
Primary School Students’ Intrinsic Motivation to Plugged 
and Unplugged Approach to Develop Computational 
Thinking 
Abstract: This paper compared primary school students’ intrinsic motivation to plugged and unplugged approach 
to develop computational thinking using a revised Intrinsic Motivation Inventory. A total of 400 fourth-graders who 
have completed a school-provided coding course participated in the study. The revised instrument examined students’ 
motivation of the two learning approaches from four dimensions: interest, perceived competence, value, and 
relatedness. The main findings of the study are: (1) primary school students showed moderate to high motivation to 
learn computational thinking through both plugged and unplugged approach; (2) compared to unplugged approach, 
students gained higher perceived competence from plugged approach; (3) the revised Intrinsic Motivation Inventory 
has good psychometric properties in the context of computational thinking except for the close correlation among 
different dimensions. Finally, implications for developing computational thinking with mobile devices were 
proposed.  
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1 Introduction 

Since the seminal paper of Wing (2006), computational thinking has attracted 
increasingly attention from educators and researchers. Regardless of various 
interpretations, a consensus has been reached that computational thinking refers to the 
thought processes that formulate problem as well as its solution in a manner that can 
be processed by computer (Chen et al., 2017; Wing, 2011). Specifically, computational 
thinking in its essence entails problem solving ability and reasoning ability (Román-
González, Pérez-González, & Jiménez-Fernández, 2017). In addition to problem 
solving skill, developing computational thinking is also conducive to enhancing 
student’s creativity, algorithmic thinking, and the awareness of cooperation (ISTE, 
2015). Aligning with critical 21st century skills, computational thinking is also 
considered as a fundamental skill for every student. Particularly due to the demand for 
future workforce with computing skills, researchers and educators have argued the 
integral role of computational thinking in all STEM curriculum. In a special session of 
SIGCSE symposium, Henderson and colleagues (2007) argued that computational 
reasoning is key to STEM disciplines. Moreover, NRC (2012) pointed out in a 
framework for science education that using mathematical and computational thinking 
is one important component in engineering curriculum. In empirical studies, some 
researchers argued for the transdisciplinary approach of STEM epistemology by 
connecting computational thinking with physical computing in inquiry-based learning 
(Psycharis, Kalovrektis, Sakellaridi, Korres, & Mastorodimos, 2018).  These effort 
include integrating computational thinking with robotics engineering to facilitate K-12 
students’ thinking and computational problem solving ability (Bers, Flannery, Kazakoff, 
& Sullivan, 2014; Grover, 2011; Witherspoon, Higashi, Schunn, Baehr, & Shoop, 2017). 
Besides robotics, several studies embedding computational thinking in other STEM 
curriculums have showed the effectiveness of this approach in learning mathematical 
process (Calao et al., 2015), physics and biology (Sengupta et al., 2013). Hence, it is 
believed that developing children’s computational thinking could lay the foundation for 
engineering education and support learning in other disciplines. 

Generally, programming (plugged) and CS Unplugged (unplugged) are two 
common ways to help students develop computational thinking and learn 
computational concepts. The idea behind unplugged activities where bodily 
movements are stressed is embodied cognition. This approach highlights that children 
learn new knowledge through bodily actions and perceptual experiences (Anderson, 



 

2003), while the programming activity is rooted in constructionism which believes that 
learning is supported by creating personal artifact (Papert, 1980), such as digital games. 
Drawing on the theories of embodied cognition and constructionism, the design of 
plugged activity and unplugged activity often focuses on different aspects of learning 
experience, which may lead to different levels of intrinsic motivation to participate in 
an activity.   

However, there is still little understanding regarding the effective way to motivate 
computational thinking learning especially from the perspective of intrinsic motivation. 
Furthermore, there is lack of research investigating primary school students’ perception 
of the existing ways to learn computational thinking from the perspective of human 
innate psychological needs. Without attention to intrinsic motivation, students can have 
difficulties in persevering in learning as well as improving learning performance (Ryan 
& Deci, 2000b). In response, we attempt to address these issues by drawing on self-
determination theory. On the one hand, primary school students’ intrinsic motivation to 
develop computational thinking by plugged and unplugged approaches is assessed by 
a customized version of an existing instrument, Intrinsic Motivation Inventory (IMI) 
(McAuley, Duncan, & Tammen, 1989). On the other hand, the psychometric properties 
of IMI are reported to determine the appropriateness of the instrument in the new 
context. By investigating intrinsic motivation of primary school students, the present 
work will provide insights into the question of how to address computational thinking 
with children (Voogt, Fisser, Good, Mishra, & Yadavd, 2015) by accommodating age-
appropriate needs and interest.   

2  Constructionist and Embodied Approach to Computational Thinking 

 The term “computational thinking” is firstly put forward by Papert (1980), 
referring to procedural thinking. In Wing’s (2006) article, computational thinking was 
defined rigorously as using concepts in computer science to solve problem, design 
system, and understand human behavior, after which research related to computational 
thinking in K-12 educational context has gained much traction (Lye & Koh, 2014). 
Traditionally, programming is regarded as a gateway to computational thinking and 
therefore has occupied a critical position in computational thinking curriculum (Kafai 
& Burke, 2013). Papert’s (1980) Constructionism is an epistemological approach to 
teaching rooted in Constructivism. The two ideas share a central proposition: learning 
is constructing knowledge structure; nevertheless, constructionism stresses the 
importance of learner’s engagement in creating public entity consciously (Papert & 
Harel, 1991). Specifically, Papert considered child as creator and builder who “learn 
by doing” with the aid of computer programming. Constructionism provides a new 
angle of view that learners are empowered to interact with the fundamental ideas from 
science and express themselves while actively constructing the artifact that is 
meaningful to them through programming. Visual-based programming is dominant 
programming environment in K-12 educational context due to its easy-to-use drag-and-
drop features (Lye & Koh, 2014). Commonly used visual-based programming 
languages include Scratch, Alice, App Inventor, etc. It is reported that through doing 
programming, students enhanced computer science knowledge (Burke, 2012), problem 
solving skills (Chen et al., 2017), as well as transferrable skills (Grover, 2017). 
Researchers interested in examining the impact of programming on learners’ perception 
suggested that participating in programming  led to enhanced learning interest and 
enjoyment in various age groups (Tran, 2018) Furthermore, integrating computer 



    
 
 

   

   
 

   

   

 

   

       
 

programming into content knowledge, such as mathematics, was found to be effective 
in increasing students’ reasoning skills and self-efficacy (Psycharis & Kalia, 2017). 
More recently, drawing on the pervasiveness of mobile devices, innovative 
programming environments was created for preschool children to familiarize 
themselves with computational thinking, such as ScrtachJr. For example, a mixed-
method study examined the effects of SctrachJr on kindergarten children’s learning of 
computational concepts. The findings suggested that mobile assisted learning was 
effective and interesting even for kindergarteners (Papadakis, Kalogiannakis, & 
Zaranis, 2016). Acknowledge that developing computational thinking with mobile 
devices could take place without learning programming. For instance, a mobile 
application was designed by Fronza and Gallo (2016) to assist language learning along 
with computational thinking development. The application provided diagnostic 
assessments which could be useful to learners and teachers. 

Apart from learning by programming, there exist another different approach to 
introduce students to computational thinking, which is related to embodied approach. 
Computer Science Unplugged is a series of activities used to help novices to learn 
computer science concepts in the absence of real computer (Bell, Alexander, Freeman, 
& Grimley, 2009), and thus keeping them from programming (Grover & Pea, 2013). 
The fundamental idea of unplugged activity is in line with embodied cognition that 
advocates cognitive process is highly related to sensorimotor experience (e.g. sight, 
touch, bodily movement) and outside environment (e.g. physical manipulative) 
(Anderson, 2003; Barsalou, 2008; Wilson, 2002). It means perceptual and motor 
experiences, such as using physical manipulatives in unplugged activity, impact 
learner’s cognition and thus appropriate use of embodiment in instruction could be 
beneficial to learning. Actually, one of the major features of CS Unplugged activity is 
kinesthetic, which means physical objects (e.g. cards, weights) are usually used to 
replace computer (Nishida et al., 2009). Seeing the potential of embodied cognition and 
physical computing, researchers have made attempts to apply  them to teach 
computational thinking. For example, a model which connected computational 
thinking and physical computing in inquiry-based activities was proposed to engage 
college students in STEM epistemology. According to the researchers, the model may 
have the potential to increase students’ self-efficacy and internal motivation (Psycharis, 
Kalovrektis, Sakellaridi, Korres, & Mastorodimos, 2018). In addition, in an up-to-date 
research, Aggarwal, Gardner-McCune, and Touretzky (2017) used tiles and flashcards 
designed for Microsoft Kodu to introduce primary students to basic program called 
“Pursue and Consume” after school. The treatment group was given tiles and flashcards 
which allow manipulation by students, while controlled group was provided with a 
single paper with programming rules printed on it. For treatment group, learning, 
therefore, is grounded in sensory-motor experience due to the use of manipulatives and 
physical movement. Similarly, other researchers who tried to apply embodied approach 
in teaching computational thinking have found that pupils enjoyed the unplugged 
learning experience (Daily et al., 2015), and outperformed other students who learnt 
computational concepts by coding (Fadjo, Lu, & Black, 2009). In general, embodied 
approach seems to be particularly helpful for young children to get familiar with 
computational concepts (Bell et al., 2009; Conde et al., 2017) in the absence of digital 
devices.  



 

Drawing on the theories of embodied cognition and constructionism, the design of 
plugged activity and unplugged activity often focuses on different aspects of children’s 
learning experience. Plugged approach allows children to explore and create artifacts 
in front of a computer whereas unplugged activity often engages students in group work 
with bodily movements. Therefore, different learning experiences may lead to different 
levels of intrinsic motivation that drives children to participate in an activity 
autonomously. For example, some students may find writing programs interesting 
while other enjoy learning with tangible tools. Regarding interpersonal relatedness 
needs, unplugged approach may provide more opportunities for students to interact 
with peers whereas programming entails more teacher guidance to help students write 
a correct program. In self-determination theory, whether these aspects are satisfied 
could influence individual’s subjective understanding of a particular activity and 
further influence intrinsic motivation. In addition, being intrinsically motivated is 
extremely important to learning since it reflects inherent tendency to accomplish a task, 
such as learning new knowledge. In fact, it is suggested that intrinsic motivation leads 
to higher learning performance and longer persistence (Ryan & Deci, 2000b). Hence, 
it is critical to understand and compare students’ motivation of constructionist and 
embodied approach so as to better design the motivating learning activities for 
computational thinking.  

Two measures are mostly used when intrinsic motivation is considered as 
dependent variable. First, behavioral measurement refers to participant’s free choice in 
an experiment where the individual has the autonomy to do target activity or other 
distractive activity. The second measurement can be conducted through self-report 
instrument designed specifically to test individual’s intrinsic motivation. For example, 
IMI is a report firstly validated by McAuley and colleagues (1989) based on self-
determination theory. Besides students’ enjoyment, the instrument also includes several 
dimensions regarding human psychological needs (e.g. relatedness, competence, 
autonomy) to gain a comprehensive picture of how students perceive a learning activity. 
As a result, this study revised and adopted the instrument to probe into the following 
research questions: (1) What is the psychometric properties of Intrinsic Motivation 
Inventory in the context of computational thinking learning? (2) Are students more 
intrinsically motivated to learn computational thinking by plugged and unplugged 
approach?  

3  Method 

3.1 Sample  
The present study targeted five government funded primary schools in Hong Kong. 

400 fourth-graders whose age range from 9 to 11 took part in the research. These 
students have completed a same six-week coding course in which programming and 
unplugged activities are incorporated to expose the students to basic computational 
concepts. Prior to the present study, students had no experience in coding in general. 
Therefore, all participants have the similar experience with coding and unplugged 
activity. However, to ensure the quality of data, 180 students’ responses are excluded 
from analysis due to two reasons: (1) obvious patterns were identified in the response; 
(2) random filled answers were found (e.g. a majority of items in the instrument were 
filled in with the same choices). As a result, a total of 220 responses were analyzed.  



    
 
 

   

   
 

   

   

 

   

       
 

3.2 Procedure  
All participants were required to complete a coding course in which plugged and 

unplugged activities were integrated. In the coding course, students learnt 
computational concepts through unplugged activities and then created computational 
artifacts by engaging in programming tasks. Figure 1 shows the activities that were 
used to teach and apply the idea of “sequencing”. In unplugged activity on the left side, 
students used pen and paper to draw a route between the starting point and the 
destination at the beginning. Then teachers guided students to simulate the scenario by 
moving around on the floor in order to understand “sequencing”. The corresponding 
plugged activity on the right side required students to demonstrate “sequencing” by 
constructing a program in Scratch to manipulate the green sprite to reach the cat. In this 
regard, applying embodied learning before constructionist approach made it possible 
for students to learn the computational concepts first and internalize knowledge after. 
After completion of the coding course, a revised IMI was distributed to students either 
in the form of paper-based questionnaire or online survey. To ensure the quality of data, 
a check on all students’ responses was conducted.  

 
Figure 1 Example of unplugged (left) and plugged (right) activity  

3.3 Instrument  
All participants were given a survey which was adapted from IMI to measure their 

intrinsic motivation in programming activity and unplugged activity. The survey was a 
five Likert scale where strongly disagree=1, disagree=2, neither disagree or agree=3, 
agree=4, strongly agree=5. IMI is a generic instrument, meaning that it can be modified 
slightly to fit specific activities. Hence, to make a comparison between plugged and 
unplugged approaches to learn computational thinking, the survey was grouped into 
two parts (part A: programming; part B: unplugged) with the same statements in each 
part. Originally, there are seven dimensions in IMI covering respondents’ self-efficacy, 
affective tendency (e.g. enjoyment, pressure), perception of the activity (e.g. usefulness, 
choice, interaction). However, it is worth noting that only four dimensions applicable 
to students’ coding experiences were used in the present study, namely 
interest/enjoyment (Int) (e.g. part A “I enjoy doing programming activities very much”, 
part B “I enjoy doing unplugged activities very much”), perceived competence (PC) 
(e.g. part A “I think I am good at programming”, part B“I think I am good at unplugged 
activities”), value/usefulness (Use) (e.g. part A “I believe doing programming could be 



 

beneficial to me”, part B “I believe doing unplugged activities could be beneficial to 
me”), and relatedness (Rel) (e.g. part A “I’d like a chance to interact with my teacher 
more often in programming activities”, part B “I’d like a chance to interact with my 
teacher more often in unplugged activities”), resulting in 14 items in each part. A total 
of 28 items form the revised IMI. While there is no specific item directly addressing 
students’ perception of computational thinking per se, the instrument examines how 
they perceive the learning experiences in developing computational thinking through 
the two approaches.  

Having taking into account of the participants’ English skill and reading ability, the 
researchers translated the instrument from English into traditional Chinese. Firstly, it 
was interpreted to Chinese by one main researcher with a careful consideration of 
participants’ reading ability. Four experts in computational thinking, including one 
local researcher, were involved in the subsequent stage to confirm the wordings of the 
instrument were clear and understandable. In the last stage, one teacher who taught the 
six-hour coding course was asked to comment on the instrument. The main researcher 
made modification to the instrument based on the comments and suggestions.         

3.4 Data analysis  
To validate the instrument in the new context, internal reliability and convergent 

validity were tested. Previous studies investigating the psychometric properties of IMI 
have reported that the adequacy of models varied from different contexts. For example, 
multi-factor model was adequate in sports setting (McAuley et al., 1989), while bi-
factor model was good description of IMI in mathematics and language learning 
(Monteiro, Mata, & Peixoto, 2015). Hence, confirmatory factor analysis (CFA) were 
conducted using R package lavaan to test two models: single factor, multifactor. One 
thing worth mentioning is that students’ responses to the two learning approaches were 
analyzed separately to have a more precise understanding of the psychometric 
properties of the instrument.  

In addition to validation process, data were analyzed in SPSS 24.0 using standard 
techniques of descriptive statistics and inferential statistics. For inferential statistics, 
paired samples t-test was conducted to compare whether there is significant difference 
between students’ motivation of plugged approach and unplugged approach.  

4 Results 

4.1 Psychometric properties of revised IMI 
Average variance extracted (AVE), composite reliability, and Cronbach’s α of both 

models were calculated to examine the instrument’s convergent validity and internal 
reliability (Table 1). Cronbach’s α for both sets of data exceeded the common threshold 
of 0.70, indicating that the modified IMI had a desirable internal consistency. The 
composite reliability was 0.948 and 0.932 for two sets of data respectively, which was 
much higher than the recommended value. AVE for programming activity was 0.497 
which was slightly lower than common threshold of 0.5. To improve convergent 
validity, measurement error variance of each item was examined. Item with largest 
measurement error was item 11 (“While I was programming, I was thinking about how 
much I enjoyed it”) from interest/enjoyment construct. Hence, item 11 was excluded to 
improve AVE. Then, the AVE of remaining items was tested again. The result was 
improved to 0.509 which satisfied the recommend threshold.  



    
 
 

   

   
 

   

   

 

   

       
 

Table 1 Convergent validity and internal reliability 

 
Programming CS Unplugged 

Single 
factor Multifactor Single 

factor Multifactor 

AVE 
0.497 0.537 0.567 0.595 

Composite 
reliability 

0.948 0.932 0.932 0.948 

Cronbach’s α 0.948 0.938 0.932 0.952 

Discriminant validity is a measure testing whether constructs are distinct from each 
other. Table 2 presents the correlation matrix of the instrument, which showed 
unsatisfying discriminant validity. All off-diagonal coefficients were greater than 0.8, 
suggesting high correlation among different constructs. In other words, there was no 
clear distinction among the four constructs. 

Table 2 Correlation matrix 
 PC Int Use Rel 

PC 
1.000    

Int 0.888 1.000   

Use 0.854 0.898 1.000  

Rel 0.947 0.954 0.973 1.000 

The goodness-of-fit indices for single factor model in addition to multifactor model 
are tested. All the goodness-of-fit indices satisfied their correspondingly recommended 
value, indicating that both models had a good fit (Table 3). To be more specific, the 
multifactor model showed better model fit as all goodness-of-fit indices satisfied their 
criteria to a greater extent.  

Table 3 Fit indices for two models 

 Single 
Factor Multifactor Recommended 

Value 
Chi-square/degree 
of freedom(χ2/df) 

2.32 1.96 < 3 

SRMR 0.045 0.039 < 0.08 

RMSEA 0.080 0.070 < 0.08 

CFI 0.931 0.954 > 0.9 

TLI 0.919 0.941 > 0.9 

GFI 0.890 0.912 > 0.8 

AGFI 0.849 0.869 > 0.8 

4.2 Comparison between plugged and unplugged activities 
The average score of all items in the revised IMI for programming and unplugged 

approach was 3.88 and 3.74, which indicated moderate to high level of intrinsic 
motivation of students. When looking into the four dimensions respectively, the 
average scores of both learning approaches were above the mid-point, meaning that 
students showed positive perception with respect to their enjoyment, self-efficacy, as 
well as the affordances of the two learning approaches, including usefulness and 
opportunity for interaction.  



 

Notwithstanding the slightly lower mean scores of unplugged activities, the only 
statistically significant difference was found in PC (p<.001). With regard to other 
dimension: P value was .454 for Int dimension, .119 for Use dimension, .114 for Rel 
dimension. This indicated that students gained higher perceived competence from 
programming activity. Table 4 presents the comparison of plugged and unplugged 
approach.  

Table 4 Comparison between plugged and unplugged approach 

 
Programming CS Unplugged P 

Mean SD Mean SD 

PC 
3.99 0.88 3.70 1.01 <.001 

Int 3.81 0.96 3.76 1.04 .454 

Use 3.89 0.91 3.77 0.99 .119 

Rel 3.83 0.88 3.70 0.97 .114 

5 Discussion 

In this paper, we reported the findings of a pilot study that focusing on evaluating 
psychometric properties of revised IMI in the context of computational thinking and 
making comparison between primary school students’ intrinsic motivation to plugged 
and unplugged approach.  

5.1 Psychometric properties of revised IMI  
The first aim of this research is to analyze the features of a modified version of 

Intrinsic Motivation Inventory, including validity, reliability, and internal structure. 
Therefore, this research made attempt to test the characteristics of single factor model 
and multifactor model. The results gained in the factor analysis revealed that both 
models (single factor and multifactor) fitted in with the study. In general, the instrument 
has desirable reliability and validity, except for the divergent validity which measures 
whether a dimension is distinct from others. This suggested the existence of intrinsic 
motivation as one general factor, which is consistent with previous study (Monteiro et 
al., 2015). Therefore, it can be concluded that the revised IMI was measuring 
respondents’ intrinsic motivation in computational thinking learning. From the other 
hand, the high correlations among different dimensions were not commonly found in 
other researches where the instrument was used, the only exception was a study 
conducted by Fonseca and Paula Brito (2012) to assess students’ attitude toward 
information technology. Three constructs in the questionnaire aligned with IMI, which 
were confidence, interest, and usefulness. Similarly, the three constructs were found 
highly correlated in this study. One possible interpretation for the analogous results is 
that children and even adolescents have difficulties in responding questionnaire that 
involves value, attitude, and belief, especially when the contents are not explicitly 
developed for their age groups. In conclusion, the revised IMI is a reliable instrument 
to measure children’s intrinsic motivation of different learning approaches to learn 
computational thinking. Nevertheless, it still calls for further study and revision to 
address the high correlation among different dimensions.  

5.2 Intrinsic motivation to plugged and unplugged approach 
This section discusses on students’ motivation from four aspects being measured in 

IMI. First, based on the overall results, students showed moderate to high intrinsic 



    
 
 

   

   
 

   

   

 

   

       
 

motivation to develop computational thinking through both programming activity and 
unplugged activity. The theoretical ground of IMI is self-determination theory whose 
fundamental argument is that individual’s enjoyment gained from participating in an 
activity generates intrinsic motivation (Deci & Ryan, 1985). Therefore, 
interest/enjoyment dimension is the only direct measure of intrinsic motivation in IMI. 
Since there is no significant difference between students’ interest level, it indicated that 
plugged and unplugged activities have the equal potential to arouse pupils’ learning 
interest. Two reasons might account for the reasons of students’ learning interest in 
programming activities. First, programming empowered students to construct artifacts 
that reflect their inner feelings and ideas. It means students were able to express 
themselves through making digital game or scenario they care about (Brennan & 
Resnick, 2012). Moreover, Scratch is a “low threshold, high ceiling” tool characterized 
by abundant materials and easy-to-use interface (Maloney et al., 2010), which could 
naturally increase students interest. With respect to unplugged activities, it provided 
opportunities for students to get familiar with abstract computational concepts through 
interacting with concrete objects. This method freed students from constructing 
programs on computer. In light of the characteristics, young children were likely to feel 
more engaged in unplugged games and increase their interest through manipulating 
simple tools and implementing physical actions (Nishida et al., 2009). Hence, despite 
the different focuses, both constructionist and embodied approach succeeded in 
ensuring attractiveness to children.    

Further, of equal importance to intrinsic motivation are human psychological needs, 
including self-efficacy, and social needs (Ryan & Deci, 2000a), mapping on the 
dimension of perceived competence and relatedness respectively. Particular attention 
should be paid to students’ perceived competence as they showed statistically 
significant higher sense of mastery after programming activities, compared to 
unplugged activities. In fact, coding experience and students’ self-efficacy has long 
been noticed in computer science education. Positive correlation between programming 
experience and students’ confidence was reported in previous literature (Tsai, Wang, & 
Hsu, 2018), suggesting that increasing programming experience could lead to enhanced 
self-efficacy. Similar results in the present research revealed the importance of plugged 
approach in improving students’ perceived competence as well. This could be 
explained by two reasons: the design of learning procedure of the coding course; the 
different characteristics of plugged approach and unplugged approach.  

In the coding course, students progressed through learning computational concepts 
to creating computational artifacts by engaging in unplugged activities and 
programming tasks. This means that the major goal of unplugged activities was to 
introduce students to basic computing concepts, e.g. sequencing, loop, etc. In contrast, 
programming tasks were designed to provide opportunities for applying and 
internalizing the concepts in the process of creating personal digital products. Due to 
the course design, when recalling the programming experience, students were likely to 
refer to the whole learning procedure which started from learning concepts to 
constructing artifacts. As a result, it could contribute to higher perceived competence, 
compared to unplugged learning approach only. Furthermore, programming as a way 
to learn knowledge empowers learners to construct personal meaningful artifacts 
(Papert, 1980). It highlights the centrality of actively creating digital products in 



 

constructing new knowledge, such as animation and games in the coding course. 
Plugged approach, therefore, makes it possible for students to see the actual outcomes 
of learning. Hence, learners consider themselves as creator rather than passive receiver 
of knowledge. However, unplugged activities only help students learn fundamental 
principles and ideas from computer science through manipulating non-digital tools. It 
is possible to understand that students are unable to gain a sense of competence through 
visible outcomes because they play the role of consumers of these existing tools and 
tasks instead of creators. In these regards, students in the study gained higher sense of 
mastery from plugged approach, probably due to the learning design of the coding 
course and different focuses of learning approaches.   

Regarding the social aspect of psychological needs, plugged and unplugged 
approach were considered equally in fulfilling primary school students’ needs for 
student-teacher interaction. Specifically, the average score to item “I feel close to my 
teacher” was low compared with other statements, which was a direct indicator of 
distant teacher-student relationship. From student’ perspective, it can be inferred that 
teachers did not engage with students sufficiently regardless of plugged or unplugged 
activity, although some opportunities were provided. In addition, the item “I’d like to 
interact with teachers more often” received a high score, meaning that students actually 
required higher level teacher involvement. In fact, in a study involving primary school 
students, Skinner and Belmont (1993) reported that teacher involvement would directly 
impact how students perceive teacher-student relationship. It means that inadequate 
teacher involvement could have a negative influence on relationship between teacher 
and student. Moreover, it is believed that intrinsic motivation will decrease because the 
interpersonal relatedness need is not satisfied. As a result, to satisfy students’ 
psychological needs of close relationship, it is imperative for teachers to involve in 
students’ learning process and provide more guidance regardless of plugged or 
unplugged activity. 

With respect to usefulness dimension, there is no difference between two 
approaches as well. Applying computational thinking in diversified problem contexts 
has been attracted attention for years. Some researchers argued that the uniqueness of 
computational thinking lies in its potential to be applied in other types of reasoning 
(Barr & Stephenson, 2011; Wing, 2006). In this study, some effort was put in 
emphasizing the link between solving computational problems and tackling authentic 
problems, leading to students’ enhanced awareness of the value and usefulness 
computational thinking. To be more specific, a daily life scenario was usually depicted 
in each lesson to illustrate the usefulness of computational thinking. For example, a 
sprite watched a flashlight show in a park and would like to imitate the effect using 
loops. By engaging in unplugged activity and plugged activity, students learnt the 
computational concept and constructed a program to solve the computational problem. 
In this way, they learnt the importance of using different approaches in understanding 
and internalizing a computational concept. As a result, students showed their 
willingness to continue to learn computational thinking in their future studies not only 
because they improved their coding skills, but because learning to code was conducive 
to solving daily life problems. Considering that people tend to become self-regulated if 
they perceive some activities are valuable (Deci, Eghrari, Patrick, & Leone, 1994), 
increasing students’ motivation requires more emphasis attached on the practical use 
of computational thinking. Especially in mandatory course offered by schools where 
some pupils could be less interested in programming, strengthening the idea of applying 
computational thinking in other authentic contexts could be a solution to increase 



    
 
 

   

   
 

   

   

 

   

       
 

motivation, for example, the application of computational thinking in robotics, 
mathematics, etc.    

5.3 Implication  for developing computational thinking with mobile  devices  
Despite the promising overall results, some issues emerged in the study. On the one 

hand, regarding the results of quantitative data, students’ responses to some items 
revealed issues related to interpersonal relatedness needs. It is found that students were 
not satisfied with the frequency and depth of teacher-student interaction despite 
different learning approaches. On the other hand, there are different characteristics of 
plugged and unplugged approach, which, we believe, makes it necessary to combine 
two approaches to support learning. Commonly speaking, implementing the combined 
approach requires physical movements carried out in an open space along with 
programming activities on computers. This means that students need to move around 
in classroom, which could cause inconvenience. 

In light of the challenges, mobile learning could be a solution offering unique 
affordance to support the development of computational thinking. Actually, mobile 
assisted learning has been used in higher education and has been reported as effective 
to motivating college students to learn programming (Shrestha, Moore, & Nocera, 
2011). In the context of K-12, some efforts have also been put in developing 
programming tools specifically for portable devices. As mentioned before, ScratchJr is 
a graphical programming language available on the iPad focusing on the needs of 
young learners ranging from kindergarten to second grade (Flannery et al., 2013). It 
addresses the lack of technologies for children to learn programming on mobile devices. 
For example, in the study conducted by Papadakis, Kalogiannakis, & Zaranis (2016), 
after a 13-hour programming experience, the preschoolsers found ScratchJr especially 
attractive. They participated in the programming activities with intrinsic interest due to 
the game-based problem-solving feature of the tool. Mobile learning itself, therefore, 
could be an efficient way to increase learning interest for computational problem 
solving.  

Moreover, mobile learning is often concerned with offering convenience 
(Kynäslahti, 2003) and empowering social interactivity (Melhuish & Falloon, 2010). 
Integrating mobile learning in computational thinking learning will free students from 
moving  between plugged and unplugged activities as portable device can easily be 
carried by learners. This could address the challenge of moving around classroom when 
combining unplugged approach and plugged approach that was identified in the 
research. Also, given the insufficient teacher involvement in the present work, mobile 
devices could be used to enhance teacher-student interaction though communication 
tools.  Another advantage that we can take of mobile devices is the possibility to do 
diagnostic assessment. Besides students learning interest, how to assess the progress of 
computational thinking is of importance (Shute, Sun, & Asbell-Clarke, 2017). Drawing 
on the real-time communication characteristics of mobile devices, formative 
assessment can be implemented multiple times to gain a precise picture of students’ 
thinking level.   



 

Although there is still lack of studies investigating the effect of mobile learning on 
learning computational thinking, the finding from this study could provide insights on 
the potential of embedding mobile computing in learning and teaching.  

6 Conclusion 

The research made attempt to validate a revised IMI by testing two models with 
regard to internal validity, reliability, and goodness-of-fit indices and sought to 
understand to what extent primary school students are motivated to learn computational 
thinking through programming and unplugged approach. The paper indicates desirable 
reliability and validity of a revised Intrinsic Motivation Inventory for computational 
thinking learning in the primary school setting to some extent except for the high 
correlation between different dimensions. Besides, by comparing students’ motivation 
to different approaches in learning computational concepts from four aspects, we found 
that students are intrinsically motivated by activities specifically designed for them. 
First, pupils find plugged and unplugged activities equally interesting and enjoyable. 
Second, programming task helps students gain a higher sense of self-perceived 
competence, which may be due to the learning procedure of the coding course in 
addition to the different focuses of the two learning approaches. Third, regardless of 
programming or unplugged activity, teacher involvement is a critical factor 
contributing to satisfaction of students’ social needs. It is particularly important to 
enhance teacher-student interaction as students feel distant to teachers in the present 
study. Fourth, emphasis should be placed on helping students understand the usefulness 
of learning computational thinking to solving other problems. Especially when the 
learning content is demanding for novices, integrating authentic problems helps 
students recognize the possible application of computational thinking and hence 
become more self-regulating. In conclusion, the findings provide important 
information on students’ perceptions of different learning activities, which sheds light 
on the important factors to notice in developing intrinsically motivating activities for 
computational thinking. This research also contribute to the body of knowledge 
regarding the potential of combining unplugged with plugged approach in motivating 
primary school students to learn computational concepts as well as solving 
computational problems.  

7 Limitation and Future Research 

Limitation of this study includes that there is only quantitative data at this stage. 
The discussions on the four aspects of students’ motivation are drawn from the 
implementation of the coding course along with existing literatures. In response to this, 
qualitative data will be collected in future study investigating: (1) students’ 
interpretation of the items in the instrument; (2) students’ in-depth perception of their 
learning experience. Second, due to the school schedule, the instrument was 
administered at the end of the coding course, instead of each learning activity. Although 
we put instructions suggesting students completing the instrument while referring to 
learning materials, short memory span of primary school students put an obstacle to 
gain accurate information on students’ perception. Therefore, future research will try 
to administer the instrument after each activity to have a better understanding. Third, 
in order to compare the difference between programming activity and unplugged 
activity, students needed to complete a questionnaire with two parts. Therefore, they 
needed to recall two kinds of learning experiences at the same time. As a result, it could 



    
 
 

   

   
 

   

   

 

   

       
 

lead to confusion on differentiating experiences with the two approaches. In future 
research, the two parts could be completed in different time period to avoid interference. 
Also, the items used in the instrument could be reduced and simplified to lighten 
students’ burden in the processing of reading. 
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