
Primary School Students’ Intrinsic Motivation to Plugged
and Unplugged Approach to Develop Computational
Thinking
Abstract: This paper compared primary school students’ intrinsic motivation to plugged and unplugged approach
to develop computational thinking using a revised Intrinsic Motivation Inventory. A total of 400 fourth-graders who
have completed a school-provided coding course participated in the study. The revised instrument examined students’
motivation of the two learning approaches from four dimensions: interest, perceived competence, value, and
relatedness. The main findings of the study are: (1) primary school students showed moderate to high motivation to
learn computational thinking through both plugged and unplugged approach; (2) compared to unplugged approach,
students gained higher perceived competence from plugged approach; (3) the revised Intrinsic Motivation Inventory
has good psychometric properties in the context of computational thinking except for the close correlation among
different dimensions. Finally, implications for developing computational thinking with mobile devices were
proposed.

Keywords: Computational thinking; coding education; programming; K-12

1 Introduction

Since the seminal paper of Wing (2006), computational thinking has attracted
increasingly attention from educators and researchers. Regardless of various
interpretations, a consensus has been reached that computational thinking refers to the
thought processes that formulate problem as well as its solution in a manner that can
be processed by computer (Chen et al., 2017; Wing, 2011). Specifically, computational
thinking in its essence entails problem solving ability and reasoning ability (Román-
González, Pérez-González, & Jiménez-Fernández, 2017). In addition to problem
solving skill, developing computational thinking is also conducive to enhancing
student’s creativity, algorithmic thinking, and the awareness of cooperation (ISTE,
2015). Aligning with critical 21st century skills, computational thinking is also
considered as a fundamental skill for every student. Particularly due to the demand for
future workforce with computing skills, researchers and educators have argued the
integral role of computational thinking in all STEM curriculum. In a special session of
SIGCSE symposium, Henderson and colleagues (2007) argued that computational
reasoning is key to STEM disciplines. Moreover, NRC (2012) pointed out in a
framework for science education that using mathematical and computational thinking
is one important component in engineering curriculum. In empirical studies, some
researchers argued for the transdisciplinary approach of STEM epistemology by
connecting computational thinking with physical computing in inquiry-based learning
(Psycharis, Kalovrektis, Sakellaridi, Korres, & Mastorodimos, 2018). These effort
include integrating computational thinking with robotics engineering to facilitate K-12
students’ thinking and computational problem solving ability (Bers, Flannery, Kazakoff,
& Sullivan, 2014; Grover, 2011; Witherspoon, Higashi, Schunn, Baehr, & Shoop, 2017).
Besides robotics, several studies embedding computational thinking in other STEM
curriculums have showed the effectiveness of this approach in learning mathematical
process (Calao et al., 2015), physics and biology (Sengupta et al., 2013). Hence, it is
believed that developing children’s computational thinking could lay the foundation for
engineering education and support learning in other disciplines.

Generally, programming (plugged) and CS Unplugged (unplugged) are two
common ways to help students develop computational thinking and learn
computational concepts. The idea behind unplugged activities where bodily
movements are stressed is embodied cognition. This approach highlights that children
learn new knowledge through bodily actions and perceptual experiences (Anderson,

2003), while the programming activity is rooted in constructionism which believes that
learning is supported by creating personal artifact (Papert, 1980), such as digital games.
Drawing on the theories of embodied cognition and constructionism, the design of
plugged activity and unplugged activity often focuses on different aspects of learning
experience, which may lead to different levels of intrinsic motivation to participate in
an activity.

However, there is still little understanding regarding the effective way to motivate
computational thinking learning especially from the perspective of intrinsic motivation.
Furthermore, there is lack of research investigating primary school students’ perception
of the existing ways to learn computational thinking from the perspective of human
innate psychological needs. Without attention to intrinsic motivation, students can have
difficulties in persevering in learning as well as improving learning performance (Ryan
& Deci, 2000b). In response, we attempt to address these issues by drawing on self-
determination theory. On the one hand, primary school students’ intrinsic motivation to
develop computational thinking by plugged and unplugged approaches is assessed by
a customized version of an existing instrument, Intrinsic Motivation Inventory (IMI)
(McAuley, Duncan, & Tammen, 1989). On the other hand, the psychometric properties
of IMI are reported to determine the appropriateness of the instrument in the new
context. By investigating intrinsic motivation of primary school students, the present
work will provide insights into the question of how to address computational thinking
with children (Voogt, Fisser, Good, Mishra, & Yadavd, 2015) by accommodating age-
appropriate needs and interest.

2 Constructionist and Embodied Approach to Computational Thinking

 The term “computational thinking” is firstly put forward by Papert (1980),
referring to procedural thinking. In Wing’s (2006) article, computational thinking was
defined rigorously as using concepts in computer science to solve problem, design
system, and understand human behavior, after which research related to computational
thinking in K-12 educational context has gained much traction (Lye & Koh, 2014).
Traditionally, programming is regarded as a gateway to computational thinking and
therefore has occupied a critical position in computational thinking curriculum (Kafai
& Burke, 2013). Papert’s (1980) Constructionism is an epistemological approach to
teaching rooted in Constructivism. The two ideas share a central proposition: learning
is constructing knowledge structure; nevertheless, constructionism stresses the
importance of learner’s engagement in creating public entity consciously (Papert &
Harel, 1991). Specifically, Papert considered child as creator and builder who “learn
by doing” with the aid of computer programming. Constructionism provides a new
angle of view that learners are empowered to interact with the fundamental ideas from
science and express themselves while actively constructing the artifact that is
meaningful to them through programming. Visual-based programming is dominant
programming environment in K-12 educational context due to its easy-to-use drag-and-
drop features (Lye & Koh, 2014). Commonly used visual-based programming
languages include Scratch, Alice, App Inventor, etc. It is reported that through doing
programming, students enhanced computer science knowledge (Burke, 2012), problem
solving skills (Chen et al., 2017), as well as transferrable skills (Grover, 2017).
Researchers interested in examining the impact of programming on learners’ perception
suggested that participating in programming led to enhanced learning interest and
enjoyment in various age groups (Tran, 2018) Furthermore, integrating computer

programming into content knowledge, such as mathematics, was found to be effective
in increasing students’ reasoning skills and self-efficacy (Psycharis & Kalia, 2017).
More recently, drawing on the pervasiveness of mobile devices, innovative
programming environments was created for preschool children to familiarize
themselves with computational thinking, such as ScrtachJr. For example, a mixed-
method study examined the effects of SctrachJr on kindergarten children’s learning of
computational concepts. The findings suggested that mobile assisted learning was
effective and interesting even for kindergarteners (Papadakis, Kalogiannakis, &
Zaranis, 2016). Acknowledge that developing computational thinking with mobile
devices could take place without learning programming. For instance, a mobile
application was designed by Fronza and Gallo (2016) to assist language learning along
with computational thinking development. The application provided diagnostic
assessments which could be useful to learners and teachers.

Apart from learning by programming, there exist another different approach to
introduce students to computational thinking, which is related to embodied approach.
Computer Science Unplugged is a series of activities used to help novices to learn
computer science concepts in the absence of real computer (Bell, Alexander, Freeman,
& Grimley, 2009), and thus keeping them from programming (Grover & Pea, 2013).
The fundamental idea of unplugged activity is in line with embodied cognition that
advocates cognitive process is highly related to sensorimotor experience (e.g. sight,
touch, bodily movement) and outside environment (e.g. physical manipulative)
(Anderson, 2003; Barsalou, 2008; Wilson, 2002). It means perceptual and motor
experiences, such as using physical manipulatives in unplugged activity, impact
learner’s cognition and thus appropriate use of embodiment in instruction could be
beneficial to learning. Actually, one of the major features of CS Unplugged activity is
kinesthetic, which means physical objects (e.g. cards, weights) are usually used to
replace computer (Nishida et al., 2009). Seeing the potential of embodied cognition and
physical computing, researchers have made attempts to apply them to teach
computational thinking. For example, a model which connected computational
thinking and physical computing in inquiry-based activities was proposed to engage
college students in STEM epistemology. According to the researchers, the model may
have the potential to increase students’ self-efficacy and internal motivation (Psycharis,
Kalovrektis, Sakellaridi, Korres, & Mastorodimos, 2018). In addition, in an up-to-date
research, Aggarwal, Gardner-McCune, and Touretzky (2017) used tiles and flashcards
designed for Microsoft Kodu to introduce primary students to basic program called
“Pursue and Consume” after school. The treatment group was given tiles and flashcards
which allow manipulation by students, while controlled group was provided with a
single paper with programming rules printed on it. For treatment group, learning,
therefore, is grounded in sensory-motor experience due to the use of manipulatives and
physical movement. Similarly, other researchers who tried to apply embodied approach
in teaching computational thinking have found that pupils enjoyed the unplugged
learning experience (Daily et al., 2015), and outperformed other students who learnt
computational concepts by coding (Fadjo, Lu, & Black, 2009). In general, embodied
approach seems to be particularly helpful for young children to get familiar with
computational concepts (Bell et al., 2009; Conde et al., 2017) in the absence of digital
devices.

Drawing on the theories of embodied cognition and constructionism, the design of
plugged activity and unplugged activity often focuses on different aspects of children’s
learning experience. Plugged approach allows children to explore and create artifacts
in front of a computer whereas unplugged activity often engages students in group work
with bodily movements. Therefore, different learning experiences may lead to different
levels of intrinsic motivation that drives children to participate in an activity
autonomously. For example, some students may find writing programs interesting
while other enjoy learning with tangible tools. Regarding interpersonal relatedness
needs, unplugged approach may provide more opportunities for students to interact
with peers whereas programming entails more teacher guidance to help students write
a correct program. In self-determination theory, whether these aspects are satisfied
could influence individual’s subjective understanding of a particular activity and
further influence intrinsic motivation. In addition, being intrinsically motivated is
extremely important to learning since it reflects inherent tendency to accomplish a task,
such as learning new knowledge. In fact, it is suggested that intrinsic motivation leads
to higher learning performance and longer persistence (Ryan & Deci, 2000b). Hence,
it is critical to understand and compare students’ motivation of constructionist and
embodied approach so as to better design the motivating learning activities for
computational thinking.

Two measures are mostly used when intrinsic motivation is considered as
dependent variable. First, behavioral measurement refers to participant’s free choice in
an experiment where the individual has the autonomy to do target activity or other
distractive activity. The second measurement can be conducted through self-report
instrument designed specifically to test individual’s intrinsic motivation. For example,
IMI is a report firstly validated by McAuley and colleagues (1989) based on self-
determination theory. Besides students’ enjoyment, the instrument also includes several
dimensions regarding human psychological needs (e.g. relatedness, competence,
autonomy) to gain a comprehensive picture of how students perceive a learning activity.
As a result, this study revised and adopted the instrument to probe into the following
research questions: (1) What is the psychometric properties of Intrinsic Motivation
Inventory in the context of computational thinking learning? (2) Are students more
intrinsically motivated to learn computational thinking by plugged and unplugged
approach?

3 Method

3.1 Sample
The present study targeted five government funded primary schools in Hong Kong.

400 fourth-graders whose age range from 9 to 11 took part in the research. These
students have completed a same six-week coding course in which programming and
unplugged activities are incorporated to expose the students to basic computational
concepts. Prior to the present study, students had no experience in coding in general.
Therefore, all participants have the similar experience with coding and unplugged
activity. However, to ensure the quality of data, 180 students’ responses are excluded
from analysis due to two reasons: (1) obvious patterns were identified in the response;
(2) random filled answers were found (e.g. a majority of items in the instrument were
filled in with the same choices). As a result, a total of 220 responses were analyzed.

3.2 Procedure
All participants were required to complete a coding course in which plugged and

unplugged activities were integrated. In the coding course, students learnt
computational concepts through unplugged activities and then created computational
artifacts by engaging in programming tasks. Figure 1 shows the activities that were
used to teach and apply the idea of “sequencing”. In unplugged activity on the left side,
students used pen and paper to draw a route between the starting point and the
destination at the beginning. Then teachers guided students to simulate the scenario by
moving around on the floor in order to understand “sequencing”. The corresponding
plugged activity on the right side required students to demonstrate “sequencing” by
constructing a program in Scratch to manipulate the green sprite to reach the cat. In this
regard, applying embodied learning before constructionist approach made it possible
for students to learn the computational concepts first and internalize knowledge after.
After completion of the coding course, a revised IMI was distributed to students either
in the form of paper-based questionnaire or online survey. To ensure the quality of data,
a check on all students’ responses was conducted.

Figure 1 Example of unplugged (left) and plugged (right) activity

3.3 Instrument
All participants were given a survey which was adapted from IMI to measure their

intrinsic motivation in programming activity and unplugged activity. The survey was a
five Likert scale where strongly disagree=1, disagree=2, neither disagree or agree=3,
agree=4, strongly agree=5. IMI is a generic instrument, meaning that it can be modified
slightly to fit specific activities. Hence, to make a comparison between plugged and
unplugged approaches to learn computational thinking, the survey was grouped into
two parts (part A: programming; part B: unplugged) with the same statements in each
part. Originally, there are seven dimensions in IMI covering respondents’ self-efficacy,
affective tendency (e.g. enjoyment, pressure), perception of the activity (e.g. usefulness,
choice, interaction). However, it is worth noting that only four dimensions applicable
to students’ coding experiences were used in the present study, namely
interest/enjoyment (Int) (e.g. part A “I enjoy doing programming activities very much”,
part B “I enjoy doing unplugged activities very much”), perceived competence (PC)
(e.g. part A “I think I am good at programming”, part B“I think I am good at unplugged
activities”), value/usefulness (Use) (e.g. part A “I believe doing programming could be

beneficial to me”, part B “I believe doing unplugged activities could be beneficial to
me”), and relatedness (Rel) (e.g. part A “I’d like a chance to interact with my teacher
more often in programming activities”, part B “I’d like a chance to interact with my
teacher more often in unplugged activities”), resulting in 14 items in each part. A total
of 28 items form the revised IMI. While there is no specific item directly addressing
students’ perception of computational thinking per se, the instrument examines how
they perceive the learning experiences in developing computational thinking through
the two approaches.

Having taking into account of the participants’ English skill and reading ability, the
researchers translated the instrument from English into traditional Chinese. Firstly, it
was interpreted to Chinese by one main researcher with a careful consideration of
participants’ reading ability. Four experts in computational thinking, including one
local researcher, were involved in the subsequent stage to confirm the wordings of the
instrument were clear and understandable. In the last stage, one teacher who taught the
six-hour coding course was asked to comment on the instrument. The main researcher
made modification to the instrument based on the comments and suggestions.

3.4 Data analysis
To validate the instrument in the new context, internal reliability and convergent

validity were tested. Previous studies investigating the psychometric properties of IMI
have reported that the adequacy of models varied from different contexts. For example,
multi-factor model was adequate in sports setting (McAuley et al., 1989), while bi-
factor model was good description of IMI in mathematics and language learning
(Monteiro, Mata, & Peixoto, 2015). Hence, confirmatory factor analysis (CFA) were
conducted using R package lavaan to test two models: single factor, multifactor. One
thing worth mentioning is that students’ responses to the two learning approaches were
analyzed separately to have a more precise understanding of the psychometric
properties of the instrument.

In addition to validation process, data were analyzed in SPSS 24.0 using standard
techniques of descriptive statistics and inferential statistics. For inferential statistics,
paired samples t-test was conducted to compare whether there is significant difference
between students’ motivation of plugged approach and unplugged approach.

4 Results

4.1 Psychometric properties of revised IMI
Average variance extracted (AVE), composite reliability, and Cronbach’s α of both

models were calculated to examine the instrument’s convergent validity and internal
reliability (Table 1). Cronbach’s α for both sets of data exceeded the common threshold
of 0.70, indicating that the modified IMI had a desirable internal consistency. The
composite reliability was 0.948 and 0.932 for two sets of data respectively, which was
much higher than the recommended value. AVE for programming activity was 0.497
which was slightly lower than common threshold of 0.5. To improve convergent
validity, measurement error variance of each item was examined. Item with largest
measurement error was item 11 (“While I was programming, I was thinking about how
much I enjoyed it”) from interest/enjoyment construct. Hence, item 11 was excluded to
improve AVE. Then, the AVE of remaining items was tested again. The result was
improved to 0.509 which satisfied the recommend threshold.

Table 1 Convergent validity and internal reliability

Programming CS Unplugged

Single
factor Multifactor Single

factor Multifactor

AVE
0.497 0.537 0.567 0.595

Composite
reliability

0.948 0.932 0.932 0.948

Cronbach’s α 0.948 0.938 0.932 0.952

Discriminant validity is a measure testing whether constructs are distinct from each
other. Table 2 presents the correlation matrix of the instrument, which showed
unsatisfying discriminant validity. All off-diagonal coefficients were greater than 0.8,
suggesting high correlation among different constructs. In other words, there was no
clear distinction among the four constructs.

Table 2 Correlation matrix
 PC Int Use Rel

PC
1.000

Int 0.888 1.000

Use 0.854 0.898 1.000

Rel 0.947 0.954 0.973 1.000

The goodness-of-fit indices for single factor model in addition to multifactor model
are tested. All the goodness-of-fit indices satisfied their correspondingly recommended
value, indicating that both models had a good fit (Table 3). To be more specific, the
multifactor model showed better model fit as all goodness-of-fit indices satisfied their
criteria to a greater extent.

Table 3 Fit indices for two models

 Single
Factor Multifactor Recommended

Value
Chi-square/degree
of freedom(χ2/df)

2.32 1.96 < 3

SRMR 0.045 0.039 < 0.08

RMSEA 0.080 0.070 < 0.08

CFI 0.931 0.954 > 0.9

TLI 0.919 0.941 > 0.9

GFI 0.890 0.912 > 0.8

AGFI 0.849 0.869 > 0.8

4.2 Comparison between plugged and unplugged activities
The average score of all items in the revised IMI for programming and unplugged

approach was 3.88 and 3.74, which indicated moderate to high level of intrinsic
motivation of students. When looking into the four dimensions respectively, the
average scores of both learning approaches were above the mid-point, meaning that
students showed positive perception with respect to their enjoyment, self-efficacy, as
well as the affordances of the two learning approaches, including usefulness and
opportunity for interaction.

Notwithstanding the slightly lower mean scores of unplugged activities, the only
statistically significant difference was found in PC (p<.001). With regard to other
dimension: P value was .454 for Int dimension, .119 for Use dimension, .114 for Rel
dimension. This indicated that students gained higher perceived competence from
programming activity. Table 4 presents the comparison of plugged and unplugged
approach.

Table 4 Comparison between plugged and unplugged approach

Programming CS Unplugged P

Mean SD Mean SD

PC
3.99 0.88 3.70 1.01 <.001

Int 3.81 0.96 3.76 1.04 .454

Use 3.89 0.91 3.77 0.99 .119

Rel 3.83 0.88 3.70 0.97 .114

5 Discussion

In this paper, we reported the findings of a pilot study that focusing on evaluating
psychometric properties of revised IMI in the context of computational thinking and
making comparison between primary school students’ intrinsic motivation to plugged
and unplugged approach.

5.1 Psychometric properties of revised IMI
The first aim of this research is to analyze the features of a modified version of

Intrinsic Motivation Inventory, including validity, reliability, and internal structure.
Therefore, this research made attempt to test the characteristics of single factor model
and multifactor model. The results gained in the factor analysis revealed that both
models (single factor and multifactor) fitted in with the study. In general, the instrument
has desirable reliability and validity, except for the divergent validity which measures
whether a dimension is distinct from others. This suggested the existence of intrinsic
motivation as one general factor, which is consistent with previous study (Monteiro et
al., 2015). Therefore, it can be concluded that the revised IMI was measuring
respondents’ intrinsic motivation in computational thinking learning. From the other
hand, the high correlations among different dimensions were not commonly found in
other researches where the instrument was used, the only exception was a study
conducted by Fonseca and Paula Brito (2012) to assess students’ attitude toward
information technology. Three constructs in the questionnaire aligned with IMI, which
were confidence, interest, and usefulness. Similarly, the three constructs were found
highly correlated in this study. One possible interpretation for the analogous results is
that children and even adolescents have difficulties in responding questionnaire that
involves value, attitude, and belief, especially when the contents are not explicitly
developed for their age groups. In conclusion, the revised IMI is a reliable instrument
to measure children’s intrinsic motivation of different learning approaches to learn
computational thinking. Nevertheless, it still calls for further study and revision to
address the high correlation among different dimensions.

5.2 Intrinsic motivation to plugged and unplugged approach
This section discusses on students’ motivation from four aspects being measured in

IMI. First, based on the overall results, students showed moderate to high intrinsic

motivation to develop computational thinking through both programming activity and
unplugged activity. The theoretical ground of IMI is self-determination theory whose
fundamental argument is that individual’s enjoyment gained from participating in an
activity generates intrinsic motivation (Deci & Ryan, 1985). Therefore,
interest/enjoyment dimension is the only direct measure of intrinsic motivation in IMI.
Since there is no significant difference between students’ interest level, it indicated that
plugged and unplugged activities have the equal potential to arouse pupils’ learning
interest. Two reasons might account for the reasons of students’ learning interest in
programming activities. First, programming empowered students to construct artifacts
that reflect their inner feelings and ideas. It means students were able to express
themselves through making digital game or scenario they care about (Brennan &
Resnick, 2012). Moreover, Scratch is a “low threshold, high ceiling” tool characterized
by abundant materials and easy-to-use interface (Maloney et al., 2010), which could
naturally increase students interest. With respect to unplugged activities, it provided
opportunities for students to get familiar with abstract computational concepts through
interacting with concrete objects. This method freed students from constructing
programs on computer. In light of the characteristics, young children were likely to feel
more engaged in unplugged games and increase their interest through manipulating
simple tools and implementing physical actions (Nishida et al., 2009). Hence, despite
the different focuses, both constructionist and embodied approach succeeded in
ensuring attractiveness to children.

Further, of equal importance to intrinsic motivation are human psychological needs,
including self-efficacy, and social needs (Ryan & Deci, 2000a), mapping on the
dimension of perceived competence and relatedness respectively. Particular attention
should be paid to students’ perceived competence as they showed statistically
significant higher sense of mastery after programming activities, compared to
unplugged activities. In fact, coding experience and students’ self-efficacy has long
been noticed in computer science education. Positive correlation between programming
experience and students’ confidence was reported in previous literature (Tsai, Wang, &
Hsu, 2018), suggesting that increasing programming experience could lead to enhanced
self-efficacy. Similar results in the present research revealed the importance of plugged
approach in improving students’ perceived competence as well. This could be
explained by two reasons: the design of learning procedure of the coding course; the
different characteristics of plugged approach and unplugged approach.

In the coding course, students progressed through learning computational concepts
to creating computational artifacts by engaging in unplugged activities and
programming tasks. This means that the major goal of unplugged activities was to
introduce students to basic computing concepts, e.g. sequencing, loop, etc. In contrast,
programming tasks were designed to provide opportunities for applying and
internalizing the concepts in the process of creating personal digital products. Due to
the course design, when recalling the programming experience, students were likely to
refer to the whole learning procedure which started from learning concepts to
constructing artifacts. As a result, it could contribute to higher perceived competence,
compared to unplugged learning approach only. Furthermore, programming as a way
to learn knowledge empowers learners to construct personal meaningful artifacts
(Papert, 1980). It highlights the centrality of actively creating digital products in

constructing new knowledge, such as animation and games in the coding course.
Plugged approach, therefore, makes it possible for students to see the actual outcomes
of learning. Hence, learners consider themselves as creator rather than passive receiver
of knowledge. However, unplugged activities only help students learn fundamental
principles and ideas from computer science through manipulating non-digital tools. It
is possible to understand that students are unable to gain a sense of competence through
visible outcomes because they play the role of consumers of these existing tools and
tasks instead of creators. In these regards, students in the study gained higher sense of
mastery from plugged approach, probably due to the learning design of the coding
course and different focuses of learning approaches.

Regarding the social aspect of psychological needs, plugged and unplugged
approach were considered equally in fulfilling primary school students’ needs for
student-teacher interaction. Specifically, the average score to item “I feel close to my
teacher” was low compared with other statements, which was a direct indicator of
distant teacher-student relationship. From student’ perspective, it can be inferred that
teachers did not engage with students sufficiently regardless of plugged or unplugged
activity, although some opportunities were provided. In addition, the item “I’d like to
interact with teachers more often” received a high score, meaning that students actually
required higher level teacher involvement. In fact, in a study involving primary school
students, Skinner and Belmont (1993) reported that teacher involvement would directly
impact how students perceive teacher-student relationship. It means that inadequate
teacher involvement could have a negative influence on relationship between teacher
and student. Moreover, it is believed that intrinsic motivation will decrease because the
interpersonal relatedness need is not satisfied. As a result, to satisfy students’
psychological needs of close relationship, it is imperative for teachers to involve in
students’ learning process and provide more guidance regardless of plugged or
unplugged activity.

With respect to usefulness dimension, there is no difference between two
approaches as well. Applying computational thinking in diversified problem contexts
has been attracted attention for years. Some researchers argued that the uniqueness of
computational thinking lies in its potential to be applied in other types of reasoning
(Barr & Stephenson, 2011; Wing, 2006). In this study, some effort was put in
emphasizing the link between solving computational problems and tackling authentic
problems, leading to students’ enhanced awareness of the value and usefulness
computational thinking. To be more specific, a daily life scenario was usually depicted
in each lesson to illustrate the usefulness of computational thinking. For example, a
sprite watched a flashlight show in a park and would like to imitate the effect using
loops. By engaging in unplugged activity and plugged activity, students learnt the
computational concept and constructed a program to solve the computational problem.
In this way, they learnt the importance of using different approaches in understanding
and internalizing a computational concept. As a result, students showed their
willingness to continue to learn computational thinking in their future studies not only
because they improved their coding skills, but because learning to code was conducive
to solving daily life problems. Considering that people tend to become self-regulated if
they perceive some activities are valuable (Deci, Eghrari, Patrick, & Leone, 1994),
increasing students’ motivation requires more emphasis attached on the practical use
of computational thinking. Especially in mandatory course offered by schools where
some pupils could be less interested in programming, strengthening the idea of applying
computational thinking in other authentic contexts could be a solution to increase

motivation, for example, the application of computational thinking in robotics,
mathematics, etc.

5.3 Implication for developing computational thinking with mobile devices
Despite the promising overall results, some issues emerged in the study. On the one

hand, regarding the results of quantitative data, students’ responses to some items
revealed issues related to interpersonal relatedness needs. It is found that students were
not satisfied with the frequency and depth of teacher-student interaction despite
different learning approaches. On the other hand, there are different characteristics of
plugged and unplugged approach, which, we believe, makes it necessary to combine
two approaches to support learning. Commonly speaking, implementing the combined
approach requires physical movements carried out in an open space along with
programming activities on computers. This means that students need to move around
in classroom, which could cause inconvenience.

In light of the challenges, mobile learning could be a solution offering unique
affordance to support the development of computational thinking. Actually, mobile
assisted learning has been used in higher education and has been reported as effective
to motivating college students to learn programming (Shrestha, Moore, & Nocera,
2011). In the context of K-12, some efforts have also been put in developing
programming tools specifically for portable devices. As mentioned before, ScratchJr is
a graphical programming language available on the iPad focusing on the needs of
young learners ranging from kindergarten to second grade (Flannery et al., 2013). It
addresses the lack of technologies for children to learn programming on mobile devices.
For example, in the study conducted by Papadakis, Kalogiannakis, & Zaranis (2016),
after a 13-hour programming experience, the preschoolsers found ScratchJr especially
attractive. They participated in the programming activities with intrinsic interest due to
the game-based problem-solving feature of the tool. Mobile learning itself, therefore,
could be an efficient way to increase learning interest for computational problem
solving.

Moreover, mobile learning is often concerned with offering convenience
(Kynäslahti, 2003) and empowering social interactivity (Melhuish & Falloon, 2010).
Integrating mobile learning in computational thinking learning will free students from
moving between plugged and unplugged activities as portable device can easily be
carried by learners. This could address the challenge of moving around classroom when
combining unplugged approach and plugged approach that was identified in the
research. Also, given the insufficient teacher involvement in the present work, mobile
devices could be used to enhance teacher-student interaction though communication
tools. Another advantage that we can take of mobile devices is the possibility to do
diagnostic assessment. Besides students learning interest, how to assess the progress of
computational thinking is of importance (Shute, Sun, & Asbell-Clarke, 2017). Drawing
on the real-time communication characteristics of mobile devices, formative
assessment can be implemented multiple times to gain a precise picture of students’
thinking level.

Although there is still lack of studies investigating the effect of mobile learning on
learning computational thinking, the finding from this study could provide insights on
the potential of embedding mobile computing in learning and teaching.

6 Conclusion

The research made attempt to validate a revised IMI by testing two models with
regard to internal validity, reliability, and goodness-of-fit indices and sought to
understand to what extent primary school students are motivated to learn computational
thinking through programming and unplugged approach. The paper indicates desirable
reliability and validity of a revised Intrinsic Motivation Inventory for computational
thinking learning in the primary school setting to some extent except for the high
correlation between different dimensions. Besides, by comparing students’ motivation
to different approaches in learning computational concepts from four aspects, we found
that students are intrinsically motivated by activities specifically designed for them.
First, pupils find plugged and unplugged activities equally interesting and enjoyable.
Second, programming task helps students gain a higher sense of self-perceived
competence, which may be due to the learning procedure of the coding course in
addition to the different focuses of the two learning approaches. Third, regardless of
programming or unplugged activity, teacher involvement is a critical factor
contributing to satisfaction of students’ social needs. It is particularly important to
enhance teacher-student interaction as students feel distant to teachers in the present
study. Fourth, emphasis should be placed on helping students understand the usefulness
of learning computational thinking to solving other problems. Especially when the
learning content is demanding for novices, integrating authentic problems helps
students recognize the possible application of computational thinking and hence
become more self-regulating. In conclusion, the findings provide important
information on students’ perceptions of different learning activities, which sheds light
on the important factors to notice in developing intrinsically motivating activities for
computational thinking. This research also contribute to the body of knowledge
regarding the potential of combining unplugged with plugged approach in motivating
primary school students to learn computational concepts as well as solving
computational problems.

7 Limitation and Future Research

Limitation of this study includes that there is only quantitative data at this stage.
The discussions on the four aspects of students’ motivation are drawn from the
implementation of the coding course along with existing literatures. In response to this,
qualitative data will be collected in future study investigating: (1) students’
interpretation of the items in the instrument; (2) students’ in-depth perception of their
learning experience. Second, due to the school schedule, the instrument was
administered at the end of the coding course, instead of each learning activity. Although
we put instructions suggesting students completing the instrument while referring to
learning materials, short memory span of primary school students put an obstacle to
gain accurate information on students’ perception. Therefore, future research will try
to administer the instrument after each activity to have a better understanding. Third,
in order to compare the difference between programming activity and unplugged
activity, students needed to complete a questionnaire with two parts. Therefore, they
needed to recall two kinds of learning experiences at the same time. As a result, it could

lead to confusion on differentiating experiences with the two approaches. In future
research, the two parts could be completed in different time period to avoid interference.
Also, the items used in the instrument could be reduced and simplified to lighten
students’ burden in the processing of reading.

References:

Aggarwal, A., Gardner-McCune, C., & Touretzky, D. S. (2017). Evaluating the Effect
of Using Physical Manipulatives to Foster Computational Thinking in
Elementary School. Paper presented at the Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education, Seattle, WA.

Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial intelligence,
149(1), 91-130.

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is
Involved and what is the role of the computer science education community?
Acm Inroads, 2(1), 48-54.

Barsalou, L. W. (2008). Grounded cognition. Annu Rev Psychol, 59, 617-645.
doi:10.1146/annurev.psych.59.103006.093639

Bell, T., Alexander, J., Freeman, I., & Grimley, M. (2009). Computer science
unplugged: School students doing real computing without computers. The New
Zealand Journal of Applied Computing and Information Technology, 13(1), 20-
29.

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational
thinking and tinkering: Exploration of an early childhood robotics curriculum.
Computers & Education, 72, 145-157. doi:10.1016/j.compedu.2013.10.020

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the
development of computational thinking. Paper presented at the Proceedings of
the 2012 annual meeting of the American Educational Research Association,
Vancouver, Canada.

Burke, Q. (2012). The markings of a new pencil: Introducing programming-as-writing
in the middle school classroom. Journal of Media Literacy Education, 4(2),
121-135.

Calao, L., Moreno-León, J., Correa, H., & Robles, G. (2015). Developing mathematical
thinking with scratch: An experiment with sixth-grade students. In G. Conole,
T. Klobučar, C. Rensing, J. Konert, & E. Lavoué (Eds.), Design for teaching
and learning in a networked world (pp. 17–27). Cham: Springer.

Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017).
Assessing elementary students’ computational thinking in everyday reasoning
and robotics programming. Computers & Education, 109, 162-175.

Conde, M. Á., Fernández-Llamas, C., Rodríguez-Sedano, F. J., Guerrero-Higueras, Á.
M., Matellán-Olivera, V., & García-Peñalvo, F. J. (2017). Promoting
Computational Thinking in K-12 students by applying unplugged methods and
robotics. Paper presented at the Proceedings of the 5th International Conference
on Technological Ecosystems for Enhancing Multiculturality.

Daily, S. B., Leonard, A. E., Jörg, S., Babu, S., Gundersen, K., & Parmar, D. (2015).
Embodying computational thinking: Initial design of an emerging technological
learning tool. Technology, Knowledge and Learning, 20(1), 79-84.

Deci, E. L., Eghrari, H., Patrick, B. C., & Leone, D. (1994). Facilitating internalization:
The selfdetermination theory perspective. Journal of Personality, 62, 119-142.

Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-
determination in personality. Journal of research in personality, 19(2), 109-134.

Fadjo, C., Lu, M., & Black, J. B. (2009). Instructional embodiment and video game
programming in an after school program. Paper presented at the World
Conference on Educational Multimedia, Hypermedia and Telecommunications,
Chesapeake, VA.

Fonseca, A. M., & Paula Brito, A. D. (2012). Propriedades psicométricas da versão
portuguesa do Intrinsic Motivation Inventory (IMIp) em contextos de
actividade física e desportiva. Análise Psicológica, 19(1), 76.
doi:10.14417/ap.344

Fronza, I., & Gallo, D. (2016). Towards mobile assisted language learning based on
computational thinking. Lecture Notes in Computer Science (including Subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10013,
141-150.
Grover, S. (2011). Robotics and engineering for middle and high school students to

develop computational thinking. Paper presented at the annual meeting of the
American educational research association, New Orleans, LA.

Grover, S. (2017). Assessing Algorithmic and Computational Thinking in K-12:
Lessons from a Middle School Classroom. In P. J. Rich & C. B. Hodges (Eds.),
Emerging Research, Practice, and Policy on Computational Thinking (pp. 269-
288). Cham: Springer International Publishing.

Grover, S., & Pea, R. (2013). Computational Thinking in K–12 A Review of the State
of the Field. Educational Researcher, 42(1), 38-43.

Henderson, P. B., Cortina, T. J., & Wing, J. M. (2007). Computational thinking. Paper
presented at the ACM SIGCSE Bulletin.

ISTE. (2015). CT leadership toolkit. Retrieved from
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/471.11CTLea
dershiptToolkit-S.pdf

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi
Delta Kappan, 95(1), 61-65.

Kynäslahti, H. (2003). In search of elements of mobility in the context of education.
Mobile learning, 41-48.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human
Behavior, 41, 51-61.

Maloney, J., Resnick, M., Rusk, N., Silverman, B. and Eastmond, E. (2010) ‘The
scratch programming language and environment’, ACM Transactions on
Computing Education, Vol. 10, No. 4, pp.1–15.

McAuley, E., Duncan, T., & Tammen, V. V. (1989). Psychometric properties of the
Intrinsic Motivation Inventory in a competitive sport setting: A confirmatory
factor analysis. Research quarterly for exercise and sport, 60(1), 48-58.

Melhuish, K., & Falloon, G. (2010). Looking to the future: M-learning with the iPad.
Computers in New Zealand Schools: Learning, Leading, Technology, 22(3).
Retrieved from
http://education2x.otago.ac.nz/cinzs/mod/resource/view.php?id=114

Monteiro, V., Mata, L., & Peixoto, F. (2015). Intrinsic Motivation Inventory:
psychometric properties in the context of first language and mathematics
learning. Psicologia: Reflexão e Crítica, 28(3), 434-443. doi:10.1590/1678-
7153.201528302

National Research Council (NRC). (2012) A framework for k-12 science education:
practices, crosscutting concepts, and core ideas, Committee on a Conceptual
Framework for New k-12 Science Education Standards, The National
Academies Press, Washington, DC.

Nishida, T., Kanemune, S., Idosaka, Y., Namiki, M., Bell, T., & Kuno, Y. (2009). A CS
unplugged design pattern. Paper presented at the ACM SIGCSE Bulletin.

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental
programming concepts and computational thinking with ScratchJr in preschool
education: a case study. International Journal of Mobile Learning and
Organisation, 10(3), 187-202.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York,
NY: Basic Books.

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.
Psycharis, S. and Kallia, M. (2017) ‘The effects of computer programming on high

school students’ reasoning skills and mathematical self-efficacy and problem
solving’, Instructional Science, Vol. 45, No. 5, pp.583–602.

Psycharis, S., Kalovrektis, K., Sakellaridi, E., Korres, K., & Mastorodimos, D. (2018).
Unfolding the Curriculum: Physical Computing, Computational Thinking and
Computational Experiment in STEM’s Transdisciplinary Approach. European
Journal of Engineering Research and Science, (CIE), 19-24.

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which
cognitive abilities underlie computational thinking? Criterion validity of the
Computational Thinking Test. Computers in Human Behavior, 72, 678-691.
doi:10.1016/j.chb.2016.08.047

Ryan, R. M., & Deci, E. L. (2000a). Intrinsic and extrinsic motivations: classic
definitions and new directions. Contemporary Educational Psychology, 25(1),
54-67. doi:10.1006/ceps.1999.1020

Ryan, R. M., & Deci, E. L. (2000b). Self-determination theory and the facilitation of
intrinsic motivation, social development, and well-being. American
Psychologist, 55(1), 68-78. doi:10.1037/0003-066X.55.1.68

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating
computational thinking with K-12 science education using agent-based
computation: A theoretical framework. Education and Information
Technologies, 18(2), 351-380.

Shrestha, S., Moore, J., & Nocera, J. A. (2011). Evaluation of a hands-on approach to
learning mobile and embedded programming. International Journal of Mobile
Learning and Organisation, 5(3-4), 327-344.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational
thinking. Educational Research Review, 22, 142-158

Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: reciprocal effects
of teacher behavior and student engagement across the school year. Journal of
Educational Psychology, 85(4), 571-581. doi:10.1037/0022-0663.85.4.571

Tran, Y. (2018). Computational Thinking Equity in Elementary Classrooms: What
Third-Grade Students Know and Can Do. Journal of Educational Computing
Research, 073563311774391. doi:10.1177/0735633117743918

Tsai, M.-J., Wang, C.-Y., & Hsu, P.-F. (2018). Developing the Computer Programming
Self-Efficacy Scale for Computer Literacy Education. Journal of Educational
Computing Research, 0735633117746747.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking
in compulsory education: Towards an agenda for research and practice.
Education and Information Technologies, 20(4), 715-728.

Wilson, M. (2002). Six views of embodied cognition. Psychonomic bulletin & review,
9(4), 625-636.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-
35.

Wing, J. M. (2011). Computational thinking. Paper presented at the VL/HCC.
Witherspoon, E., Higashi, R., Schunn, C., Baehr, E., & Shoop, R. (2017). Developing

Computational Thinking through a Virtual Robotics Programming Curriculum.
ACM Transactions on Computing Education (TOCE), 18(1), 1-20.
doi:10.1145/3104982

