<table>
<thead>
<tr>
<th>Title</th>
<th>Search for High-Mass Resonances Decaying to $\tau \nu$ in pp Collisions at $s = 13$ TeV with the ATLAS Detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>LO, CY; Orlando, N; Tu, Y</td>
</tr>
<tr>
<td>Citation</td>
<td>Physical Review Letters, 2018, v. 120 n. 16, p. 161802:1-161802:20</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2018</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/253483</td>
</tr>
<tr>
<td>Rights</td>
<td>Physical Review Letters. Copyright © American Physical Society.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Search for High-Mass Resonances Decaying to $\tau\nu$ in pp Collisions at $\sqrt{s}=13$ TeV with the ATLAS Detector

M. Aaboud et al.*
(OctAS Collaboration)

(Received 22 January 2018; published 20 April 2018)

A search for high-mass resonances decaying to $\tau\nu$ using proton-proton collisions at $\sqrt{s} = 13$ TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible $\tau\nu$ production cross section. Heavy W' bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal $G(221)$ model are excluded at the 95% credibility level.

DOI: 10.1103/PhysRevLett.120.161802

Heavy charged gauge bosons (W') appear frequently in theories of physics beyond the standard model (SM). They are often assumed to obey lepton universality, such as in the sequential standard model (SSM) [1], which predicts a W'_{SSM} boson with couplings identical to those of the SM W boson. However, this assumption is not required. In particular, models in which the W' boson couples preferentially to third-generation fermions may be linked to the high mass of the top quark [2–5] or to recent indications of lepton flavor universality violation in B meson decays [6,7]. An example is the nonuniversal $G(221)$ model (NU) [4,5], which exhibits a $SU(2)_L \times SU(2)_R \times U(1)$ gauge symmetry, where $SU(2)_L$ couples to light fermions (first two generations), $SU(2)_R$ couples to heavy fermions (third generation), and ϕ_{NU} is the mixing angle between them. The model predicts W'_{NU} and Z'_{NU} bosons which are approximately degenerate in mass and couple only to left-handed fermions. At leading order and neglecting sign, the W'_{NU} couplings to heavy (light) fermions are scaled by $\cot \phi_{\text{NU}}$ ($\tan \phi_{\text{NU}}$) relative to those of W_{SSM}. Thus $\cot \phi_{\text{NU}} > 1$ corresponds to enhanced couplings to tau leptons while $\cot \phi_{\text{NU}} = 1$ yields W'_{NU} couplings identical to those of W_{SSM}. For Z'_{NU}, the coupling to heavy (light) fermions is given by $g \cot \phi_{\text{NU}}$ ($g \tan \phi_{\text{NU}}$), where g is the SM weak coupling constant. At high values of $\cot \phi_{\text{NU}}$, the branching fraction of W'_{NU} to a tau lepton (τ) and a neutrino (ν) approaches 26%.

In this Letter, a search for high-mass resonances (0.5–5 TeV) decaying to $\tau\nu$ using proton-proton (pp) collisions at a center-of-mass energy of $\sqrt{s} = 13$ TeV produced by the Large Hadron Collider (LHC) is presented. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb$^{-1}$. Only τ decays with hadrons in the final state are considered; these account for 65% of the total τ branching fraction. A counting experiment is performed from events that pass a high transverse-mass threshold, optimized separately for each of the signal mass hypotheses.

The search excludes W'_{SSM} with a mass below 2.7 TeV at the 95% credibility level and W'_{NU} with a mass below 2.7–2.0 TeV for $\cot \phi_{\text{NU}}$ in the range 1.0–5.5. The most stringent limit on W''_{SSM} from searches in the $e\nu$ and $\mu\nu$ final states is 5.1 TeV from ATLAS [9] using 36.1 fb$^{-1}$ of integrated luminosity at $\sqrt{s} = 13$ TeV.

The ATLAS experiment is a multipurpose particle detector with a forward-backward symmetric cylindrical geometry [10,11]. It consists of an inner detector for charged-particle tracking in the pseudorapidity region $|\eta| < 2.5$, electromagnetic and hadronic calorimeters that provide energy measurements up to $|\eta| = 4.9$, and a muon spectrometer that covers $|\eta| < 2.7$. A two-level trigger system is used to select events [12].

Hadronic τ decays are composed of a neutrino and a set of visible decay products ($\tau_{\text{had-vis}}$), typically one or three charged pions and up to two neutral pions. The reconstruction of the visible decay products [13] is seeded by jets reconstructed from topological clusters of energy depositions [14] in the calorimeter. The $\tau_{\text{had-vis}}$ candidates must have a transverse momentum $p_T > 50$ GeV, $|\eta| < 2.4$.
(excluding 1.37 < |η| < 1.52), one or three associated tracks, and an electric charge of ±1. Only the candidate with the highest \(p_T \) in each event is selected. Hadronic \(\tau \) decays are identified using boosted decision trees that exploit calorimetric shower shape and tracking information [15,16]. Loose criteria are used, which offer adequate rejection against quark- and gluon-initiated jets. Very loose criteria, with about one quarter of the rejection power, are used to create control regions. An additional dedicated veto is used to reduce the number of electrons misidentified as \(\tau_{\text{had-vis}} \). The total efficiency for \(\tau_{\text{had-vis}} \) is \(\sim \)60\% at \(p_T = 100 \text{ GeV} \) and decreases to \(\sim 30\% \) at \(p_T = 2 \text{ TeV} \), where the large boost and collimation of the decay products causes inefficiencies in the track reconstruction and association.

Events containing electron or muon candidates are rejected. Electron candidates [17–19] must have \(p_T > 20 \text{ GeV} \), \(|\eta| < 2.47\) (excluding 1.37 < |η| < 1.52) and must pass a loose likelihood-based identification selection. Muon candidates [20] are required to have \(p_T > 20 \text{ GeV} \), \(|\eta| < 2.5\) and to pass a very loose muon identification requirement. The missing transverse momentum, with magnitude \(E_T^{\text{miss}} \), is calculated as the negative vectorial sum of the \(p_T \) of all reconstructed and calibrated \(\tau_{\text{had-vis}} \) candidates and jets [21–23]. A correction that accounts for momentum not associated with these reconstructed objects is calculated using inner-detector tracks that originate from the hard-scattering vertex [23]. The correction contributes no more than 5\% on average in signal events.

Events are selected by triggers that require \(E_T^{\text{miss}} \) above thresholds of 70, 90, or 110 GeV depending on the data-taking period. To minimize uncertainties in the trigger efficiency, the offline reconstructed \(E_T^{\text{miss}} \) is required to be at least 150 GeV. At this threshold the trigger efficiency is 80\% and increases to more than 98\% above 250 GeV. This behavior is determined by the \(E_T^{\text{miss}} \) resolution of the trigger, which is lower than in the offline reconstruction. The events must satisfy criteria designed to reduce backgrounds from cosmic rays, single-beam-induced events and calorimeter noise [24] and they must contain a loose \(\tau_{\text{had-vis}} \) candidate. To further suppress single-beam-induced background, the \(\tau_{\text{had-vis}} \) must have at least one associated track with \(p_T > 10 \text{ GeV} \). The multijet background is further suppressed by requiring that the \(\tau_{\text{had-vis}} \) \(p_T \) and the \(E_T^{\text{miss}} \) are balanced: \(0.7 < p_T^\tau / E_T^{\text{miss}} < 1.3 \). The azimuthal angle between the \(\tau_{\text{had-vis}} \) and the missing momentum, \(\Delta \phi \), is required to be larger than 2.4. Finally, thresholds ranging from 0.25 to 1.8 TeV in steps of 0.05 TeV are placed on the transverse mass, \(m_T \), where \(m_T^2 = 2p_T^\tau E_T^{\text{miss}}(1 - \cos \Delta \phi) \).

The background is divided into events where the selected \(\tau_{\text{had-vis}} \) originates from a quark- or gluon-initiated jet (jet background) and those where it does not (nonjet background). The jet background originates primarily from \(W/Z + \text{jets} \) and multijet production and is estimated using a data-driven technique. The nonjet background is estimated using simulation and originates primarily from \(W/Z + \text{Jets} \) production with additional minor contributions from \(W/Z/\gamma^* \), \(t\bar{t} \), single top-quark, and diboson (WW, WZ and ZZ) production (collectively called others).

The event generators and other software packages used to produce the simulated samples are summarized in Table I. The \(W/Z/\gamma^* \) sample is artificially enhanced in high-mass events to improve statistical coverage in the scanned mass range. Particle interactions with the ATLAS detector are simulated with \texttt{GEANT 4} [25,26] and contributions from additional pp interactions (pileup) are simulated using \texttt{PYTHIA 8.186} and the \texttt{MSTW2008LO} parton distribution function (PDF) set [27]. Finally, the simulated events are processed through the same reconstruction software as the data. Corrections are applied to account for mismodeling of the momentum scales and resolutions of reconstructed objects, the \(\tau_{\text{had-vis}} \) reconstruction and identification efficiency, the electron to \(\tau_{\text{had-vis}} \) misidentification rate, and the \(E_T^{\text{miss}} \) trigger efficiency.

The simulated samples are normalized using the integrated luminosity of the collected data set and their theoretical cross sections. The \(W/Z/\gamma^* \) cross sections are calculated as a function of the boson mass at next-to-next-to-leading order (NNLO) [49] using the \texttt{CT14NNLO} PDF set, including electroweak corrections at next-to-leading order (NLO) [50] using the \texttt{MRST2004QED} PDF set [51]. Uncertainties are taken from Ref. [52] and include variations of the PDF sets, scale, \(\alpha_s \), beam energy, and electroweak corrections. The variations amount to a \(\sim 5\% \) total uncertainty in the \(W/Z/\gamma^* \) cross section at low mass, increasing to 34\% at 2 TeV. The \(t\bar{t} \) and single top-quark production cross sections are

<table>
<thead>
<tr>
<th>Process</th>
<th>Matrix element</th>
<th>Nonperturbative</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(W/Z/\gamma^*)</td>
<td>POWHEG-BOX 2, CT10, \texttt{PHOTOS++} 3.52</td>
<td>\texttt{PYTHIA 8.186}, AZNLO, \texttt{CTEQ6L1}, \texttt{EVTGEN 1.2.0}</td>
<td>[28–36]</td>
</tr>
<tr>
<td>(t\bar{t})</td>
<td>POWHEG-BOX 2, CT10</td>
<td>\texttt{PYTHIA 6.428}, P2012, \texttt{CTEQ6L1}, \texttt{EVTGEN 1.2.0}</td>
<td>[37–39]</td>
</tr>
<tr>
<td>Single top</td>
<td>POWHEG-BOX 1, CT10, \texttt{MADSPIN}</td>
<td>\texttt{PYTHIA 6.428}, P2012, \texttt{CTEQ6L1}, \texttt{EVTGEN 1.2.0}</td>
<td>[40–43]</td>
</tr>
<tr>
<td>Diboson</td>
<td>\texttt{SHERPA 2.1.1}, CT10</td>
<td>\texttt{SHERPA 2.1.1}</td>
<td>[44–48]</td>
</tr>
</tbody>
</table>
calculated to at least NLO with an uncertainty of 3%–6% [53–56]. The diboson cross sections are calculated to NLO with an uncertainty of 10% [44,57].

The simulated samples are affected by uncertainties associated with the generation of the events, the detector simulation, and the determination of the integrated luminosity. Uncertainties related to the modeling of the hard scatter, radiation, and fragmentation are at most 2% of the total background estimate. Uncertainties in the detector simulation manifest themselves through the efficiency of reconstruction, identification and triggering algorithms, and through particle energy scales and resolutions. The effects of energy uncertainties are propagated to E_T^{miss}.

The uncertainty in the $\tau_{\text{had-vis}}$ identification efficiency is 5%–6%, as determined from measurements of $Z \rightarrow \tau \tau$ events. An additional uncertainty that increases by 20%–25% per TeV is assigned to $\tau_{\text{had-vis}}$ candidates with $p_T > 150$ GeV in accord with studies of high-p_T jets [58]. The uncertainty in the $\tau_{\text{had-vis}}$ energy scale is 2%–3%. The probability for electrons to be misidentified as τ is 5% [53]. The probability for electrons to be misidentified as τ is 5% [53].

Uncertainties in the experimental cross-section limits, but are instead included in the fitting procedure used to extract the jet background contribution, which ranges from 20% at $m_T = 0.2$ TeV to $\sim 60\%$ at $m_T = 2$ TeV, where the jet background is subdominant. The uncertainty due to the subtraction of nonjet contamination in the control regions is negligible.

To reduce the impact of statistical fluctuations in the jet background estimate, a function $f(m_T) = m_T^a + b \log m_T$, where a and b are free parameters, is fitted to the estimate in the range 400 < m_T < 800 GeV and is used to evaluate the jet background in the range $m_T > 500$ GeV. The impact of altering the fit range leads to an uncertainty that increases with m_T, reaching 50% at $m_T = 2$ TeV. The statistical uncertainty from the control regions is propagated using pseudoexperiments and also reaches 50% at $m_T = 2$ TeV.

Figure 1 shows the observed m_T distribution of the data after event selection, including the estimated SM background contributions and predictions for W'_{SM} and W'_{NU} (cot $\phi_{\text{NU}} = 5.5$) bosons with masses of 3 TeV. The number of observed events is consistent with the expected SM background. Therefore, upper limits are set on the production of a high-mass resonance decaying to $\tau\nu$. The statistical analysis uses a likelihood function constructed as the Poisson probability describing the total number of observed events given the signal-plus-background expectation. Systematic uncertainties in the expected number of events are incorporated into the likelihood via nuisance parameters constrained by Gaussian prior probability density distributions. Correlations between signal and background are taken into account. A signal-strength parameter, with a uniform prior probability density distribution, multiplies the expected signal. The dominant relative uncertainties in the expected signal and background contributions are shown in Fig. 2 as a function of the m_T threshold.

Limits are set at the 95% credibility level (C.L.) using the Bayesian Analysis Toolkit [60]. Figure 3 shows the
model-independent upper limits on the visible $\tau\nu$ production cross section, $\sigma(pp \rightarrow \tau\nu + X) A\epsilon$, as a function of the m_T threshold, where A is the fiducial acceptance (including the m_T threshold) and ϵ is the reconstruction efficiency. Model-specific limits can be derived by evaluating σ, A, and ϵ for the model in question and checking if the corresponding visible cross section is excluded at any m_T threshold. This allows the results to be reinterpreted for a broad range of models, regardless of their m_T distribution. Good agreement between the generated and reconstructed m_T distributions is found, indicating that a reliable calculation of the m_T threshold acceptance can be made at generator level. The reconstruction efficiency depends on m_T, $\epsilon(m_T[\text{TeV}]) = 0.633 - 0.313m_T + 0.0688m_T^2 - 0.00575m_T^3$, ranging from 60% at 0.2 TeV to 7% at 5 TeV, and must be appropriately integrated out given the m_T distribution of the model. The relative uncertainty in the parametrized efficiency due to the choice of signal model is ~10%. With these inputs the visible cross sections for W'_{SSM} and W'_{NU} bosons could be reproduced within 10% using only generator-level information. Data and details to facilitate reinterpretations can be found at Ref. [61].

Limits are also set on benchmark models by selecting the most sensitive m_T threshold for each W' mass hypothesis (~0.6m_W up to a maximum of 1.45 TeV). The chosen threshold is found to have little dependence on the W' width. Figure 4(a) shows the 95% C.L. upper limit on the cross section times branching fraction as a function of m_W in the SSM. Heavy W'_{SSM} bosons with a mass lower than 3.7 TeV are excluded, with an expected exclusion limit of 3.8 TeV. Figure 4(b) shows the excluded region in the parameter space of the nonuniversal $G(221)$ model. Heavy W'_{NU} bosons with a mass lower than 2.2–3.8 TeV are excluded depending on $\cot\phi_{\text{NU}}$, thereby probing a significantly larger region of parameter space than previous searches [8]. The W'_{NU} limits are typically weaker than the W'_{SSM} limits as the increased W' width yields lower acceptances, while the enhancement in the decay rate cancels with the suppression in the production via first- and second-generation quarks. Limits from the ATLAS $ee, \mu\mu$, and $\tau\tau$ searches [58,62] are

FIG. 1. Transverse mass distribution after the event selection. The total impact of the statistical and systematic uncertainties on the SM background is depicted by the hatched area. The ratio of the data to the estimated SM background is shown in the lower panel. The prediction for W'_{SSM} and W'_{NU} (cot$\phi_{\text{NU}} = 5.5$) bosons with masses of 3 TeV are superimposed.

FIG. 2. Dominant relative uncertainties in the expected signal and background contributions as a function of the m_T threshold. For each threshold a W'_{SSM} boson with a mass of approximately 1.7 times the threshold is chosen. Theory includes uncertainties in the cross sections used to normalize the simulated samples and uncertainties associated with the modeling provided by the event generators. Other is the impact of all other uncertainties added in quadrature.

FIG. 3. The 95% C.L. upper limit on the visible $\tau\nu$ production cross section as a function of the m_T threshold.
also overlaid, showing that the $\ell\nu$ search is complementary and extends the sensitivity over a large fraction of the parameter space. These results suggest that the $\ell\nu$ searches should be considered when placing limits on nonuniversal extended gauge groups, such as those seeking to explain lepton flavor violation (LFV) [64], CKM unitarity [65], and the original Z-pole data [2] are overlaid.

In summary, a search for $W' \to \tau\nu$ in 36.1 fb$^{-1}$ of pp collisions at $\sqrt{s} = 13$ TeV recorded by the ATLAS detector at the LHC is presented. The channel where the τ decays hadronically is analyzed and no significant excess over the SM expectation is found. Upper limits are set on the visible cross section for W'_{SM} production, allowing interpretation in a broad range of models. Sequential standard model W'_{SM} bosons with masses less than 3.7 TeV are excluded at 95% C.L., while nonuniversal $G(221)W'_{\text{NU}}$ bosons with masses less than 2.2–3.8 TeV are excluded depending on the model parameters.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICyT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRS, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [66].

[61] ATLAS Collaboration, HepData entry for this article, https://www.hepdata.net/record/80812.

5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne Illinois, USA
7 Department of Physics, University of Arizona, Tucson Arizona, USA
8 Department of Physics, The University of Texas at Arlington, Arlington Texas, USA
9 Physics Department, National and Kapodistrian University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Department of Physics, The University of Texas at Austin, Austin Texas, USA
12 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13 Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Barcelona, Spain
14 Institute of Physics, University of Belgrade, Belgrade, Serbia
15 Department for Physics and Technology, University of Bergen, Bergen, Norway
16 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley California, USA
17 Department of Physics, Humboldt University, Berlin, Germany
18 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
19 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
20 Department of Physics, Bogazici University, Istanbul, Turkey
21 Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
22 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
23 INFN Sezione di Bologna, Bologna, Italy
24 Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
25 Physikalisches Institut, University of Bonn, Bonn, Germany
26 Department of Physics, Boston University, Boston Massachusetts, USA
27 Department of Physics, Brandeis University, Waltham Massachusetts, USA
28 Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
29 Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil
30 Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil
31 Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, Brazil
32 Physics Department, Brookhaven National Laboratory, Upton New York, USA
33 Transilvania University of Brasov, Brasov, Romania
34 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
35 Department of Physics, Alexandria Ioan Cuza University of Iasi, Iasi, Romania
36 National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca, Romania
37 University Politehnica Bucharest, Bucharest, Romania
38 West University in Timisoara, Timisoara, Romania
39 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
40 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
41 Department of Physics, Carleton University, Ottawa Ontario, Canada
42 CERN, Geneva, Switzerland
43 Enrico Fermi Institute, University of Chicago, Chicago Illinois, USA
44 Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
45 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
46 Department of Physics, Nanjing University, Jiangsu, China
47 Physics Department, Tsinghua University, Beijing, China
48 University of Chinese Academy of Science (UCAS), Beijing, China
49 Department of Modern Physics and State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Anhui, China
50 School of Physics, Shandong University, Shandong, China
51 School of Physics and Astronomy, Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, China
52 Tsung-Dao Lee Institute, Shanghai, China
53 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
54 Nevis Laboratory, Columbia University, Irvington New York, USA
55 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
56 INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Italy
57 Dipartimento di Fisica, Università della Calabria, Rende, Italy
58 AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

161802-16