based FIFO solution vector, then 1( )x φ y  is a 

link-based FIFO solution vector. 

The proof is given in Appendix A.16. 

Proposition 23: If z   is a path-based FIFO solution vector, then 2 ( )y φ z  is an 

intersection-movement-based FIFO solution vector, and 1 2( ( ))x φ φ z  is a link-based FIFO solution vector. 

The proof is given in Appendix A.17. 

Propositions 22 and 23, respectively, indicate that intersection-movement-based FIFO implies link-based 

FIFO, and path-based FIFO implies intersection-movement-based FIFO and link-based FIFO. Equivalently, 

link-based FIFO is weaker than intersection-movement-based FIFO and path-based FIFO, and 

intersection-movement-based FIFO is weaker than path-based FIFO. 

Similar to Propositions 19 and 20 for FIFO violation identification in a link-based solution vector, the 

following two propositions can be used to identify FIFO violations in an intersection-movement-based 

solution vector: 

Proposition 24: For a given solution vector y  and an index pair ( , )a k  , if at least one destination 

s  and downstream link b exist such that *
,( ) ( )s s

ab a k abU V k , where  
*
, arg max{ ( ) ( ), , ( )}

a

s s
a k ab ab

k
U V k s S b a

 
    

  , (83) 

then y  involves FIFO violations. 
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Proposition 25: For a given solution vector y  and an index pair ( , )a k  , if at least one destination 

s  and downstream link b exist such that *
,( ) ( )s s

ab a k abU V k , where 

*
,

0
arg min{ ( ) ( ), , ( )}s s

a k ab abU V k s S b a


    


  , (84) 

then y  involves FIFO violations. 

Propositions 24 and 25 are straightforward extensions from Propositions 19 and 20 and hence the proofs 

are omitted. Similarly, Propositions 19 and 20 can be easily extended to the path-based counterparts: 

Proposition 26: For a given solution vector z   and an index pair ( , )a k  , if at least one destination 

s  and one path sp P  exists such that *
,( ) ( )s s

ap a k apU V k , where 
*
, arg max{ ( ) ( ), , }

a

s s s
a k ap ap

k
U V k s S p P

 
    


  , (85) 

then z  involves FIFO violations. 

Proposition 27: For a given solution vector z   and an index pair ( , )a k  , if at least one destination 

s  and one path sp P  exists such that *
,( ) ( )s s

ap a k apU V k , where 

*
,

0
arg min{ ( ) ( ), , }s s s

a k ap apU V k s S p P


    


  , (86) 

then z  involves FIFO violations. 

3.2. FIFO constraints 

Before solving the DSO-SRDTC problem with FIFO constraints, we do not know the exact value of the 

entry time ( )ae k  in condition (80). Hence, we cannot directly use the linear interpolation procedure (1) to 

reformulate condition but can use a linear combination of two cumulative flows at adjacent time intervals 

instead. Therefore, according to Definition 15, condition (80) can be reformulated as follows (Long and Szeto, 

2017): 

, ,( ) ( ), , \ ,
a

s s
a a k l a S

l k

V k U l s S a A A k K



 

     , (87) 

where , ,a k l  is the linear combination/interpolation coefficient and satisfies 

, , 1, ,
a

a k l
l k

a A k K



 

    , (88a) 

, , , , 0, , , , 2a k l a k l aa A k K l k l l           , and (88b) 

, , 0, , ,a k l aa A k K l k       , (88c) 

where (88a) is a definitional constraint that requires the sum of linear combination coefficients equal one, (88b) 

ensures that at most two adjacent intervals are required to represent the linear combination due to linear 

interpolation, and (88c) ensures that the linear combination coefficients are non-negative.  

According to Long and Szeto (2017), we have the following proposition: 

Proposition 28: If a vector , ,[ ]a k lλ  exists such that a feasible flow pattern x  satisfies constraints 
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(87) and (88), then the vector , ,[ ( )]
a

a a k ll k
p k l




 
    p  satisfies the FIFO condition (80) and x  is a 

FIFO flow pattern. 

Proposition 28 implies that the FIFO constraints (87) and (88) can ensure a feasible flow pattern x  

to be a FIFO flow pattern. 

Similar to link-based FIFO constraints, the intersection-movement-based FIFO constraints can be 

formulated as follows: 

, ,( ) ( ), , \ , ( ),
a

s s
ab a k l ab S

l k

V k U l s S a A A b a k K



 

      , (89) 

where , ,a k l  satisfies constraint (88). 

Similar to link-based and intersection-movement-based FIFO constraints, the path-based FIFO constraints 

can be formulated as follows: 

, ,( ) ( ), , \ , ,
a

s s s
ap a k l ap S

l k

V k U l s S a A A p P k K



 

      , (90) 

where , ,a k l  satisfies constraint (88). 

The result presented in Proposition 28 can be directly extended to intersection-movement-based and 

path-based FIFO constraints and is omitted here. 

3.3. The FIFO-DSO-SRDTC models 

Integrating FIFO constraints (87) and (88) into LP problem (62), we can obtain the following link-based 

FIFO-DSO-SRDTC model: 

,
min ( ) 



x λ

x . (91) 

Subject to: Constraints (87) and (88),  

where the vector , ,[ ]a k lλ .  

Integrating FIFO constraints (88) and (89) into LP problem (63), we can obtain the following 

intersection-movement-based FIFO-DSO-SRDTC model: 

,
min ( ) 



y λ

y . (92) 

Subject to: Constraints (88) and (89).  

Integrating FIFO constraints (88) and (90) into LP problem (64), we can obtain the following path-based 

FIFO-DSO-SRDTC model: 

,
min ( ) 



z λ

z

  . (93) 

Subject to: Constraints (88) and (90).  

Similar to Theorem 1 in Long and Szeto (2017), we have the following theorems: 

Theorem 2: Let * *[ , ]x λ  be an optimal solution to the link-based FIFO-DSO-SRDTC problem (91), and 

* * *
, ,[ ( )]

a
a a k ll k

e k l



 
    e . Then, *x  is also an optimal solution to the following LP:  
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min ( ) 



x

x   

Subject to:  

*( ) ( ( )), , \ ,s s
a a a SV k U e k s S a A A k K     . (94) 

Theorem 3: Let * *[ , ]y λ  be an optimal solution to the intersection-movement-based FIFO-DSO-SRDTC 

problem (92), and * * *
, ,[ ( )]

a
a a k ll k

e k l



 
    e . Then, *y  is also an optimal solution to the following 

LP:  

min ( ) 



y

y   

Subject to:  

*( ) ( ( )), , \ , ( ),s s
ab ab a SV k U e k s S a A A b a k K      . (95) 

Theorem 4: Let * *[ , ]z λ  be an optimal solution to the path-based FIFO-DSO-SRDTC problem (93), and 

* * *
, ,[ ( )]

a
a a k ll k

e k l



 
    e . Then, *z  is also an optimal solution to the following LP:  

min ( ) 



z

z

    

Subject to:  

*( ) ( ( )), , \ , ,s s s
ap ap a SV k U e k s S a A A p P k K      . (96) 

Theorems 2-4 link FIFO-DSO solutions to different forms of LP problems, and provide optimal solution 

properties of the proposed DSO-SRDTC problems. These important properties can be used to develop new or 

modifying existing solution methods for solving FIFO-DSO solutions. Because there are bilinear terms in 

FIFO constraints, the FIFO-DSO-SRDTC problems are non-convex optimization problems and are very hard 

to solve. According to Theorems 2-4, if the vector *[ ( )]ae k  is known beforehand, we can solve an LP 

problem to get the optimal solution to the FIFO-DSO-SRDTC problems. This implies that we can solve the 

FIFO-DSO-SRDTC problems by finding the optimal vector *[ ( )]ae k . Because FIFO-DSO solutions are not 

known beforehand, we adopt branch-and-bound algorithms (see Long and Szeto, 2017 for details) and solve a 

sequence of LPs to find the optimal vector *[ ( )]ae k  for the FIFO-DSO-SRDTC problems. 

Theorem 5: Let * , * , and *  be the optimal TSTCs of the link-based, intersection-movement-based, 

and path-based FIFO-DSO-SRDTC problems, respectively. Then, * * *     . 

The proof is given in Appendix A.18. 

The proof of Theorem 5 shows that an optimal intersection-movement-based FIFO-DSO-SRDTC solution 

vector can be directly transferred to a feasible link-based FIFO-DSO-SRDTC solution vector with the same 

TSTC. This implies that the TSTC of the optimal link-based FIFO-DSO-SRDTC solution vector is not more 

than the TSTC of the optimal intersection-movement-based FIFO-DSO-SRDTC solution vector. In contrast, 

an optimal link-based FIFO-DSO-SRDTC solution vector cannot always be transferred to a feasible 

intersection-movement-based FIFO-DSO-SRDTC solution vector with the same TSTC. This implies that we 



 30

can have * *  (see Example 5 in Section 4). Similar results can be observed between 

intersection-movement-based and path-based FIFO-DSO-SRDTC problems, and we can have * *   . 

Therefore, link-based, intersection-movement-based, and path-based FIFO are not equivalent, and the three 

formulations of DSO-SRDTC problems with FIFO constraints can obtain different optimal TSTCs. 

3.4. The NVH-FIFO-DSO-SRDTC models 

In a multi-destination network, if the FIFO requirement is considered, an NVH solution vector can allow 

the existence of vehicles on an entering link of a diverge junction that do not move forward to their own 

successor link even if there is no congestion on their own successor link. Due to the FIFO requirement, it is 

possible that in an NVH solution, an upstream link has vehicles not discharged due to congestion of one or 

some downstream links, but not necessarily all downstream links directly connected to the upstream link. 

Weak link-based, intersection-movement-based, and path-based NVH solution vectors, respectively, defined 

by Definitions 6, 7, and 8 can capture this phenomenon. Hence, the corresponding constraints (49), (51), and 

(53) are used to represent the NVH constraints in the link-based, intersection-movement-based, and 

path-based NVH-FIFO-DSO-SRDTC problems, respectively.  

VH in the DSO-SRDTC problems without FIFO constraints can be eliminated by a penalty approach. 

However, the penalty approach cannot be directly applied to for the NVH-FIFO formulation. Example 5 in 

Section 4 shows that the TSTC of a FIFO-DSO solution vector and that of an NVH-FIFO-DSO solution 

vector can be different, and the TSTC of a FIFO-DSO solution vector is smaller than that of an 

NVH-FIFO-DSO solution vector. When we introduce the penalty term into the FIFO-DSO-SRDTC model, we 

will obtain a FIFO-DSO solution vector if the coefficient approaches zero. In this case, to achieve a minimum 

objective value, the NVH property cannot be ensured. In this subsection, intersection-movement-based 

constraints (51) and path-based NVH constraints (53) are included in the FIFO-DSO-SRDTC model to 

eliminate VH. Because the FIFO-DSO-SRDTC model with NVH constraints obtains weak NVH-FIFO-DSO 

solution vectors, the penalty term is introduced into the objective of the FIFO-DSO-SRDTC models. The 

penalty term is used to eliminate the redundant holding flows. 

Integrating the NVH constraint (49) and FIFO constraints (87) and (88) into LP problem (70), we can 

obtain the following link-based NVH-FIFO-DSO-SRDTC model: 

, ,
\

min ( ) ( )
S

s
a

a A A k K s S

V k  


  

   
x λ θ

x  (97) 

Subject to: Constraints (87) and (88), and constraint (49) for all \ ,Sa A A k K  .  

Integrating the NVH constraint (51) and FIFO constraints (88) and (89) into LP problem (72), we can 

obtain the following intersection-movement-based NVH-FIFO-DSO-SRDTC model: 

, ,
\ ( )

min ( ) ( )
S

s
ab

k K s S a A A b a

V k  


   

    
y λ ω

y  (98) 

Subject to: Constraints (88) and (89), and constraint (51) for all \ ,Sa A A k K  .  
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Integrating the NVH constraint (53) and FIFO constraints (88) and (90) into LP problem (73), we can 

obtain the following path-based NVH-FIFO-DSO-SRDTC model: 

, ,
\

min ( ) ( )
S

ap
a A A k K p P

V k  


  

   
z λ ω

z


  (99) 

Subject to: Constraints (88) and (89), and constraint (53) for all \ ,Sa A A k K  .  

Similar to Theorem 2 in Long and Szeto (2017), we have the following theorems: 

Theorem 6: Let * * *[ , , ]x λ θ  be an optimal solution to the link-based NVH-FIFO-DSO-SRDTC problem 

(97), and * * *
, ,[ ( )]

a
a a k ll k

e k l



 
    e  . Then, * *[ , ]x θ  is also an optimal solution to the following 

mixed-integer linear programming (MILP) problem: 

,
min ( ) 



x θ

x   

Subject to: Constraints (94) and constraint (49) for all \ ,Sa A A k K  .  

Theorem 7: Let * * *[ , , ]y λ ω  be an optimal solution to the intersection-movement-based 

NVH-FIFO-DSO-SRDTC problem (98), and * * *
, ,[ ( )]

a
a a k ll k

e k l



 
    e  . Then, * * *[ , , ]y λ ω  is also an 

optimal solution to the following MILP problem: 

,
min ( ) 



y ω

y   

Subject to: Constraint (95) and constraint (51) for all \ ,Sa A A k K  .  

Theorem 8: Let * * *[ , , ]z λ ω  be an optimal solution to the path-based NVH-FIFO-DSO-SRDTC problem 

(99), and * * *
, ,[ ( )]

a
a a k ll k

e k l



 
    e  . Then, * * *[ , , ]z λ ω  is also an optimal solution to the following 

MILP problem: 

,
min ( ) 



z ω

z

    

Subject to: Constraint (96) and constraint (53) for all \ ,Sa A A k K  .  

Theorems 6-8 link NVH-FIFO-DSO solutions to different forms of MILP problems, and provide optimal 

solution conditions for the proposed NVH-FIFO-DSO-SRDTC problems. According to Theorems 6-8, if the 

vector *[ ( )]ae k  is known beforehand, we can solve a MILP problem to get the optimal solution to the 

NVH-FIFO-DSO-SRDTC problems. This implies that we can solve the NVH-FIFO-DSO-SRDTC problems 

by finding the optimal vector *[ ( )]ae k . In this paper, we adopt branch-and-bound algorithms (see Long and 

Szeto, 2017 for details) and solve a sequence of MILPs to find the optimal vector *[ ( )]ae k  for the 

NVH-FIFO-DSO-SRDTC problems. 

Theorem 9: Let * , * , and *  be the optimal TSTCs of the link-based, intersection-movement-based 

and path-based NVH-FIFO-DSO-SRDTC problems, respectively. Then, * * *     . 

The proof is given in Appendix A.19. 

Theorem 10: Let *
1 , *

2 , *
3 , and *

4  be the optimal TSTCs of the link-based R-SO-, the NVH-SO-, the 
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FIFO-SO-, and the NVH-FIFO-DSO-SRDTC problems, respectively. We have * * * *
1 2 3 4      . 

The proof is given in Appendix A.20. 

Similar results of Theorem 10 can be proved for the intersection-movement-based and path-based 

DSO-SRDTC problems, which are omitted here. 

3.5. Branch-and-bound algorithms for DSO-SRDTC models with FIFO constraints 

The DSO-SRDTC problems without FIFO constraints are formulated as linear programs and can be 

effectively solved by commercial solvers, such as CPLEX, Gurobi, for reasonable size networks. However, 

the DSO-SRDTC problems with FIFO constraints have a non-convex set of feasible solutions, and traditional 

optimization methods may not be effective to solve them even for small networks. Long and Szeto (2017) 

developed branch-and-bound algorithms to solve link-based DSO-SRDTC models with FIFO constraints, 

which can be directly extended to solve the intersection-movement-based and path-based DSO-SRDTC 

problems. Different from traditional branch-and-bound algorithms, the branch-and-bound algorithms for 

DSO-SRDTC problems do not directly branch decision variables. Based on the properties of the DSO-SRDTC 

models (see Theorems 2-4 and 6-8), the branch-and-bound algorithms aim to search for the proper ranges of 

entry times * ( )ae k  by using the set of pairs of link and interval indices of the solution vector with FIFO 

violations identified by the conditions stated in Propositions 19 and 20 for link-based models, Propositions 24 

and 25 for intersection-movement-based models, and Propositions 26 and 27 for path-based models. In the 

branch-and-bound algorithms, the DSO-SRDTC problems without FIFO constraints are sub-problems to solve 

the DSO-SRDTC problems with FIFO constraints. We only need to solve LP or MILP sub-problems to 

evaluate the branches, generate new branches based on the two critical entry times obtained from the FIFO 

violation identification procedure, update both the lower and upper bounds of the TSTC, and fathom the 

unnecessary branches. 

4. Numerical examples 

This section presents six numerical experiments to illustrate the properties and performance of the 

proposed DSO-SRDTC models. All experiments were run on a computer with an Intel (R) Core(TM) i5-2400 

3.10GHz CPU and an 8 GB RAM. All LP problems and MLIP problems were solved by commercial software 

Gurobi (version 6.5). The parameter for LP problems in Section 2.5.3 was 0.0001  . The parameters in 

branch-and-bound algorithms are the same as those in Long and Szeto (2017). The unit costs of travel time 

and schedule delay early and late were set as follows:  = 1.2 HKD/min,  =0.6 HKD/min, and   = 2.4 

HKD/min. The initial state for all networks was empty. Unless specified otherwise, the input parameter values 

of the LTM for each link were the same and are given as follows: 

 Jam density: 133 veh/km. 

 Free-flow speed: 54 km/h (i.e., 15 m/s), and backward shock-wave speed: -18 km/h (i.e., -5 m/s). 
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 Flow capacity: 1800 veh/h/lane (i.e., 0.5 veh/s/lane). 

 The length of each time interval δ: 10 s. 

Example 1. Comparing NVH solution vectors in a diverge network. 

This example adopts the test network as shown in Fig. 1. This network has four nodes, three links, and two 

OD pairs (i.e., OD pairs (r, s1) and (r, s2)). The inflow capacities are 10 veh/interval for link 2 and 5 

veh/interval for link 3. The outflow capacity of link 1 is 15 veh/interval. The free flow travel times are one 

interval for all links. The OD demands between OD pairs (r, s1) and (r, s2) are 10 vehicles and 3 vehicles, 

respectively. For the ease of presentation, we only consider a feasible solution that all traffic demands entered 

the network in the first interval. 

Table 1 provides a weak link-based NVH solution vector (denoted by 1x ) and an 

intersection-movement-based solution vector (denoted by 1y  and 1 1 1= ( )x φ y ) retrieved from the link-based 

solution vector. According to Definition 7, 1y  is a weak intersection-movement-based NVH solution vector. 

Table 2 provides a strong intersection-movement-based NVH solution vector (denoted by 2y ) and the 

corresponding link-based solution vector (denoted by 2x  and 2 1 2= ( )x φ y ). It is easy to check that 2 1x x , 

2 1x x , 2 1y y , and 2 1y y . According to Definition 9, 1x  is a weak link-based VH solution vector and 

does not satisfy the strong link-based NVH condition. This implies that the existing definition of a link-based 

NVH solution vector (i.e., Definition 6) can involve holding flows. According to Definition 7, 2y  is a weak 

intersection-movement-based NVH solution vector. According to Definition 6, 2 1 2= ( )x φ y  is a weak 

link-based NVH solution vector. Hence, the result presented in Table 2 is consistent with Proposition 6 that a 

weak intersection-movement-based NVH solution vector can transform into a weak link-based NVH solution 

vector. 

 
Fig. 1. The test network for Example 1. 

Table 1. A weak link-based NVH solution vector in Example 1. 

Interval 1
1 ( )sU k  2

1 ( )sU k  1
1 ( )sV k  2

1 ( )sV k  1
2 ( )sU k 2

3 ( )sU k 1
12 ( )sU k 2

13 ( )sU k  1
12 ( )sV k  2

13 ( )sV k  

0 0 0 0 0 0 0 0 0 0 0 
1 10 3 0 0 0 0 10 3 0 0 
2 10 3 10 0 10 0 10 3 10 0 
3 10 3 10 3 10 3 10 3 10 3 
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Table 2. A strong intersection-movement-based NVH solution vector in Example 1. 

Interval 1
12 ( )sU k  2

13 ( )sU k  1
12 ( )sV k  2

13 ( )sV k  1
1 ( )sU k 2

1 ( )sU k 1
1 ( )sV k  2

1 ( )sV k  1
2 ( )sU k 2

3 ( )sU k

0 0 0 0 0 0 0 0 0 0 0 
1 10 3 0 0 10 3 0 0 0 0
2 10 3 10 3 10 3 10 3 10 3 
3 10 3 10 3 10 3 10 3 10 3 

Example 2. Comparing NVH solution vectors with and without the consideration of the FIFO requirement in 

a diverge network. 

In this example, we adopted the test network as shown in Fig. 1. The inflow capacity, outflow capacity, 

and the free flow travel time of each link are the same as those in Example 1. The OD demands between OD 

pairs (r, s1) and (r, s2) are 6 vehicles and 15 vehicles, respectively. For the ease of presentation, we only 

consider a feasible solution that the traffic demand of OD pair (r, s1) entered the network in the second 

interval, and the traffic demand of OD pair (r, s2) entered the network in the first interval. 

Table 3 provides a strong link-based NVH solution vector without the consideration of FIFO requirement. 

We can observe from the table that 1 1*
1 1, 1( ) ( )s s

kU V k  is satisfied for 3k  . This implies that the vehicles 

moving to destination s1 overpass those moving to destination s2 during interval 3, and the vehicles on Link 1 

moving to destination s1 are discharged to the downstream Link 2 when the downstream Link 3 is congested. 

Therefore, a FIFO violation can exist in a strong link-based NVH solution vector defined by Definition 9. If 

the FIFO requirement is considered, as shown in Table 4, we can obtain a weak link-based NVH solution 

vector that satisfies the FIFO condition. In this solution vector, although there is no congestion on Link 2 

during interval 3, vehicles moving to destination s1 are held on Link 1 due to congestion on the downstream 

Link 3. This implies that in a multi-destination network, if the FIFO requirement is considered, a weak NVH 

solution vector can allow the existence of vehicles on an entering link of a diverge junction that do not move 

forward to their own successor link even if there is no congestion on their own successor link. In other words, 

it is possible that in a weak NVH solution that satisfies the FIFO condition, an upstream link has vehicles not 

discharged due to congestion of one or some downstream links, but not necessarily all downstream links of 

the junction. 

Example 3. Comparing link-based and intersection-movement-based FIFO solution vectors in a four-node 

network. 

This example adopts the test network as shown in Fig. 2. This network has four nodes, four links, and one 

OD pair (r, s). The inflow capacities are 10 veh/interval for Link 2, 15 veh/interval for Link 3, and 25 

veh/interval for Link 4. The outflow capacities are 25 veh/interval for Link 1, 10 veh/interval for Link 2, and 

15 veh/interval for Link 3. The free flow travel times are one interval for all links. The demand between OD 

pair (r, s) is 30 vehicles. For the ease of presentation, we only consider a feasible solution that all traffic 

demands entered the network in the first interval. 
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Table 3. A strong link-based NVH solution vector without the consideration of FIFO in Example 2. 

Interval 1
1 ( )sU k  2

1 ( )sU k  1
1 ( )sV k  2

1 ( )sV k  1
2 ( )sU k  2

3 ( )sU k  *
1,k  1 *

1 1,( )s
kU   2 *

1 1,( )s
kU   

0 0 0 0 0 0 0 0 0 0 
1 0 15 0 0 0 0 0 0 0 
2 6 15 0 5 0 5 1/3 0 5 
3 6 15 6 10 6 10 2/3 0 10 
4 6 15 6 15 6 15 3 6 15 

Table 4. A weak link-based NVH solution vector with the consideration of FIFO in Example 2. 

Interval 1
1 ( )sU k  2

1 ( )sU k  1
1 ( )sV k  2

1 ( )sV k  1
2 ( )sU k  2

3 ( )sU k  *
1,k  1 *

1 1,( )s
kU   2 *

1 1,( )s
kU   

0 0 0 0 0 0 0 0 0 0 
1 0 15 0 0 0 0 0 0 0 
2 6 15 0 5 0 5 1/3 0 5 
3 6 15 0 10 0 10 2/3 0 10 
4 6 15 6 15 6 15 3 6 15 

 

Fig. 2. The test network for Example 3. 

Because the test network in Fig. 4 is a single-destination network, according to the definition of link-based 

FIFO conditions, all feasible link-based solution vectors satisfy link-based FIFO. However, we find that the 

intersection-movement-based FIFO conditions may not be satisfied in this single-destination network. For 

example, the feasible intersection-movement-based solution vector presented in Table 5 is not an 

intersection-movement-based FIFO solution vector. We can observe from Table 5 that *
13 1, 13( ) ( )s s

kU V k  

and *
12 1, 12( ) ( )s s

kU V k  are satisfied for k =2. This implies that the vehicles from Link 1 to Link 3 overpass 

the vehicles from Link 1 to Link 2 during interval 2, i.e., this solution vector involves FIFO violations. This 

result is consistent with Propositions 24 and 25. 

Table 5. The cumulative inflows and outflows disaggregated by intersection movement and destination on 

Link 1 in Example 3. 

Time 
interval 12 ( )sU k

 

12 ( )sV k
 

13 ( )sU k
 

13 ( )sV k
 

*
1,k  

*
12 1,( )s

kU 
 

*
13 1,( )s

kU 
 

*
1,k

 

*
12 1,( )s

kU 
 

*
13 1,( )s

kU 
 

0 0 0 0 0 0 0 0 0 0 0
1 15 0 15 0 0 0 0 0 0 0
2 15 10 15 15 0.67 10 10 1 15 15
3 15 15 15 15 1 15 15 1 15 15 

Example 4. Comparing intersection-movement-based and path-based FIFO solution vectors in a five-node 

network. 

This example adopts the test network as shown in Fig. 3. This network has five nodes, five links, and one 

OD pair (i.e., OD pair (r, s)). OD pair (r, s) is connected by two paths (i.e., path 1p : 1-2-3-5 and path 2p : 
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1-2-4-5). The inflow capacities are 15 veh/interval for Link 2, 10 veh/interval for Link 3, 5 veh/interval for 

Link 4, and 25 veh/interval for Link 5. The outflow capacities are 20 veh/interval for Link 1, 15 veh/interval 

for Link 2, 10 veh/interval for Link 3, and 5 veh/interval for Link 4. The free flow travel times are one interval 

for all links. The demand between OD (r, s) is 20 vehicles. For the ease of presentation, we only consider a 

feasible solution that all traffic demands entered the network in the first interval. 

 

Fig. 3. The test network for Example 4. 

The test network in Fig. 3 is a single-destination network and there is a single intersection movement for 

Link 1. Therefore, according to the definition of link-based and intersection-movement-based FIFO conditions, 

all feasible link-based solution vectors satisfy link-based FIFO and all feasible intersection-movement-based 

solution vectors satisfy intersection-movement-based FIFO on Link 1. However, we find that the path-based 

FIFO conditions may not be satisfied on Link 1. For example, the feasible path-based solution vector 

presented in Table 6 involves a FIFO violation on Link 1. We can observe from Table 6 that 

1 1

*
1 1, 1( ) ( )s s

p k pU V k  and 
2 2

*
1 1, 1( ) ( )s s

p k pU V k  are satisfied for k  = 2. This implies that the vehicles on 

Path 1 overpass the vehicles on Path 2 when they are both on Link 1 during interval 2. This result is consistent 

with Propositions 26 and 27. 

Table 6. The cumulative inflows and outflows disaggregated by path and destination on Link 1 in Example 4. 

Time 
interval 11 ( )s

pU k
 

11 ( )s
pV k

 

21 ( )s
pU k

 

21 ( )s
pV k

 

*
1,k

 

1

*
1 1,( )s

p kU 
 

2

*
1 1,( )s

p kU 
 

*
1,k

 

1

*
1 1,( )s

p kU 
 

2

*
1 1,( )s

p kU 
 

0 0 0 0 0 0 0 0 0 0 0
1 10 0 10 0 0 0 0 0 0 0
2 10 10 10 5 0.5 5 5 1 10 10
3 10 10 10 10 1 10 10 1 10 10 

Example 5. Comparing the optimal TSTCs of various models in a nine-node network. 

In this example, a network in Fig. 4 is adopted to illustrate the optimal solutions of various models. The 

test network has nine nodes, nine links, one origin (r), two destinations (s1 and s2), and two OD pairs (r, s1) 

and (r, s2). The setting of link parameters for the network is provided in Table 7. The OD demands are 30 

vehicles for both OD pairs. The parameters of the arrival time window were set as follows: 
1

* 4sk  , 
2

* 5sk  , 

1

* 7sk  , and 
2

* 8sk  . We assume that an accident happened on Link 2, and the following two scenarios are 

considered: 

 Scenario 1: The outflow capacities of Link 2 are 30 veh/interval for the first three intervals and 5 

veh/interval for the fourth interval, and 0 veh/interval for the rest of time horizon.  
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 Scenario 2: The outflow capacities of Link 1 are 30 veh/interval for the first two intervals and 5 

veh/interval for the third interval, and 0 veh/interval for the rest of time horizon. 

 

Fig. 4. The test network for Example 5. 

Table 7. The setting of link parameter values for the nine-node test network in Example 5. 

Link 1 2 3 4 5 6 7 8 9 

Length (m) 150 150 150 150 450 150 150 150 150 

Number of lanes 10 6 6 3 2 3 6 100 100 

Maximum link occupancy (veh)  60 60 30 30 30 60   
Flow capacity (veh/interval) 30 30 30 15 10 15 30 30 30 

We solved the proposed DSO-SRDTC models for both scenarios and obtained the TSTCs in Table 8. One 

can observe from the table that the optimal TSTCs for the DSO-SRDTC problems without FIFO constraints 

are equal to 91 HKD for both scenarios. This result is consistent with Theorem 1 that the link-based, 

intersection-movement-based, and path-based DSO-SRDTC problems are equivalent in terms of obtaining the 

same optimal TSTC. One can also observe from Table 8 that the path-based DSO-SRDTC problems give the 

highest optimal TSTCs, and the link-based DSO-SRDTC problems give the lowest optimal TSTCs. This is 

consistent with Theorem 9. In addition, the results presented in Table 8 also show that the optimal TSTCs for 

the DSO-SRDTC problems with FIFO constraints are not less than those for the DSO-SRDTC problems 

without FIFO constraints. This result is consistent with Theorem 10. 

Table 8. TSTCs obtained from different DSO-SRDTC models in Example 5. 

Scenario Formulation R-DSO NVH-DSO FIFO-DSO NVH-FIFO-DSO 

 Link-based 91 91 91 91 
Scenario 1 Intersection-movement-based 91 91 92.2 92.2 
 Path-based 91 91 92.2 92.2 

 Link-based 91 91 91 91 
Scenario 2 Intersection-movement-based 91 91 91 92.2 
 Path-based 91 91 92.2 92.2 

The TSTCs under different values of   for Scenario 1 are shown in Fig. 1. One can observe that the 

link-based, intersection-movement-based, and path-based NVH-DSO-SRDTC models yield an identical 

optimal TSTC of 91 HKD when 0.066  , which confirms that LP problems (70), (72), and (73) can obtain 

an NVH-DSO solution vector when the coefficient of the penalty term is positive and sufficiently small. 
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Fig. 5. The TSTCs under different values of   for Scenario 1 in Example 5. 

Example 6. Illustration of the existence of cyclic DSO flows in link-based and intersection-movement-based 

DSO-SRDTC problems in a cyclic network under time-varying capacities. 

In this example, a cyclic network shown in Fig. 6 is adopted to illustrate that cyclic flows may not be 

completely eliminated in optimal solutions to NVH-DSO-SRDTC problems. The network has four nodes, four 

links, and one OD pair (r, s). Both the free-flow travel time and backward shock-wave travel time on all links 

are one interval. The total traffic demand is 30 vehicles. The outflow capacities of Link 1 are 10 veh/interval 

for the first four intervals, 0 veh/interval for intervals 5-9, and 1 veh/interval for the rest of time horizon. The 

flow capacity for Link 2 is 10 veh/interval. The inflow capacity of Link 4 is 5 veh/interval. In this example, 

we construct two scenarios with different flow capacities of Link 3. The flow capacities for Link 3 are 10 

veh/interval and 0 veh/interval in Scenarios 3 and 4, respectively. The parameters of the arrival time window 

were set as follows: * * 4s sk k  . 

 

Fig. 6. A cyclic network for Example 6. 

We solved the proposed link-based and intersection-movement-based NVH-DSO-SRDTC models in 

Scenario 3, and find that the TSTCs to both models are the same and equal 41.5 HKD. The optimal 

cumulative outflows disaggregated by intersection movement and destination are shown in Table 9. One can 

observe that the flows under the third and fourth columns in Scenario 3 are positive during some intervals. 

This means that cyclic flows exist in the optimal solutions. The reasons for the existence of cyclic flows in the 

optimal solutions are as follows: (1) Because the outflow capacity of Link 1 decreases to 0 veh/interval for 
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intervals 5-9, it is better for all the vehicles to exit Link 1 during the first four intervals; otherwise, some 

vehicles would exit Link 1 after the ninth interval and experience a large cost of schedule delay late compared 

with the scheduled delay induced by waiting on other links. (2) Because the inflow capacity of Link 4 is quite 

low (i.e., 5 veh/interval), some vehicles need to be diverted to Link 3, which is used for storage, in order to 

avoid spillback from Link 2 to Link 1 and keeping these vehicles on Link 1 until interval 10. In Scenario 4, 

because the flow capacity for Link 3 is 0 veh/interval, this link cannot be used, and cyclic flows are infeasible 

in this scenario. We solved the DSO-SRDTC problems to obtain an optimal solution in Scenario 4. We find 

that the TSTC increases to 46.5 HKD. One can also observe from Table 9 that the cumulative outflows under 

the first column in Scenario 4 are strictly increasing from interval 9 to interval 14, and five vehicles exit Link 

1 after the ninth intervals instead of during the first four intervals due to the queue spillback from Link 2 to 

Link 1. These five vehicles experience a large cost of schedule delay late, leading to a higher TSTC in 

Scenario 4 than that in Scenario 3. The implication of this example is that when the downstream capacity is 

quite low, it is necessary to divert traffic to other links for storage (even if this diversion may cause cyclic 

flows) in order to avoid queue spillback and travelers facing a large schedule delay cost due to a long closure 

of an upstream link. Note that complete path-based DSO-SRDTC formulations may not be available for cyclic 

(time-dependent) networks because it is difficult to enumerate all cyclic paths in a cyclic network. This 

implies that path-based DSO-SRDTC models may not be able to be used for cyclic networks with 

time-varying link capacities. 

Table 9. The optimal cumulative outflows disaggregated by intersection movement and destination of the 

DSO-SRDTC problems in the cyclic network. 

Time 
Interval 

Scenario 3 Scenario 4 

12 ( )sV k  24 ( )sV k  23 ( )sV k  32 ( )sV k  12 ( )sV k  24 ( )sV k  23 ( )sV k  32 ( )sV k  

0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 
2 10 0 0 0 5 0 0 0 
3 20 5 5 0 15 5 0 0 
4 30 10 10 0 25 10 0 0 
5 30 15 15 10 25 15 0 0 
6 30 20 20 15 25 20 0 0 
7 30 25 20 20 25 25 0 0 
8 30 30 20 20 25 25 0 0 
9 30 30 20 20 25 25 0 0 
10 30 30 20 20 26 25 0 0 
11 30 30 20 20 27 26 0 0 
12 30 30 20 20 28 27 0 0 
13 30 30 20 20 29 28 0 0 
14 30 30 20 20 30 29 0 0 
15 30 30 20 20 30 30 0 0 
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In the existing literature on SO-DTA (e.g., Merchant and Nemhauser, 1978a,b; Zhu and Ukkusuri, 2013; 

Ma et al., 2014, 2017; Zheng et al., 2015), most SO-DTA studies only consider time-invariant outflow 

capacities, so that no cyclic flow should exist in a SO-DTA solution. In this example, the outflow capacities of 

link 1 are purposely designed to be reduced after the first three intervals. The cyclic network structure is 

treated as a storage of early-entered flow under such a specific setting on the time-varying outflow capacities. 

Due to such a specific setting, the flow needs to enter the network at their earliest time; otherwise, they are 

significantly delayed due to the reduction of the outflow capacity. This means as long as the network can 

provide enough storage to accommodate the early-entered flow, DSO can be achieved. Note that the results 

presented in this example do not mean that the storage has to be in a cyclic structure. In practice, one or 

several long links can also serve as the suitable storage. 

Example 7. Comparing the efficiency of solving the proposed models in the modified Nguyen and Dupuis 

(1984) network. 

In this example, we adopt a modified Nguyen and Dupuis network (see Fig. 7) to illustrate the efficiency 

of solving the proposed models. The network has 17 nodes, 23 links, 4 OD pairs, and 28 paths. The traffic 

demands are 80 vehicles for all OD pairs. The numbers of lanes are 1 for Links 8-2, 12-8, and 13-3, 2 for 

Links 7-8 and 9-13, and 3 for other 14 links. The outflow capacities of links going into nodes 2, 3, 5, 6, 9, 10, 

and 11 are 3.0 veh/interval/lane. The maximum link occupancies and flow capacities of links r1-1, r2-4, 2-s1, 

and 3-s2 are infinite. The length of each link is provided in Table 10. There was an incident on Links 1-12 and 

4-9. The outflow capacities of Links 1-12 and 4-9 are 15 veh/interval for the first 13 intervals and 0 

veh/interval for the rest of time horizon. The parameters of the arrival time window were set as follows: 

1

* 18sk  , 
1

* 24sk  , 
2

* 16sk  , and 
2

* 21sk  . The modeling horizon is set to be 70 intervals.  

 
Fig. 7. The modified Nguyen and Dupuis (1984) network for Example 7. 
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Table 10. The length of each link in the modified Nguyen and Dupius network for Scenario 1 in Example 7. 

Link length (m) 150 450 600 600 750 

 r1-1 1-12 1-5 4-5  

 r2-4 7-8 4-9 5-6  

Link 
2-s1 7-11 5-9 6-7 

12-8 
3-s2 9-13 6-10 9-10 

  8-2 11-2 11-3  

  10-11 12-6 13-3  

In Table 11, we compare the sizes of the link-based, intersection-movement-based, and path-based 

R-DSO-SRDTC problems without FIFO constraints. We can observe that the link-based and 

intersection-movement-based formulations have considerably fewer variables and constraints than the 

path-based formulation. In this example, all DSO-SRDTC models without FIFO constraints give the same 

TSTCs (967.5 HKD) and all DSO-SRDTC models with FIFO constraints also give the same TSTCs (968.4 

HKD). The CPU times required to solve the proposed models are provided in Table 12. We can observe that 

the link-based and intersection-movement-based formulations can be solved more efficiently than the 

path-based formulation. 

Table 11. The sizes of the R-DSO-SRDTC problem in Example 7. 

Formulation Number of variables Number of constraints 

Link-based 3312 8183 

Intersection-movement-based 5040 11089 

Path-based 41400 62273 

Table 12. The CPU times for solving the proposed models in Example 7. 

Formulation R-DSO NVH-DSO FIFO-DSO NVH-FIFO-DSO 

Link-based 0.24 0.26 275.26 276.74 

Intersection-movement-based 0.42 0.45 493.16 393.21 

Path-based 1.88 1.60 1565.74 1984.23 

5. Conclusions 

In this paper, the LTM was adopted to formulate link-based, intersection-movement-based, and path-based 

DSO-SRDTC problems in terms of cumulative flows. Similar to the well-known cell-based DSO-SRDTC 

models, each of the link-based, intersection-movement-based, and path-based DSO-SRDTC models without 

FIFO constraints can lead to an LP formulation. However, the DSO-SRDTC problems with FIFO constraints 

were formulated as non-convex nonlinear programming problems due to non-convex constraint sets yielded 

by the FIFO requirement. We proved that the three formulations of DSO-SRDTC problems are equivalent in 

terms of obtaining the same TSTC if FIFO constraints are not considered. However, they can obtain different 

optimal TSTCs if FIFO constraints are considered. We found that existing link-based NVH constraints cannot 
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completely eliminate weak VH solutions, and propose both intersection-movement-based and path-based 

NVH constraints, which can completely eliminate weak VH solutions. Because of the property of the 

formulations, the DSO-SRDTC problems without FIFO constraints were directly solved by commercial 

software, and the DSO-SRDTC problems with FIFO constraints were solved by branch-and-bound 

algorithms. 

Examples were given to show the properties and performance of the proposed model. We illustrated that 

link-based NVH constraints cannot completely eliminate VH phenomena, and the FIFO conditions for 

link-based, intersection-movement-based, and path-based DSO-SRDTC problems are not equivalent. Our 

results confirmed that the three formulations of the DSO-SRDTC problems are equivalent in terms of 

obtaining the same optimal TSTC if FIFO constraints are not considered. However, they can obtain different 

TSTCs if FIFO constraints are considered. We also found that cyclic flows can help to reduce the TSTC in 

cyclic networks under time-varying capacities. Because it is difficult to enumerate cyclic paths in a cyclic 

time-dependent network, we conclude that complete path-based formulations for DSO-SRDTC problem may 

not be able to be available for these networks. The results also showed that link-based and 

intersection-movement-based models can be solved more efficiently than path-based models. 
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Appendix A: Proof of Propositions and Theorems 

A.1. Proof of Proposition 1 

Proof. According to Eqs. (19)-(21), we have 

( )

( ) ( ), , \ ,s s
ab a S

b a

U k U k s S a A A k K


     , (A1) 

1 ( )

( ) ( ), , ,s s
ba a S

b a

V k U k s S a A k K


     , and (A2) 

( )

( ) ( ), , \ ,s s
ab a S

b a

V k V k s S a A A k K


     . (A3) 

Substituting Eqs. (A1)-(A3) into constraints (23)-(25) after changing the index notation or argument when 

necessary, we have constraints (9), (11), and (12). Taking summation of all ( )b a  for both sides of 

constraints (26), (28)-(31), and substituting Eqs. (A1)-(A3) into the resultant constraints, we can obtain 

constraints (10), (14)-(17).  
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Taking summation of all ( )a A i  for both sides of constraint (27) and by definition, we have 

1 1( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ), \{ , }, ,s s s
ba ab ab

a A i b A i a A i b ab a a b

V k V k U k i N R S s S k K
     

           .(A4) 

By definition, we have 1( ) ( )B i a   for all ( ),a A i i N  , and ( ) ( )A i a   for all 

( ),a B i i N  . Using these two equations, the middle term of Eq. (A4) can be written as 

1( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )s s s s
ab ab ab ab

b A i b A i a B i a B i b A i a B i b aa b

V k V k V k V k
      

          . (A5) 

The middle term of Eq. (A4), which is identical to the last term of Eq. (A5), equals the last term of Eq. (A4), 

and hence we have 

( ) ( ) ( ) ( )

( ) ( ), , \{ , },s s
ab ab

a B i b a a A i b a

V k U k s S i N R S k K
   

        . (A6) 

Substituting Eqs. (A1) and (A3) into Eq. (A6), we have constraints (13). In summary, x  satisfies 

constraints (9)-(17), and hence 1( ) x φ y . This completes the proof. □ 

A.2. Proof of Proposition 2 

Proof. The following notations will be used in this proof: 

( , )s
aY k l  

cumulative number of vehicles entering link a by the end of interval k, exiting the link by 

interval l, and heading to destination s. 

( )s
au k  inflow into link a during interval k and heading to destination s. 

( )s
abu k  inflow into link a during interval k and through link ( )ab A h  to destination s. 

( )s
av k  outflow from link a during interval k heading to destination s. 

( )s
abv k  outflow from link a during interval k and through link ( )ab A h  to destination s. 

( , )s
ay k l  

number of vehicles entering link a during interval k, exiting the link during interval l, and 

heading to destination s. 

( , )s
aby k l  

number of vehicles entering link a during interval k, exiting the link during interval l, and 

through link ( )ab A h  to destination s. 

For a given link-based solution vector x , by definition, we can obtain link inflows and outflows as 

follows: 

( ) ( ) ( 1), , ,s s s
a a au k U k U k s S a A k K        and (A7) 

( ) ( ) ( 1), , \ ,s s s
a a a Sv k V k V k s S a A A k K       . (A8) 

The inflow of a given link during a given interval may not exit the link during the same time interval, and 

hence can be decomposed by several sub-packets that leave the link during different intervals. According to 

Long et al. (2016), the cumulative flow ( , )s
aY k l  can be formulated as follows: 

0, if ( ) ( 1),

( , ) ( ) ( 1), if ( 1) ( ) ( ), , \ , ,

( ) ( 1), if ( ) ( ).

s s
a a

s s s s s s
a a a a a a S

s s s s
a a a a

V l U k

Y k l V l U k U k V l U k s S a A A k K l K

U k U k V l U k

  


          
   

. (A9) 
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By definition, we have 

( , ) ( , ) ( , 1), , \ , ,s s s
a a a Sy k l Y k l Y k l s S a A A k K l K        . (A10) 

According to conditions (10), we have  

( 1) ( 1), , \ ,s s
a a a SV k U k s S a A A k K        . (A11) 

Substituting inequality (A11) into Eq. (A9), we have 

( , ) 0, , \ , , 1s
a S aY k l s S a A A k K l k         . (A12) 

Substituting Eq. (A12) into Eq. (A10), we have 

( , ) 0, , \ , , {1,2, , 1}s
a S ay k l s S a A A k K l k         . (A13) 

Equivalently, we have 

( , ) 0, , \ , , { 1, 2, , }s
a S a ay l k s S a A A k K l k k K            . (A14) 

Hence, we have 

1

( ) ( , ) ( , ), , \ ,
a

K K
s s s
a a a S

l l k

u k y k l y k l s S a A A k K
  

       , (A15) 

1 1

( ) ( , ) ( , ), , \ ,
akK

s s s
a a a S

l l

v k y l k y l k s S a A A k K


 

       , (A16) 

1 1

( ) ( ) ( , ), , \ ,
a

Kk k
s s s
a a a S

h h l k

U k u h y h l s S a A A k K
   

        , and (A17) 

1 1 1

( ) ( ) ( , ), , \ ,
akk k

s s s
a a a S

h h l

V k v h y l h s S a A A k K


  

       . (A18) 

For all \{ }i N S , s S , ( )a B i , ( )b A i , and k K , the link outflows disaggregated by 

intersection movement (i.e., ( )s
abv k ) can be retrieved from the link inflows and outflows disaggregated by 

destination (i.e., ( )s
au k  and ( )s

av k ) according to the following LP problem: 

( ) ( )

( )

( )

max ( )

( ) ( ), ( ),

. . ( ) ( ), ( ),

( ) 0, ( ), ( ),

s
ab

a B i b A i

s s
ab a

b A i

s s
ab b

a B i

s
ab

v k

v k v k a B i

s t v k u k b A i

v k a B i b A i


 







   

   

    

 




 (A19) 

where the link inflow ( )s
bu k  and outflow ( )s

av k  are inputs, and they can be obtained by Eqs. (A7) and (A8), 

respectively. 

According to Eqs. (13), (A7), and (A8), we have 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( 1) ( ) ( 1) ( )s s s s s s
a a a a a a

a B i a B i a B i a A i a A i a A i

v k V k V k U k U k u k
     

            . (A20) 

Eq. (A20) implies that LP problem (A19) is a balanced transportation problem, and hence at least one 

solution can be guaranteed (Dantzig and Thapa, 2006). We can adopt an optimal solution to LP problem (A19) 

as the link outflows disaggregated by intersection movement and destination (i.e., ( )s
abv k ). Then, for all 

\ Sa A A , s S , and k K , link inflows disaggregated by intersection movement and destination (i.e., 

( )s
abu k ) can be retrieved from link outflows disaggregated by intersection movement and destination (i.e., 

( )s
abv k ) and decomposed link inflows disaggregated by destination (i.e., ( , )s

ay l k ) according to the following 

LP problem: 

( ) 1

1

( )

min ( , )

( , ) ( ), ( ),

. . ( , ) ( , ), {1,2, , },

( , ) 0, ( ), {1,2, , },

a

a

k
s
ab

b a l

k
s s
ab ab

l

s s
ab a a

b a

s
ab a

y l k

y l k v k b a

s t y l k y l k l k

y l k b a l k













 







 


  

    

     

 



 



 (A21) 

where the decomposed link inflow disaggregated by destination (i.e., ( , )s
ay l k ) and the link outflows 

disaggregated by intersection movement and destination (i.e., ( )s
abv k ) are inputs, and they can be obtained by 

Eq. (A10) and LP problem (A19), respectively.  

According to Eq. (A15) and the first constraints of LP problem (A19), we have 

1 ( )

( , ) ( ) ( )
ak

s s s
a a ab

l b A i

y l k v k v k


 

   . (A22) 

Similarly, Eq. (A22) implies that LP problem (A21) is a balanced transportation problem, and hence at least 

one solution can be guaranteed (Dantzig and Thapa, 2006). We can adopt an optimal solution to LP problem 

(A21) as decomposed link inflows disaggregated by intersection movement and destination (i.e., ( , )s
aby l k ). 

Then, we can construct an intersection-movement-based solution vector y  as follows: 

1

( ) ( , ), , \ , ( ),
a

Kk
s s
ab ab S

h l k

U k y h l s S a A A b a k K
  

        and (A23) 

1 1

( ) ( , ), , \ , ( ),
akk

s s
ab ab S

h l

V k y l h s S a A A b a k K


 

      . (A24) 

According to Eqs. (A17), (A21), and (A23), we have  

1 1 ( ) ( )

( ) ( , ) ( , ) ( ), , \ ,
a a

K Kk k
s s s s
a a ab ab S

h l k h l k b a b a

U k y h l y h l U k s S a A A k K
        

            .(A25) 

According to Eqs. (A18), (A21), and (A24), we have  
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1 1 1 1 ( ) ( )

( ) ( , ) ( , ) ( ), , \ ,
a ak kk k

s s s s
a a ab ab S

h l h l b a b a

V k y l h y l h V k s S a A A k K
  

     

          .(A26) 

According to Eqs. (A19), (A21), and (A24), we have  

1 11 1 ( ) ( )

( ) ( ) ( ) ( ), , ,
k k

s s s
a a ba ba S

h h b a b a

U k u h v h V k s S a A k K
    

          . (A27) 

Eqs. (A25)-(A27) imply that x  and y  satisfy Eqs. (19)-(21). Substituting (A25)-(A27) into constraints 

(9)-(11), we have constraints (23)-(25). According to Eqs. (A23) and (A24), constraint (26) is satisfied by y , 

because 

1 1 1 1

( ) ( , ) ( , ) ( , ) ( )

                                                             , \ , ( ), .

a a a

a a

h k k Kk k
s s s s s

ab ab ab ab ab a
h l l h l l h l

S

V k y l h y l h y l h U k

a s S A A b a k K

  

 


  

       

    

    

    
 (A28) 

According to Eq. (A19), we have 

1 ( )

( ) ( )s s
a ba

b a

u k v k


  . (A29) 

Hence, constraint (27) is satisfied by y , because of the following: 

1 1( ) 1 1( ) ( )

( ) ( ) ( ) ( ) ( ), , \ ,
k k

s s s s s
ab a a ba ba S

b a h hb a b a

U k U k u h v h V k s S a A A k K
    

            . (A30) 

Because ( , )s
aby h l  is non-negative for all \ , ( ), , ,Sa A A b a s S h K l K     , Eqs. (A23) and 

(A24) imply that the intersection-movement-based solution vector y  satisfies non-decreasing constraints (28) 

and (29). 

In summary, x  and y  satisfy Eqs. (19)-(21), and y  satisfies constraints (23)-(31), i.e., y . This 

completes the proof. □ 

A.3. Proof of Proposition 3 

Proof. According to Eqs. (35) and (36), we have 

( ) ( ), , \ ,
s

s s
abp ap ab S

p P

U k U k s S a A A k K


      and (A31) 

( ) ( ), , \ ,
s

s s
abp ap ab S

p P

V k V k s S a A A k K


     . (A32) 

By definition, we have 

( )

( ) ( ) ( ), , \ ,
s

s s s
ap a ab S

b ap P

U k U k U k s S a A A k K


        and (A33) 

( )

( ) ( ) ( ), , \ ,
s

s s s
ap a ab S

b ap P

V k V k V k s S a A A k K


       . (A34) 

Substituting Eqs. (A33)-(A34) into constraints (38)-(40) after changing the index notation or argument when 

necessary, we have constraints (23)-(25). Multiplying the 0-1 indicator abp  to both sides of constraints (41), 

(43)-(46), and taking summation over sp P  and substituting Eqs. (A31) and (A32) into the resultant 
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constraints, we can obtain constraints (26), (28)-(31). By definition, constraint (42) can be reformulated as 

follows: 

1 ( )

( ) ( ), , , , .s s s
ap bap bp

b a

U k V k s S p P a A k K


       (A35) 

Substituting Eq. (A35) into the leftmost hand side of Eq. (A33), we have 

1 1( ) ( )

( ) ( ) ( ), , \ , .
s s s

s s s
ap bap bp bap bp R

p P p P b a b a p P

U k V k V k s S a A A k K 
     

           (A36) 

Substituting Eqs. (A33) and (A32) into the leftmost and rightmost hand side of Eq. (A36), respectively, we 

have 

1( ) ( )

( )= ( ), , \ ,s s
ab ba S

b a b a

U k V k s S a A A k K
 

     . (A37) 

Eq. (A37) implies that x  satisfies constraint (27). In summary, x  satisfies constraints (23)-(31), and 

hence 2 ( ) y φ z . According to Proposition 1, we have 1 2( ( )) x φ φ z . This completes the proof. □ 

A.4. Proof of Proposition 4 

Proof. This proof also uses the notations defined in the proof of Proposition 2. For a given 

intersection-movement-based solution vector y , by definition, we can obtain 

intersection-movement-based link inflows and outflows (i.e., ( )s
abu k  and ( )s

abv k ) as follows: 

( ) ( ) ( 1), , \ , ( ),s s s
ab ab ab Su k U k U k s S a A A b a k K        , and (A38) 

( ) ( ) ( 1), , \ , ( ),s s s
ab ab ab Sv k V k V k s S a A A b a k K        . (A39) 

The intersection-movement-based link inflow of a given time interval can also be decomposed by several 

sub-packets that leave the link during different intervals. Similar to the decomposition of link-based inflows, 

the cumulative number of vehicles entering link a during interval k, exiting the link by interval l, and through 

link ( )ab A h  to destination s, ( , )s
abY k l , can be formulated as follows: 

0, if ( ) ( 1),

( , ) ( ) ( 1), if ( 1) ( ) ( ), , \ , ( ), ,

( ) ( 1), if ( ) ( ).

s s
ab ab

s s s s s s
ab ab ab ab ab ab S

s s s s
ab ab ab ab

V l U k

Y k l V l U k U k V l U k s S a A A b a k K l K

U k U k V l U k

  


           
   

.

 (A40) 

By definition, we have 

( , ) ( , ) ( , 1), , \ , ( ), ,s s s
ab ab ab Sy k l Y k l Y k l s S a A A b a k K l K         . (A41) 

According to condition (26), we have  

( 1) ( 1), , \ ,s s
ab a ab SV k U k s S a A A k K        . (A42) 

Substituting inequality (A42) into Eq. (A40), we have 

( , ) 0, , \ , ( ), , 1s
ab S aY k l s S a A A b a k K l k          . (A43) 

Substituting Eq. (A43) into Eq. (A41), we have 
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( , ) 0, , \ , ( ), , 1s
ab S ay k l s S a A A b a k K l k          . (A44) 

Equivalently, we have 

( , ) 0, , \ , ( ), , 1s
ab S ay l k s S a A A b a k K l k          . (A45) 

Hence, we have 

1

( , ) ( , ), , \ , ( ),
a

K K
s s
ab ab S

l l k

y k l y k l s S a A A b a k K
  

        and (A46) 

1

1 1

( , ) ( , ), , \ , ( ),
bkK

s s
ba ba S

l l

y l k y l k s S a A A b a k K




 

       . (A47) 

We consider a sequence of links 1 1{ , , , , , }i d i i i i ea a a a a     . Let 
1, , , ( )

i d i i

s
a a au k
 


 be the number of 

vehicles that travel through links 1, ,i d ia a  , enter link ia  during interval k, and head to destination s, and 

1, , , ( )
i d i i

s
a a a k
 


 be the proportion of vehicles entering link ia  during interval k to destination s and travel 

through links 1, ,i d ia a  . Let 
1, , ( )

i i i e

s
a a au k

 


 be the number of vehicles that enter link ia  during interval 

k, and travel through links 1 ,i i ha a   to destination s, and 
1, , ( )

i i i e

s
a a a k

 


 be the proportion of vehicles 

entering link ia  during interval k to destination s and traveling through links 1, ,i i ea a  . By definition, we 

have 

1 1 1 1, , , , , , , ,
1

( ) ( ) ( ) ( , ) ( )
i d i i i i d i i i i i d i

K
s s s s s
a a a a a a a a a a a

l

u k u k k y l k l 
      



   
 

 and (A48) 

1 1 1 1, , , , ,
1

( ) ( ) ( ) ( , ) ( )
i i i e i i i i e i i i i e

K
s s s s s
a a a a a a a a a a a

l

u k u k k y k l l 
      



   
 

. (A49) 

Substituting Eqs. (A47) and (A46) into Eqs. (A48) and (A49), respectively, we have 

1 1 1, , , , ,
1

( ) ( , ) ( )
ai

i g i i i i i g i

k
s s s
a a a a a a a

l

u k y l k l



    





  


 and (A50) 

1 1 1, , ,( ) ( , ) ( )
i i i h i i i i h

ai

K
s s s
a a a a a a a

l k

u k y k l l



    

 

  


, (A51) 

Without loss of generality, we consider vehicles traveling through path 1 2{ , , , , , }i mp a a a a   , where 
sp P  and m Sa A . By definition, we have 

( ) ( ) ( )
i i i

s s s
a p a a pu k u k k , (A52) 

where ( )
i

s
a p k  is the proportion of vehicles entering link ia  during interval k to destination s that travel 

through path p, and  

1 2 ... ...( )= ( ) ( )
i i i m

s s s
a p a a a a ak k k   

. (A53) 

By the definition of cumulative flow disaggregated by path, we have 
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1

( ) ( )
i i

k
s s
a p a p

h

U k u h


  and (A54) 

+1 +1
1

( )= ( ) ( )
i i i

k
s s s

a p a p a p
h

V k U k u h


 . (A55) 

Using Eqs. (A50)-(A55), we have 

1 1 1 2 1 1

1 1 2 1

1 1 2 1

1

... ...
1

... ...
1 1

... ...
1 1

( ) ( ) ( ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

( , )

i i i i i m

ai

i i i i m

ai

i i i i m

ai

i i

k
s s s s s

a p a p a a a a a a
h

hk
s s s
a a a a a a a

h l

hk
s s s
a a a a a a a

h l

s
a a

V k U k u h h h

y l h l h

y l h l h

y l h







 

 

 

   

 

 







 



  

 











 

 

 

 

1 2 1

1 1 2 1

1 2

... ...
1

... ...
1

... ...
1

( ) ( )

( , ) ( ) ( )

( ) ( ) ( )

( ).

ai

i i m

ai

ai

i i i i m

ai

ai

i i i m

i i

k k
s s
a a a a a

l h l

k K
s s s
a a a a a a a

l h l

k
s s s
a a a a a a

l

s
a p a

l h

y l h l h

u l l l

U k











 

 

 





 



  



  









 

 

 



 

 

 

 (A56) 

By definition, we have  

( ) ( ), , , , ( ),
s

s s s
ab abp bp

p P

k k s S p P a A b a k K  


      
 and (A57) 

( ) ( ), , , , ( ),
s

s s s
ab abp ap

p P

k k s S p P a A b a k K  


      
. (A58) 

According to Eqs. (A48), (A49), (A52), (A57), and (A58), we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ),

                                              , , , ( ),

s s

s s s s s s s
ab ab ab b abp bp b abp bp

p P p P

s

v k u k k u k k u k u k

s S p P a A b a k K

   
 

   

     

 

 and (A59) 

( ) ( ) ( ) ( ) ( ) ( ),

                                            , , , ( ), ,

s s

s s s s s s
ab ab a abp ap a abp ap

p P p P

s

u k k u k k u k u k

s S p P a A b a k K

   
 

  

     

 

 (A60) 

We can construct a path-based solution vector z  as follows: 

1 1

( ) ( ) ( ) ( ), , , ,
k k

s s s s s
ap ap a ap

j j

U k u k u k k s S p P a A k K
 

         and (A61) 

( )

( ) ( ), , , \ , .s s s
ap abp bp S

b a

V k U k s S p P a A A k K


       (A62) 
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According to Eqs. (A59)-(A62), we have 

1 1

( ) ( ) ( ) ( ) ( ),

                                                       , \ , ( ),

s s s

k k
s s s s s

ab ab abp ap abp bp abp ap
j j p P p P p P

S

V k v k u k U k V k

s S a A A b a k K

  
    

   

    

   
 and (A63) 

1 1

( ) ( ) ( ) ( ), , \ , ( ),
s s

k k
s s s s
ab ab abp ap abp ap S

j j p P p P

U k u k u k U k s S a A A b a k K 
   

         
. (A64) 

Eqs. (A63) and (A64) imply that y  and z  satisfy Eqs. (35) and (36), and hence 2 ( )y φ z . 

Substituting (35)and (36) into (23)-(25), we have constraints (38)-(40). Inequality (A56) implies that 

constraint (41) is satisfied by z , and Eq. (A62) implies that constraint (42) is satisfied by z . Eqs. (A61) and 

(A62) imply that the path-based solution vector z  satisfies non-decreasing constraints (43) and (44). In 

summary, z  satisfies constraints (38)-(44), i.e., z  , and 2 ( )y φ z . This completes the proof. □ 

A.5. Proof of Proposition 6 

Proof. Because Proposition 1 holds for any intersection-movement-based solution vector including a weak 

intersection-movement-based NVH solution vector y , we have the corresponding link-based vector 

1( ) x φ y . Substituting Eqs. (A1)-(A3) into the system of inequalities (50), we immediately have the 

system of inequalities (48). This implies that for all \ Sa A A  and k K , if one of the inequalities in (50) 

becomes binding, the corresponding inequality in (48) also becomes binding. Equivalently, if y  is a 

weak intersection-movement-based NVH solution vector, then 1( )x φ y  is a weak link-based NVH solution 

vector. This completes the proof. □ 

A.6. Proof of Proposition 7 

Proof. Because Proposition 3 holds for any path-based solution vector including a weak path-based NVH 

solution vector z , we have the corresponding intersection-movement-based solution vector 2 ( ) y φ z . 

To prove that y  is a weak intersection-movement-based NVH solution vector corresponding to z , without 

loss of generality, we consider an index pair ( , )a k   for z . Substituting Eqs. (A33)-(A34) into the 

system of inequalities (52) and changing the dummy index, we can obtain the system of inequalities (50). This 

implies that, for all \ Sa A A  and k K , if one of inequalities in (52) becomes binding, the corresponding 

inequality in (50) also becomes binding. Equivalently, if z   is a weak path-based NVH solution vector, 

then 2 ( )y φ z  is a weak intersection-movement-based NVH solution vector. Moreover, according to 

Proposition 6, the corresponding 1 2( ( ))x φ φ z  is a weak link-based NVH solution vector. This completes 

the proof. □ 

A.7. Proof of Proposition 8 

Proof. We first prove that x  satisfies the weak link-based condition defined by Definition 9. Because x  is 

a strong link-based VH solution vector defined by Definition 6, according to this definition, there exists a pair 
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of link \ Sa A A  and interval k K  in x  such that 

( ) ( ),

( ) ( 1) ( ),

( ) ( ) , ( ),  and

( ) ( 1) ( ), ( ).

s s
a a a

s S s S

s s
a a a

s S

s s
b b b b jam

s S s S

s s
b b b

s S

V k U k

V k V k C k

U k V k L b a

U k U k Q k b a



 

 



 



  

     


    

       

 



 



 (A65) 

According to constraint (10), there exists a destination s S  such that ( ) ( )s s
a a aV k U k   . This implies 

that a positive amount of flows is delayed on link a  during interval k . Let ( )b a  be any link that is 

used by this amount. Hence, there exists a positive value 0   such that 

( ) ( ),

( ) ( 1) ( ),

( ) ( ) ,  and

( ) ( 1) ( ).

s s
a a a

s s
a a a

s S

s s
jamb b b b

s S s S

s s
b b b

s S

V k U k

V k V k C k

U k V k L

U k U k Q k



 


 



    


       

     


       



 



  

We can construct a link-based solution vector x  as follows: 

( ) ( ) ,

( ) ( ) ,

( ) ( ), ( , , ) \{( , , )},  and

( ) ( ), ( , , ) \{( , , )}.

s s
a a

s s
b b

s s
a a L

s s
a a L

V k V k

U k U k

V k V k s a k s a k

U k U k s a k s b k

   


  


  
   









 (A66) 

It is easy to check that x x  and x x , and x . This implies that x  satisfies the weak link-based 

VH condition defined by Definition 9. 

We then prove that x  satisfies the weak link-based NVH condition defined by Definition 6 by 

contradiction. Assume that x  satisfies the strong link-based VH condition defined by Definition 6. 

According to the first part of this proof, x  satisfies the weak link-based VH condition defined by Definition 

9. According to Definition 9, this contradicts that x  is a strong link-based NVH solution vector. Therefore, 

x  must satisfy the weak link-based NVH solution condition defined by Definition 6. This completes the 

proof. □ 

A.8. Proof of Proposition 9 

Proof. We first prove that if y  satisfies the condition that, for all \ Sa A A , ( )b a , and k K , at 

least one of the less-than-or-equal-to inequalities in (54) becomes binding, then y  is a strong 

intersection-movement-based NVH solution vector by contradiction. We assume that y  is a weak 

intersection-movement-based VH solution vector. This implies that there exists an index pair 
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{ , , , } Is a b k   such that some holding vehicles on link a  through link b  to destination s  during 

interval k . We can construct a solution vector y  such that 

( ) ( )s s
ab ab

V k V k    , (A67) 

( ) ( ), ( , , , ) \{ , , , }s s
ab ab IV k V k s a b k s a b k   , and (A68) 

( ) ( ), ( , , , )s s
ab ab IU k U k s a b k   , (A69) 

where 0  . 

Because y  and y , according to the intersection-movement-based flow conservation constraint 

(27) and condition (A68), we have 

1 1( ) ( )( ) ( )

( ) ( ) ( ) ( )s s s s
ac a ca a ca a ac a

c a c ac a c a

U k V k V k U k   
   

           . (A70) 

According to condition (A69), we have 

( ) ( ), ( )s s
ac a ac aU k U k c a      . (A71) 

Eq. (A70) and inequality (A71) imply that the following equation must be satisfied: 

( ) ( ), ( )s s
ac a ac aU k U k c a      . (A72) 

Because y , constraint (26) implies that ( ) ( )s s
aab ab

V k U k     must be satisfied. Therefore, according 

to condition (A67) and Eq. (A72), we have 

( ) ( ) ( ) ( )s s s s
a aab ab ab ab

V k V k U k U k       . (A73) 

Because y , according to constraint (26), we have 

( ) ( ), \{ }s s
aab ab

V k U k s S s    . (A74) 

Using conditions (A73) and (A74), we have 

( ) ( )s s
aab ab

s S s S

V k U k 
 

   . (A75) 

Because y , conditions (A67), (A68), and constraints (23) imply that the following inequality is 

satisfied: 

( ) ( )

( ) ( 1) ( ) ( 1) ( )s s s s
ac ac ac ac a

s S c a s S c a

V k V k V k V k C k
   

                . (A76) 

Because y  and y , according to the intersection-movement-based flow conservation constraint 

(27) and conditions (A67) and (A68), we have 

1 1( ) ( )( ) ( )

( 1) ( 1) ( 1) ( 1)s s s s
bc cb cb bc

c b c bc b c b

U k V k V k U k
   

            and (A77) 

1 1( ) ( )( ) ( )

( ) ( ) ( ) ( )s s s s
bc cb cb bc

c b c bc b c b

U k V k V k U k
   

       . (A78) 

Using constraints (23), conditions (A67)-(A69), Eq. (A77), and inequality (A78), we have 

( ) ( )

[ ( ) ( 1)] [ ( ) ( 1)] ( )s s s s
bbc bc bc bc

c b c b

U k U k U k U k Q k
 

          and (A79) 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )s s s s
jam jambc bc bc b b bc b b

s S c b s S c b s S c b s S c b

U k U k V k L V k L   
       

               . (A80) 

Inequalities (A75), (A76), (A79), and (A80) imply that no less-than-or-equal-to inequalities in (54) take 

equality. This contradicts that at least one of the less-than-or-equal-to inequalities in (54) becomes binding. 

This implies that y  is a strong intersection-movement-based NVH solution vector. 

We then prove that if y  is a strong intersection-movement-based NVH solution vector, then y  satisfies 

the condition that, for all \ Sa A A , ( )b a , and k K , at least one of the less-than-or-equal-to 

inequalities in (54) becomes binding by contradiction. We assume that there exists link \ Sa A A , link 

( )b a , and interval k K  in y  such that 

( )

( ) ( )

( )

( ) ( 1) ( ),

( ) ( ) ,

( ) ( 1) ( ),  and 

( ) ( ).

s s
ab ab a

s S b a

s s
jambc bc b b

s S c b s S c b

s s
bc bc b

s S c b

s s
aab ab

s S s S

V k V k C k

U k V k L

U k U k Q k

V k U k

 



 
 

   

 

 

     


  



     

  

 

   

 

 

 (A81) 

Eq. (A81) implies that a positive amount of flows is delayed on link a  to link b  during interval k . 

Let ( )c b  be any link that is used by this amount, and s S  be the destination of this amount. Hence, 

there exists a positive value 0   such that 

( )

( ) ( )

( )

( ) ( 1) ( ),

( ) ( ) ,

( ) ( 1) ( ),  and 

( ) ( ).

s s
ab ab a

s S b a

s s
jambc bc b b

s S c b s S c b

s s
bc bc b

s S c b

s s
aab ab

s S s S

V k V k C k

U k V k L

U k U k Q k

V k U k

 



 
 

   

 

 

       


    



       

    

 

   

 

 

 (A82) 

We can construct an intersection-movement-based solution vector y  as follows: 

( ) ( ) ,

( ) ( ) ,

( ) ( ), ( , , ) \{( , , , )},  and

( ) ( ), ( , , ) \{( , , , )}.

s s
ab ab

s s
bc bc

s s
ab ab I

s s
ab ab I

V k V k

U k U k

V k V k s a k s a b k

U k U k s a k s b c k

   


  


  
   








 (A83) 

It is easy to check that y y , y y , and y . This implies that y  is a weak 

intersection-movement-based VH solution vector. This contradicts that y  is a strong 

intersection-movement-based NVH solution vector. This implies that y  satisfies the condition that, for all 

\ Sa A A , ( )b a , and k K , at least one of the less-than-or-equal-to inequalities in (54) becomes 

binding. This completes the proof. □ 
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A.9. Proof of Proposition 11 

Proof. Because Proposition 3 holds for any path-based solution vector including a strong path-based NVH 

solution vector z , we have the corresponding intersection-movement-based solution vector 2 ( ) y φ z . 

To prove that y  is a strong intersection-movement-based NVH solution vector corresponding to z , without 

loss of generality, we consider an index pair ( , )a k   for z . According to Eqs. (A31) and (A32), we have  

( ) ( )
s

s s
abp ap ab

s S s Sp P

U k U k
 

    and (A84) 

( ) ( )
s

s s
abp ap ab

s S s Sp P

V k V k
 

  . (A85) 

According to Proposition 10, z  satisfies the condition that, for all \ Sa A A , ( )b a , and k K , 

at least one of the less-than-or-equal-to inequalities in (56) becomes binding. Substituting Eqs. (A33)-(A34) 

into the first three inequalities in (56) and changing the dummy index, we can obtain the first three inequalities 

in (54). Modifying the argument of (A54) from k to ak   and substituting Eq. (A84) and the revised 

equation of (A85) into the last inequality in (56), we can obtain the last inequality in (54). Therefore, we can 

conclude that when any less-than-or-equal-to inequalities in (56) becomes binding, the corresponding 

less-than-or-equal-to inequalities in (54) also becomes binding. According to Proposition 10, for all 

\ Sa A A , ( )b a , and k K , at least one of less-than-or-equal-to inequalities in (56) becomes binding. 

Therefore, for all \ Sa A A , ( )b a , and k K , at least one of the corresponding less-than-or-equal-to 

inequalities in (54) becomes binding. According to Proposition 9, 2 ( ) y φ z  is a strong 

intersection-movement-based NVH solution vector. This completes the proof. □ 

A.10. Proof of Proposition 12 

Proof. For any \ Sa A A , ( )b a , and k K , if 1 ( ) 1a k  , constraint (55a) implies 

( )

( ) ( 1) ( )s s
ab ab a

s S b a

V k V k C k
 

      . (A86) 

Combining inequality (A86) with constraint (23), we have 

( )

( ) ( 1) ( )s s
ab ab a

s S b a

V k V k C k
 

      . (A87) 

Similarly, if 2 ( ) 1b k  , we have 

( ) ( )

( ) ( )s s
bc bc b b jam

s S c b s S c b

U k V k L 
   

      . (A88) 

If 3 ( ) 1b k  , we have 

( )

( ) ( 1) ( )s s
bc bc b

s S c b

U k U k Q k
 

      . (A89) 

If ( ) 1ab k  , we have 

( ) ( )s s
ab ab a

s S s S

V k U k 
 

   . (A90) 

Constraints (55e)-(55g) imply at least one of the four binary variables on the left-hand side of constraint 
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(55e) equals one. This implies that at least one of Eqs. (A87)-(A90) holds. Equivalently, at least one of the 

less-than-or-equal-to inequalities in (54) becomes binding. According to Proposition 9, y  is a strong 

intersection-movement-based NVH solution vector. This completes the proof. □ 

A.11. Proof of Proposition 14 

Proof. Let 1( )x φ y . Substituting Eq. (A2) into Eq. (60), we can obtain ( ) ( ) y x . This completes the 

proof. □ 

A.12. Proof of Proposition 15 

Proof. Let 2 ( )y φ z , and 1 1 2( ) ( ( )) x φ y φ φ z . Substituting Eq. (A32) into the rightmost hand side of Eq. 

(A36), we have 

1 ( )

( ) ( ), , ,
s

s s
ap ba S

p P b a

U k V k s S a A k K
 

      . (A91) 

Substituting Eqs. (A91) into Eq. (61), we can obtain ( ) ( ) z y . According to Proposition 14, we have 

( ) ( ) y x . Hence, we have ( ) ( ) ( )   z y x . This completes the proof. □ 

A.13. Proof of Proposition 16 

Proof. Same as the proof of Proposition 8, for any weak link-based VH solution vector x , we can 

construct a link-based VH solution vector x  according to the system of equations (A66). Substituting the 

system of equations (A66) into Eqs. (59) and (68), we have 

*

* *

*

( ) ,  if  and ,

,  if  and ,
( ) ( )

( ) ,  if  and ,

0,  otherwise,

S s

S s s

S s

b A k k

b A k k k

b A k k

 


 

 

    

     
   




x x  and (A92) 

( ) ( ) ( )     x x x . (A93) 

Because 0      , we have ( ) ( ) x x .  

Let *x  be an optimal solution to LP problem (68)-(69). Assume that *x  is a weak link-based VH 

solution vector. We can construct a link-based VH solution vector * x  according to the system of 

equations (A66) by using *x . According to Eqs. (A92) and (A93), we have * *( ) ( ) x x  and 
* *( ) ( ) x x . According to constraint (69), we have * *( ) x . Because * x , *x  is a feasible 

solution to LP problem (62), and we have * * *( ) ( )   x x . Hence, we have * * *( ) ( )   x x . This 

implies that *x  is a feasible solution to LP problem (68)-(69). Hence, its objective value *( ) x  cannot be 

greater than the optimal value *( ) x  (i.e., * *( ) ( ) x x ). This condition contradicts with  
* *( ) ( ) x x  deduced earlier. Therefore, *x  must be a strong link-based NVH solution vector. This 

completes the proof.□ 
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A.14. Proof of Proposition 17 

Proof. Constraint (69) implies that * *( ) x  and *x  is an optimal solution to LP problem (62). Let 
* *[ , ]x θ  be an optimal solution to MILP problem (65). By definition, we have * x , and hence *x  is a 

feasible solution to LP problem (62). This implies * * *( ) ( )   x x . 

According to Propositions 8 and 16, * x  satisfies the weak link-based NVH condition defined by 
Definition 9. By definition, for all \ Sa A A  and k K , at least one of the less-than-or-equal-to 

inequalities in (48) becomes binding. Based on the solution vector *x , we can retrieve the vector *θ  as 

follows: (i) if * *( ) ( )s s
a a a

s S s S

V k U k 
 

   
 is satisfied, we set *( ) 0, {0,1, , }i

a ak i m     ; (ii) if 

* *( ) ( 1) ( )s s
a a a

s S

V k V k C k


      is satisfied, we set 0*( ) 1a k   and *( ) 0, {1, , }i
a ak i m     ; (iii) for 

all aj J , if * *( ) ( )s s
b b b b jam

s S s S

U k V k L 
 

    
 is satisfied, we set 0*( ) 0a k   and 

*( ) , {1, , }i j
a i ak i m     ; and (iv) for all aj J , if * *( ) ( 1) ( )s s

b b b
s S

U k U k Q k


     , we set 

0*( ) 1a k   and *( ) , {1, , }i j
a i ak i m     . We can check that * *[ , ]x θ  satisfies constraint (49) for all 

\ ,Sa A A k K  . Because * x , * *[ , ]x θ  is a feasible solution to MILP problem (65). This implies 
* * *( ) ( )   x x . Combining this condition with * * *( ) ( )   x x , we have * *( ) x . This implies 

* *[ , ]x θ  is an optimal solution to MILP problem (65). This completes the proof.□ 

A.15. Proof of Theorem 1 

Proof. Let *x , *y , and *z  be optimal solutions to the link-based, intersection-movement-based, and 

path-based R-DSO-SRDTC problems, respectively. By definition, we have * *( )  x , * *( )  y , and 
* *( )  z  . According to Propositions 1 and 14, we have *

1( )φ y  and * *
1( ) ( ( )) y φ y . Because *x  

is an optimal solution to the link-based R-DSO-SRDTC problem, we have * * *
1( ) ( ( )) ( )   y φ y x . 

Meanwhile, according to Propositions 3 and 15, we have *
2 ( )φ z  and * *

2( ) ( ( )) z φ z . Because *y  

is an optimal solution to the intersection-movement-based R-DSO-SRDTC problem, we have 
* * *

2( ) ( ( )) ( )   z φ z y . Hence, we have * * *     . Moreover, according to Proposition 5, there 

exists a vector z   such that *
1 2( ( ))x φ φ z . According to Proposition 15, we have *( ) ( )  z x . 

Because *z  is an optimal solution to the path-based R-DSO-SRDTC problem, we have 
* * * *( ) ( ) ( )       x z z   . This together with * * *      implies that * * *      must hold. 

According to constraint (69), we have * *
N  . Similarly, we have * *

N   and * *
N   . Therefore, we 

have * * * * * *
N N N           . This completes the proof. □ 

A.16. Proof of Proposition 22 

Proof. According to Proposition 1, there is a corresponding link-based solution vector 1( ) x φ y . Taking 

summation of ( )b a  for both sides of Eq. (81) and substituting Eqs. (A1) and (A3) into the resultant 

equation, we obtain Eq. (80). This implies that x  is a link-based FIFO solution vector. This completes the 

proof. □ 
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A.17. Proof of Proposition 23 

Proof. According to Proposition 3, there is a corresponding intersection movement-based solution vector 

2 ( ) y φ z . Multiplying 0-1 indicators abp  to both sides of Eq. (82), taking summation over p P , 

and substituting Eqs. (A31) and (A32) into the resultant equation after changing the argument when necessary, 

we can obtain Eq. (81). This implies that y  is an intersection-movement-based FIFO solution vector. 

According to Proposition 22, 1 2( ( ))x φ φ z  is a link-based FIFO solution vector. This completes the proof. □ 

A.18. Proof of Theorem 5 

Proof. Let *x , *y , and *z  be optimal solutions to the link-based, intersection-movement-based, and 

path-based FIFO-DSO-SRDTC problems, respectively. By definition, we have * *( )  x , * *( )  y , 

and * *( )  z  . Because *y  is an optimal solutions to the intersection-movement-based 

FIFO-DSO-SRDTC problem, * y  is an intersection-movement-based FIFO solution vector. According to 

Proposition 22, *
1( )φ y  is a link-based FIFO solution vector, and hence is a feasible solution to the link-based 

FIFO-DSO-SRDTC problem. According to Proposition 14, we have * *
1( ) ( ( )) y φ y . Because *x  is an 

optimal solution to the link-based FIFO-DSO-SRDTC problem, we have * * *
1( ) ( ( )) ( )   y φ y x . 

Because *z  is an optimal solutions to the path-based FIFO-DSO-SRDTC problem, * z   is a path-based 

FIFO solution vector. According to Proposition 23, *
2 ( )φ z  is an intersection-movement-based FIFO solution 

vector, and hence is a feasible solution to the intersection-movement-based FIFO-DSO-SRDTC problem. 

According to Proposition 15, we have * *
2( ) ( ( )) z φ z . Because *y  is an optimal solution to the 

intersection-movement-based FIFO-DSO-SRDTC problem, we have * * *
2( ) ( ( )) ( )   z φ z y . Therefore, 

we have * * *     . This completes the proof. □ 

A.19. Proof of Theorem 9 

Proof. Let *x , *y , and *z  be optimal solutions to the link-based, intersection-movement-based, and 

path-based NVH-FIFO-DSO-SRDTC problems, respectively. By definition, we have * *( )  x , 
* *( )  y , and * *( )  z  . According to Propositions 1, 6, and 22, *

1( )φ y  is a link-based 

NVH-FIFO solution vector, and hence is a feasible solution to the link-based NVH-FIFO-DSO-SRDTC 

problem. According to Proposition 14, we have * *
1( ) ( ( )) y φ y . Because *x  is an optimal solution to 

the link-based NVH-FIFO-DSO-SRDTC problem, we have * * *
1( ) ( ( )) ( )   y φ y x . According to 

Propositions 3, 7, and 23, we have *
2 ( )φ z  is an intersection-movement-based NVH-FIFO solution 

vector, and hence is a feasible solution to the intersection-movement-based NVH-FIFO-DSO-SRDTC 

problem. According to Proposition 15, we have * *
2( ) ( ( )) z φ z . Because *y  is an optimal solution to 

the intersection-movement-based NVH-FIFO-DSO-SRDTC problem, we have * * *
2( ) ( ( )) ( )   z φ z y . 

Therefore, we have * * *     . This completes the proof. □ 
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A.20. Proof of Theorem 10 

Proof. According to Theorem 1, we have * *
1 2  . Because the feasible solution set of the 

FIFO-DSO-SRDTC problem is a subset of that of R-DSO-SRDTC problem, * *
1 3  . Similarly, because the 

feasible solution set of the NVH-FIFO-DSO-SRDTC problem is a subset of that of the FIFO-DSO-SRDTC 

problem, * *
3 4  . This completes the proof. □ 
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