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ABSTRACT
For grain growth to proceed effectively and lead to planet formation, a number of barriers to
growth must be overcome. One such barrier, relevant for compact grains in the inner regions
of the disc, is the ‘bouncing barrier’ in which large grains (∼mm size) tend to bounce off
each other rather than sticking. However, by maintaining a population of small grains, it has
been suggested that cm-size particles may grow rapidly by sweeping up these small grains.
We present the first numerically resolved investigation into the conditions under which grains
may be lucky enough to grow beyond the bouncing barrier by a series of rare collisions
leading to growth (so-called ‘breakthrough’). Our models support previous results, and show
that in simple models breakthrough requires the mass ratio at which high-velocity collisions
transition to growth instead of causing fragmentation to be low, φ � 50. However, in models
that take into account the dependence of the fragmentation threshold on mass ratio, we find that
breakthrough occurs more readily, even if mass transfer is relatively inefficient. This suggests
that bouncing may only slow down growth, rather than preventing growth beyond a threshold
barrier. However, even when growth beyond the bouncing barrier is possible, radial drift will
usually prevent growth to arbitrarily large sizes.
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1 IN T RO D U C T I O N

Dust evolution is an essential component of disc evolution and
planet formation. For grains smaller than about a millimetre, growth
is believed to be efficient as collisions occur at low velocity and typ-
ically result in sticking, with growth rates slowing at larger sizes
(Dullemond & Dominik 2005). However, this predicts a rapid re-
moval of small grains, which is in conflict with observations that
show they remain abundant throughout the disc’s lifetime (Haisch
et al. 2001; Cieza et al. 2007; Su et al. 2009). Furthermore, we know
that discs simultaneously harbour grain sizes up to at least cm sizes
throughout their lifetimes (Wilner et al. 2005; Rodmann et al. 2006;
Ricci et al. 2010; Miotello et al. 2014).

However, as grains grow, they begin to decouple from the
background flow and their relative velocities increase, initially
through random velocities driven by turbulence (Völk et al. 1980;
Markiewicz, Mizuno & Voelk 1991; Ormel & Cuzzi 2007) and
later as they drift towards the star (Weidenschilling 1977). At
high enough velocities, collisions between grains tend to result in
fragmentation (�1 m s−1 for silicates; see Blum & Wurm 2008).
While fragmentation provides a mechanism by which the
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population of small grains can be replenished, it also slows
down or prevents growth beyond a certain size. Although frag-
mentation reduces the loss of grains via migration, by limiting
growth it does not resolve the problem of forming large par-
ticles by coagulation. However, the radial drift barrier may be
overcome at pressure maxima which can trap dust grains, such
as at gaps induced by massive planets (Fouchet et al. 2007;
Ayliffe et al. 2012; Zhu et al. 2012; Lambrechts, Johansen &
Morbidelli 2014; Rosotti et al. 2016), in vortices (Adams &
Watkins 1995; Barge & Sommeria 1995; Tanga et al. 1996;
Johansen, Andersen & Brandenburg 2004; Lyra et al. 2009), or per-
haps at evaporation fronts (Estrada, Cuzzi & Morgan 2016; Schoo-
nenberg & Ormel 2017; Stammler et al. 2017); it is not clear how
such planet-induced traps can explain the first planets to form.

With the recent resurgence of theories in which the dust’s own
self-gravity drives growth directly to the required km-sizes, per-
haps enhanced via drag-driven instabilities such as the streaming
instability (Youdin & Goodman 2005; Johansen et al. 2007; Bai &
Stone 2010; Simon et al. 2016) or taking place via secular modes
(Shariff & Cuzzi 2011; Youdin 2011; Takahashi & Inutsuka 2014),
the problem has significantly weakened. However, these theories
require significant growth to Stokes numbers, St = ts�, of the order
of 1 or 0.1 (where ts is the particle’s stopping time and � is the
dynamical time-scale) and mid-plane dust-to-gas ratios of the order
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of unity, typically requiring weak turbulence. Since it is precisely
these sizes that drift most rapidly towards the star, there remain
open questions about whether growth into the required sizes can be
efficient enough.

In addition to fragmentation, growth may be slowed by the ten-
dency of large grains to bounce off each other at moderately low
velocity (a few cm s−1), which is most relevant for compact (i.e. low
porosity) grains (Seizinger & Kley 2013). For the smallest grains,
which are very porous, bouncing is not a problem and growth pro-
ceeds efficiently. However, as grains become larger they become
more compact because the collision velocities and gas pressure
increase (e.g. Kataoka et al. 2013). Thus, bouncing may become
important at mm sizes (Ormel, Spaans & Tielens 2007; Zsom &
Dullemond 2008; Ormel et al. 2009). As well as porous grains
being less susceptible to bouncing, the fragmentation threshold is
also higher (∼10 m s−1; Meru et al. 2013a). Beyond the snow line
where grains are icy, the increased stickiness suggests that even
mm-sized grains remain porous enough that bouncing is not im-
portant (Okuzumi, Tanaka & Sakagami 2009; Okuzumi et al. 2012;
Krijt et al. 2015).

For compact grains, bouncing at mm size remains a potential
barrier to growth. However, Windmark et al. (2012a) showed that
by maintaining a population of small grains at the bouncing barrier,
if a few particles manage to grow beyond the bouncing barrier,
then they may grow rapidly by sweeping up the smaller particles.
This process relies on the fact that collisions between particles
of very different masses can lead to another mode of growth at
high velocity. This process, known as mass transfer, occurs because
partial disruption of one of the grains can dissipate the collisional
energy (Teiser & Wurm 2009; Kothe, Güttler & Blum 2010, see
also Güttler et al. 2010 for a collation of experimental results).
A similar idea for pebble–planetesimal collisions (although made
possible by the planetesimal’s gravity rather than material strength)
provides a promising formation mechanism for the cores of Jupiter-
mass planets (Ormel & Klahr 2010; Lambrechts & Johansen 2012;
Morbidelli & Nesvorny 2012; Chambers 2016).

Models of coagulation that take into account the full distribution
of collision velocities suggest a possible way in which a small frac-
tion of particles may grow beyond the bouncing barrier (Windmark
et al. 2012b; Garaud et al. 2013; Dra̧żkowska, Windmark & Dulle-
mond 2014; Estrada, Cuzzi & Morgan 2016). The key point is that
due to turbulence there is a broad distribution of collision velocities
between any pair of particles of a given size. Thus, while the ma-
jority of collisions will occur near the peak of the distribution the
vast number of dust grains means that rare occurrences of collisions
at velocities in the tail of the distribution are almost guaranteed to
occur occasionally. Thus, some particles will be lucky enough to
grow by a series of low-velocity collisions, perhaps far enough that
they enter the sweep up region of growth.

Indeed, such breakthrough has been observed in a number
of models (Windmark et al. 2012b; Garaud et al. 2013; Meru,
Galvagni & Olczak 2013b; Dra̧żkowska, Windmark & Dulle-
mond 2014; Estrada, Cuzzi & Morgan 2016). In addition to lucky
growth, these models also have the advantage that they predict that
the population of small grains is replenished by occasional high-
velocity collisions even when the average collision velocity is below
the fragmentation threshold. However, introducing the full range of
collision velocities has also had the side effect of making the growth
considerably more difficult to follow numerically as we are inter-
ested in rare events. In models that trace the evolution of material
between fixed mass bins, it is therefore possible for numerical dif-
fusion across mass bins to swamp the growth rate due to lucky

collisions. Dra̧żkowska et al. (2014) demonstrate that this can lead
to a massive overestimate of the rate of particles breaking through
the bouncing barrier, and an underestimate of the time at which it
happens.1

Here, we aim to quantify the uncertainty in the level of break-
through found in previous works by using a numerical method that
converges rapidly with resolution. We focus on local models of
grain growth using simple prescriptions for the grain microphysics
to allow a direct comparison to early works (Windmark et al. 2012b;
Garaud et al. 2013), but have also included a more realistic model
akin to Windmark et al. (2012a). Inevitably, models that treat the
entire disc and include detailed microphysics (such as Estrada
et al. 2016) are needed to capture the full complexity of growth
and radial drift. In Section 2, we present the numerical methods
used. In Section 3, we describe the model kernel. In Section 4, we
present a variety of tests to demonstrate the performance of the
code. In Section 5, we present our results on the conditions for
breakthrough, and in Sections 6 and 7, we present our discussion
and conclusions.

2 N U M E R I C A L M E T H O D S

Numerical approaches to grain growth can be broadly split into
two methods: either by solving the Smoluchowski (1916) equa-
tion for the evolution of the number density of grains of a given
mass, n(m), on a mass mesh (e.g. Kovetz & Olund 1969; Spaute
et al. 1991; Lee 2000; Brauer, Dullemond & Henning 2008; Garaud
et al. 2013), or via a Monte Carlo approach in which the outcome
of individual collisions between representative particles is decided
by randomly sampling the probability distribution (Gillespie 1975;
Ormel & Spaans 2008; Zsom & Dullemond 2008).2 Dra̧żkowska
et al. (2014) showed that both approaches give reasonable agreement
when breakthrough is likely. However, although Monte Carlo meth-
ods do not tend to suffer from the diffusive growth discussed above
since individual masses can be tracked, they struggle to achieve
the dynamic range in number density needed to investigate break-
through in less favourable conditions. We therefore choose to use
the Smoluchowski equation approach with a method designed to
reduce diffusion (Lee 2000), and thus solve the equation

dn(m)

dt
= 1

2

∫ m

0
K(m1, m − m1)n(m1)n(m − m1)dm1

+ 1

2

“ ∞

0
F (m1, m2)n(m1)n(m2)p(m1, m2,m)dm1dm2

− n(m)
∫ ∞

0
[K(m,m1) + F (m,m1)] n(m1)dm1 (1)

directly on a ‘mass mesh’. The first two terms on the right-hand
side represent the formation rate of particles of mass, m, by: (1)
two particles of mass m1, and m − m1 merging to form a particle of
mass m (coagulation) and (2) the fragmentation products of mass,
m, produced by fragmenting collisions between particles of mass
m1 and m2. The third term describes the rate at which particles of
mass m are removed through collisions with particles of all sizes
that result in either coagulation or fragmentation. Here, n(m) is the
number density of grains per unit mass and per unit volume, K
and F are the coagulation and fragmentation kernels, and p(m1, m2,

1 Monte Carlo methods tend to have the opposite problem, i.e. due to their
limited dynamic range in density they tend to overestimate the time to
breakthrough. See Section 2.
2 Other approaches do exist, e.g. Wetherill (1990) and Inaba et al. (1999).
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m) is the fraction of fragments that have mass, m, produced in a
fragmenting collision between two particles of mass m1 and m2.
Mass conservation requires p(m1, m2, m) = 0 for m > m1 + m2

along with the normalization∫ ∞

0
p(m1, m2, m)dm = 1. (2)

Since collisions resulting in fragments with mass m > max (m1, m2)
would better be considered some form of growth, we take p(m1, m2,
m) = 0 for m > max (m1, m2). This avoids any excessive growth
due to numerical diffusion in the fragmentation routine that could
arise if fragments with mass above the largest particle size were
included.

When considering the problem of breakthrough, the Smolu-
chowski equation has typically been solved by discretizing the
problem at fixed particle masses. However, as discovered by
Ohtsuki, Nakagawa & Nakazawa (1990) and discussed by Garaud
et al. (2013) and Dra̧żkowska et al. (2014), the approach used can
lead to an artificial acceleration of the growth rate unless the res-
olution is high, which Dra̧żkowska et al. (2014) refer to as growth
due to numerical diffusion. For this reason, we follow Lee (2000)
(which is closely based on Spaute et al. 1991) in taking into account
the distribution within each mass bin. We will refer to these differ-
ent approaches as ‘coarse’ versus ‘fine’ as a result of their subgrid
interpretation. In Section 4, we will compare the two methods to
simple cases and test problems with analytical solutions in order to
demonstrate the improvement. First, we describe both methods.

2.1 Coarse subgrid approximation

This is the approach that has previously been applied to the break-
through problem. In this approach, equation (1) is solved at discrete
points on a mass mesh {m1, m2, . . . , mI} (Podolak & Podolak 1980;
Brauer et al. 2008; Garaud et al. 2013). Equation (1) is discretized
in terms of the total number of grains (per unit volume) in a bin, Ni,
of mass, mi, resulting in the equation

dNi

dt
= 1

2

I∑
j,k=1

CijkKjkNjNk −
I∑

j=1

KijNiNj

+ 1

2

I∑
j,k=1

FjkNjNkpjki −
I∑

j=1

FijNiNj . (3)

We use the kernels evaluated at each point on the mass mesh, Kij ≡
K(mi, mj) and Fij ≡ F(mi, mj). We set the distribution of fragment
products, pijk, to the integral of p(mi, mj, mk) over the bin to ensure∑

kpijk = 1. Typically, pijk is chosen so that the number density of
fragments follows a power law with index −ξ below some mass
cut-off. We use ξ = 11/6, which is the standard choice (Brauer
et al. 2008; Garaud et al. 2013) based on the slope of interstellar
extinction and arguments based on a self-similar collisional cas-
cade (Dohnanyi 1969; Mathis, Rumpl & Nordsieck 1977; Draine &
Lee 1984; Tanaka, Inaba & Nakazawa 1996).

The coagulation coefficients Cijk determine the fraction of the
coagulation products that go into a given bin. For linear mass bins,
they are simply given by Cijk = δ(j + k − i), but in order to resolve
growth over many orders of magnitude logarithmic bin sizes are
needed. Following Kovetz & Olund (1969) and Brauer et al. (2008),
we set

Cijk =
⎧⎨
⎩

fjk i = i−,

1 − fjk i = i+,

0 otherwise,
(4)

where the bin indices i + and i − are, respectively, the minimum
and maximum indices that obey mi − < mj + mk < mi + and

fjk = mi+ − (mj + mk)

mi+ − mi−
. (5)

These expressions can be derived by splitting the merger products
between the two bins in a way that conserves both the mass and total
collision rate, KjkNjNk. An analogous way of thinking about these
coefficients is that the merger products are assumed to be uniformly
distributed between the limits (mj + mk) ± 1

2 (mi+ − mi−) before
being assigned to their nearest point on the mass mesh.

To see why this scheme can give rise to a shorter growth time-
scale, consider the growth of a grain of mass mk that grows by
collisions with grains of mass mk � mj, such that the final product
falls in the range [mj, mj+1]. For mk � mj, many collisions may be
required to reach the mass mj + 1, but the algorithm above will place
some mass in bin j + 1 even before particles have had the time to
grow to that size. We note that since there is a distribution of sizes
within the mass bin, there should be some growth into the largest
mass bin from particles near the upper end of the mass range.
However, whether or not these coefficients produce an accurate
estimate of the growth rate from this small part of the bin depends
sensitively on the distribution of densities. Thus, in the steeply
declining tails, these coefficients will overpredict the growth rate.

Rather than evolving Ni directly, we use the mass in each bin
Nimi as the fundamental variable and instead use equation (3) to
compute the rate of growth from each bin. In doing so, we explic-
itly ensure that mass is conserved. Since these coefficients place a
constant fraction of the coagulation product in the upper size bin
independently of the mass distribution, this explains why the coarse
method produces excessive diffusion in the tails of the mass distri-
bution. Dra̧żkowska et al. (2014) suggest that this can be controlled
by suppressing growth in bins with very low density, and indeed
they found that it can help reduce spurious breakthrough at low
resolution. We have not applied such a suppression to allow a more
direct comparison to the fine subgrid approximation, in which it is
not needed.

2.2 Fine subgrid approximation

Here, we use an approach that closely follows Lee (2000). First, we
assume the mass distribution within the k-th mass bin is given by a
power law,

ρk(m) = mnk(m) = ck(m/mk−1/2)qk , (6)

where we use central differences to evaluate the log-space slopes,
qk:

qk =
log

(
Mk+1

�mk+1
/

Mk−1

�mk−1

)
log (mk+1/mk−1)

, (7)

where �mk = mk − mk − 1. At the edges of the domain, or where
either of mk ± 1 = 0, we use one-sided differences instead. If either of
these differences are not available, we instead use qk − 1, although in
practice this is only relevant at the highest mass bin, where growth
and fragmentation can cancel out producing zero densities. Finally,
ck can be set using the normalization

∫
ρk(m)dm = Mk, the mass per

unit volume of particles within bin k.
The mass-loss rate from bin j due to coagulation with particles

from bin k is given by“
K(m,m′)ρj (m)

ρk(m′)
m′ dmdm′, (8)
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and the integration is over the ranges mj − 1/2 < m < mj + 1/2 and
mk − 1/2 < m′ < mk + 1/2. Even for constant K(m, m′) over the range
of interest, this expression cannot be efficiently evaluated for two
power laws and instead we are forced to make simplifications.

The first simplification we make is to neglect the distribu-
tion of densities for the lower mass size bin, instead taking
ρ j = Mjδ(m − mj), where δ(x) is the Dirac-δ function and j < k.3

After this simplification, the rate of growth into bin i from bins j
and k with j < k is

Nj

∫ m+

m−
K(mj, m)

ρk(m)

m

[
mj + m

]
dm

≈ K̄Nj

∫ m+

m−

ρk(m)

m

[
m + mj

]
dm, (9)

where Nj = Mj/mj is the number of grains in bin j. The second
simplification is that we make an approximation in evaluating the
kernel using a weighted sum:

K̄ = K(m−,mj )w− + K(m+,mj )w+
w− + w+

, (10)

where w± = ρk(m±)(m± + mj)/m±. The integration limits are
given by the overlap of the mass range of the coagulation prod-
uct [mj + mk − 1/2, mj + mk + 1/2] with the mass range of bin i,
[mi − 1/2, mi + 1/2], which gives

m− = max(mk−1/2, mi−1/2 − mj ), (11)

m+ = min(mk+1/2, mi+1/2 − mj ). (12)

The mass-loss from bins j and k is computed using the same
weighted average to ensure mass conservation.

The fragmentation calculation could be extended similarly by
using weighted averages of the fragmentation kernel, Fijk. However,
treating fragmentation carefully is much less important than treating
coagulation carefully because fragmentation cannot lead to diffusive
mass growth and so the difference that it makes is small. Instead,
we simply use the same approach to fragmentation as for the coarse
subgrid approximation.

In the fine subgrid approximation, we have also implemented the
active bins method of Lee (2000), in which the computation of the
coagulation and fragmentation rates from bins below a threshold
density is skipped. This is necessary since the power-law slope is
ill-defined when the bins are empty. To ensure accuracy, we include
the contribution from all bins that have mass above the minimum
value that can be represented in double precision.

2.3 Time integration

We have investigated three different approaches to time-stepping,
including an explicit second-order Runge–Kutta. Due to the inher-
ent stiffness of the coagulation–fragmentation equations, we find
that using a semi-implicit time integration results in a significant
speed up. For most purposes, a semi-implicit time-centred Euler
integration is adequate. Rather than computing the full Jacobian,
we find that it is both sufficient and faster to use an approximate

3 For mj ≈ mk, this will halve the range of masses over which the coagulation
products are distributed. However, in this case, the merger products will be
in some bin i > max (j, k), thus the mean growth is handled adequately.
For particles with mj � mk, this expression becomes increasing accurate,
preventing the artificial growth of a large amount of mass into the bin k + 1.

Jacobian when using the fine subgrid model. We do so by neglect-
ing the contribution to the Jacobian that arises from the variation of
qk. When using either the Runge–Kutta or implicit Euler, we find
that limiting the change in the solution to 1 per cent each time-step
is usually sufficient to ensure stability, with excellent agreement
between both methods. However, in some simulations, the tail of
the distribution became unstable on approach to equilibrium when
using implicit Euler integration. While this could be prevented by
setting an upper limit to the time-step, this can be prohibitively
expensive when exploring a grid of models as it requires tuning by
hand. A practical alternative is to use a semi-implicit Rosenbrock
method with embedded step-size control (see e.g. Press et al. 2002).
We choose the third-order Rosenbrock method of Rang &
Angermann (2005), which is stable when using an approximate
Jacobian. This is the scheme used for the models presented in this
paper.

2.4 Relative computational cost of the methods

We have not conducted an extensive comparison between computa-
tional efficiency of the methods; however, we note that despite the
higher computational cost per mass bin of the fine subgrid approx-
imation it can still be competitive. In pure coagulation tests with
150–350 mass bins, the fine subgrid model is 30–50 times slower
per cell (when the active bins optimization is not used). However,
since a greater accuracy can be expected for the same number of
bins, the computational time need to achieve the same desired accu-
racy can be considerably less. The difference in the number of bins
required will be application dependent, but as an example a factor
of ∼3 fewer bins are needed for the same accuracy in the bulk of the
mass distribution for the linear kernel test in Section 4, reducing the
difference in cost to a factor of 3–6 for the same accuracy (due to
the O(N2) scaling). However, for problems where one is interested
in the mass distribution in the tails of the distribution, as we are
here, the coarse subgrid model requires a far higher resolution (in
fact impractically high) to achieve the same accuracy (see Figs 4
and 12), preventing it from being competitive.

When fragmentation is included, normally the difference in com-
putational cost for the same number of bins becomes negligible
at high resolutions because the fragmentation calculation scales as
O(N3), where N is the number of bins, while the coagulation rou-
tines scale more favourably, O(N2). In this case, the requirement of
fewer bins for the same accuracy can mean that fine subgrid ap-
proximation will produce an accurate solution in a shorter absolute
time too. This is our experience for the more ‘realistic’ problems
discussed in Section 5.

As a further note, under certain approximations for p(m, m1, m2),
the fragmentation rate can actually be computed in O(N2) when
explicit time integration is used. One such case is when the ap-
proximation p(m, m1, m2) ≡ p(m, max (m1, m2)) is made. When an
O(N2) calculation of the fragmentation rate is possible, the addi-
tional cost of the fine-grid model may be more evident. However,
the cost of the Jacobian calculation remains O(N3), thus implicit or
semi-implicit methods such as the one we use here cannot benefit
from this optimization, and thus the fine-grid model will remain the
most expedient.

3 MO D E L K E R N E L

A variety of different model kernels have been used to study grain
growth. In reality, the outcome of collisions between grains is
extraordinarily complex, depending on the velocity and angle of
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impact and internal properties of both grains (see e.g. Garaud
et al. 2013 for a discussion), and thus it is necessary to simplify
the problem. This is typically done by breaking the kernel down
into two parts: a model for the distribution of collision velocities
and a model for the outcome of the collisions. When studying
lucky growth and breakthrough, typically a simple model for the
collisional outcomes has been used (Windmark et al. 2012b; Ga-
raud et al. 2013; Dra̧żkowska et al. 2014). Although more complex
models based upon comparison with experimental data exist (e.g.
Güttler et al. 2010; Windmark et al. 2012a), these generally have
not been combined with the full distribution of collision velocities
required to study lucky growth, except in one global model (Estrada
et al. 2016).

Similarly, a large variety of approximations for the collision ve-
locity have been used, varying from using just the mean (Brauer,
Dullemond & Henning 2008; Birnstiel, Dullemond & Brauer 2010)
to several different models for the full distribution of collision ve-
locities (Okuzumi et al. 2011; Windmark et al. 2012b; Garaud
et al. 2013). We follow Garaud et al. (2013) for the distribution
of collision velocities between a pair of particles of arbitrary size,
which represents the current state of the art. For each grain size in-
dependently, we approximate the distribution of velocities in each
direction as a Gaussian with the mean given by the motion rela-
tive to the gas and standard deviation given by the random motions
induced by Brownian motion and turbulence. The combined colli-
sion velocity distribution is then computed by assuming the velocity
distributions are independent and integrating over the distribution,
which Garaud et al. (2013) show is given by

P (�ij ) = 1√
2πσij

�ij

�̄D
ij

[
exp

(
− (�ij − �̄D

ij )2

2σij

)

− exp

(
− (�ij + �̄D

ij )2

2σij

)]
, (13)

where �ij is the velocity of the collision, �̄D
ij is the non-random

velocity differences between the two sizes (e.g. difference in radial
drift velocities), and σ ij is the rms turbulent velocity. For more
details, see Garaud et al. (2013).

The extent to which the underlying single particle velocity dis-
tributions are well represented by Gaussian distributions is how-
ever still somewhat unclear – analytic theories are only able to
compute the rms collision velocity and not the whole distribu-
tion (Völk et al. 1980; Zaichik, Simonin & Alipchenkov 2003;
Ormel & Cuzzi 2007; Pan & Padoan 2010), while direct numeri-
cal simulations are typically limited to low Reynolds number, Re

typically not exceeding ∼500, which inhibits their ability to probe
the inertial range scaling that is important for high Re applications
(e.g. Carballido, Cuzzi & Hogan 2010; Nelson & Gressel 2010;
Pan & Padoan 2013; Pan, Padoan & Scalo 2014; Ireland, Bragg &
Collins 2016). Shell models of turbulence are able to overcome the
limitation of low Re but do not capture the non-Gaussian behaviour
in the statistics of the underlying turbulence (Hubbard 2012, 2013).
Furthermore, the simulations are generally conducted for homo-
geneous turbulence and thus we can only test the special case
of �̄D

ij = 0 directly. In this case, P(�ij) reduces to a Maxwellian
(Garaud et al. 2013).

However, the simulation results are promising. At least for par-
ticles that are well within the inertial range and differ in size by
more than a factor of a few; the velocities are only weakly cor-
related and the single particle velocity distributions are well ap-
proximated by a Gaussian. Indeed, equation (13) is in excellent

agreement with the distribution of collision velocities for particles
with size ratios greater than about 2, at least within the inertial range
(Hubbard 2013). Similarly, for particles with stopping times longer
than the turnover time of the largest eddies (St > 1), a Gaussian
distribution is again an excellent approximation and thus once again
equation (13) is an excellent model for the collision velocities (Pan
& Padoan 2013; Ireland et al. 2016). While particles in the dissi-
pation range of the turbulence do exhibit correlated behaviour, for
reasonable choices of parameters the particle sizes that we are inter-
ested in (>10 μm) are well within the inertial range. Thus, the only
case in which any deviation from equation (13) may be significant
is for collisions between similar sized particles with St < 1.

For particles with similar sizes and St < 1, correlated motions
lead to lower collision velocities on average, but broader tails than
predicted by equation (13). Since away from any growth barriers
the growth rate is normally dominated by collisions between similar
sized particles, this effect could make a difference to the growth rate.
However, away from the bouncing barrier, the growth rate is con-
trolled by the collisions occurring at the peak of the distribution and
the wider tails are less significant. The reduction in peak collision
velocity associated with the correlated motions is taken into ac-
count by using the pairwise rms turbulent velocities from Ormel &
Cuzzi (2007), which include this effect, at least approximately.4

Close to the bouncing barrier, collisions in the tail of the distribu-
tion become more important, but growth also becomes dependent
on collisions between particles of different sizes. Thus, the wider
tails for similar sized particles may not be of critical importance, de-
spite their contribution to the growth and fragmentation rates being
underestimated.

For the background relative velocity, we again use the disc model
from Garaud et al. (2013), which is set by radial drift, azimuthal
drift, and settling:

vr,i = 1

1 + St2
i

(vr,g − 2StiηvK) (14)

vθ,i = 1

2Sti
(vr,i − vr,g) (15)

vz,i = −hi�K min

(
Sti ,

1

2

)
. (16)

The Keplerian velocity, angular frequency, and Keplerian decrement
are vK, �K, and η = − r

2v2
K

1
ρg

dP
dr

, while the gas radial velocity, vr,g,

is taken to be the viscous velocity. Sti is the Stokes number of the
particle and hi is scale height of the dust layer in the disc. The dust
scale height is set via

1

h2
i

= Sti(1 + Sti)�k

Sc

ν
+ 1

H 2
, (17)

where ν is the turbulent viscosity, Sc = 1 is the Schmidt number
(ratio of viscosity to mass diffusivity), and H is the gas scale height
(Dubrulle, Morfill & Sterzik 1995; Garaud 2007). We assume an
alpha model for the turbulent viscosity with the default choice be-
ing α = 10−4. The Stokes number is set assuming Epstein drag and
spherical particles, Sti = ts�K = �Ksiρs/ρgcs, where ρs, g are the
solid and gas densities at the mid plane and cs is the local sound
speed. Finally, we include the contributions to the velocity disper-
sion from turbulence and Brownian motion (added in quadrature).

4 See Pan & Padoan (2010, 2015), for example, for criticisms of their
approach.
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Table 1. Default model parameters used for defining the coagulation and
fragmentation kernels.

Symbol Value Units Description

α 10−4 Turbulence parameter
vb 5 cm s−1 Bouncing threshold
vf 100 cm s−1 Fragmentation threshold
φ 100 Critical mass-transfer ratio

The model coagulation and fragmentation kernels, which directly
take into account the distribution of relative velocities, can be written
as

Kij = āij

∫ ∞

0
�vPij (�v)εs

ij (�v)d�v (18)

Fij = āij

∫ ∞

0
�vPij (�v)εf

ij (�v)d�v, (19)

where āij = π (si + sj )2 is the collisional cross-section of two spher-
ical particles of size si and sj, and Pij(�v) is the distribution of col-
lision velocities between two particle sizes. The factors εs,f

ij are the
probabilities that collisions at a given velocity result in coagulation
or fragmentation, which differ between the two models below.

To complete the model kernel, we need a prescription for the
sticking and fragmentation probabilities, εs, f, along with a model
for mass transfer. Previous, detailed studies of lucky growth and
breakthrough used a simple model for the kernels where the outcome
of a collision depends only on the velocity with which the particles
collide (Windmark et al. 2012b; Garaud et al. 2013; Dra̧żkowska
et al. 2014). In this simple model, collisions with a velocity below a
critical value, vb, result in sticking (εs = 1) and above this bouncing
occurs instead (εs = 0). Collisions at velocities above a further
threshold, vf, lead to fragmentation of the grains (εf = 1). In the
above-mentioned works, mass transfer is treated by assuming that
at mass ratios above a certain threshold, φ, high-velocity collisions
that would lead to fragmentation instead lead to growth via mass
transfer. Windmark et al. (2012b) and Dra̧żkowska et al. (2014)
allowed for mass transfer to be inefficient, i.e. only a small fraction
(of the order of 10 per cent) of the smaller particle is transferred to
the larger particle with the rest of the mass being distributed as small
fragments. Here, we have assumed that all of the mass is transferred.
While this model of mass transfer is overly optimistic, we will
demonstrate that the simple model may actually underpredict lucky
growth due to overestimating the fragmentation rate. The default
parameters used in this model are summarized in Table 1.

In addition to the simple model of collisional outcomes, we also
explore a second, more physically motivated model. Our motiva-
tion is that the simple model of a constant threshold velocity for
fragmentation overestimates the fragmentation rate. To see this,
consider first a collision between two equal mass particles at a ve-
locity just high enough to cause fragmentation. By considering the
energy available in the collision, we should expect that if one of the
particles is replaced by one much less massive, then collisions at
the same velocity as before should not have enough energy to dis-
rupt the larger particle. Thus, the threshold fragmentation velocity
should at least depend on the mass ratio of the particle pair. This
idea is borne out by a comparison with experiment (Stewart & Lein-
hardt 2009; Beitz et al. 2011; Windmark et al. 2012a) and supported
by numerical simulations (e.g. Meru et al. 2013b). The reason that
the mass ratio dependence of the fragmentation threshold is impor-
tant is that the relative velocity between the largest particles and

small particles is usually larger than the velocity between two of
the largest size particles in both the turbulent- and drift-dominated
regimes. Therefore, as particles enter the regime where fragmen-
tation is important, the numerous collisions with small particles
(which are much more abundant) always dominate the fragmenta-
tion rate if a constant fragmentation threshold is assumed. Not only
does this mean the fragmentation rate is overestimated, it is also
sensitive to the minimum size of particles present as they are the
most abundant.

A more realistic model of fragmentation was presented by
Windmark et al. (2012a) through fits to experimental data (Beitz
et al. 2011). The fits suggested by Windmark et al. (2012a) are
in remarkable agreement with the physically motivated model of
Stewart & Leinhardt (2009), which is based on the comparison of
the specific collision energy to the fragmentation threshold. Given
our simple model of bouncing, and the considerable uncertainty still
inherent in the experimental data, we instead adopt a simple model
intended to capture the scaling of the fragmentation threshold with
mass ratio. Leinhardt & Stewart (2012) show that for a fixed target
mass, the threshold should scale as

vf = vf,φ=1

(
(1 + φ)2

4φ

)1/(3μ)

, (20)

where vf, φ = 1 is the threshold for an equal mass collision and
φ ≥ 1 is the mass ratio. The parameter μ depends on the mate-
rial properties, and is in the range 1/3 < μ < 2/3. Both the fits
suggested by Windmark et al. (2012a) and the simulations of Lein-
hardt & Stewart (2012) are well approximated by μ = 1/3, and
so we adopt μ = 1/3 here. Strictly, the equal mass fragmentation
threshold is a weak function of the grain mass as well. However,
we keep vf, φ = 1 fixed to the same value as the simple model, so that
it is clear that the differences between the two models arise due to
differences in the way that fragmentation driven by small grains is
treated.

The above expression is appropriate for total fragmentation; how-
ever, at large mass ratio, the small grain may fragment at much lower
velocity than the larger grain. For collision velocities between these
thresholds, this results in the fragmentation of the smaller grain,
followed by partial re-accretion, is what drives mass transfer (e.g.
Güttler et al. 2010). To estimate the fragmentation threshold for the
smaller grain, we assume that half of the collision energy may be
available to fragment the smaller grain. Thus, it fragments when
the collision energy exceeds twice the fragmentation threshold en-
ergy for that grain. The resulting prescription for the fragmentation
thresholds of the smaller and larger grains is

vf,s = vf
1

2

(
1 + φ−1

)
,

vf,l = vf
(1 + φ)2

4φ
. (21)

Comparing these expressions to Windmark et al. (2012a), we see
that fragmentation threshold for the smaller grain has the same
form, but our expression for the fragmentation threshold of the
larger grain is more conservative than theirs, vf, l = vf(1 + φ)/2,
allowing fragmentation at half the velocity for high mass
ratios.

The two different fragmentation thresholds above naturally sug-
gest an improvement to the mass-transfer model, which occurs when
the collision velocity, �v, obeys vf, s > �v > vf, l. In this regime,
some of the mass of the smaller particle may be transferred to the
larger particle. For �v > vf, l, we assume fragmentation of both
grains, while �v < vf, s results in sticking or bouncing. Windmark
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Figure 1. Growth in pure coagulation models for simple kernels, K(mi, mj) = 1 (left) and K(mi, mj) = mi + mj (right). The analytical solutions are shown as
the dashed black lines, along with numerical solutions using 10 bins per logarithmic interval in mass for the fine (solid) and coarse (dotted) subgrid models.
Units are dimensionless. The fine subgrid approximation reproduces the analytical solution more accurately, particularly in the tails (the solid and dashed lines
lie almost on top of each other).

et al. (2012a) use fits to experimental data to determine how much of
the smaller particle is accreted. For simplicity, we assume here that
the amount of mass transferred is given by some constant fraction
of smaller grain’s mass, εm, for which we explore different values
in the range 0 ≤ εm ≤ 1. For simplicity, we modelled εm < 1 by
treating the collisions as complete coagulation but at a reduced rate,
rather than by reducing the amount of mass transferred. This gives
approximately the correct growth rate, but neglects the production
of small fragments in the collisions. However, this effect should be
secondary to the reduction in the fragmentation rate and growth rate
by mass transfer.

To close the system of equations, we assume the same disc model
as Garaud et al. (2013), an exponentially tapered surface density,

� = Mdisc

2πrR0
exp(−r/R0), (22)

with a Gaussian vertical structure. We assume that the sound speed
obeys a power law cs ∝ r−1/4. Finally, we use Mdisc = 0.0375 M
,
R0 = 30 au, and additionally set cs = 1 km s−1 at 1 au along with a
stellar mass of 0.75 M
.

4 TESTS

To verify the methods, we first compare them against the analyt-
ical solutions to pure coagulation models with K(mi, mj) = 1 and
K(mi, mj) = mi + mj, which bound the asymptotic behaviour of the
model kernel we use. We initialize the solutions using the analytical
solution at t = 0 (Wetherill 1990). The evolution of the test prob-
lems is shown in Fig. 1 for both methods described using a modest
resolution of 10 points per logarithmic decade in mass (Nbd = 10).
We see that both methods reproduce the main features of the an-
alytical solutions well, but the coarse method gives rise to more
material in the tails. The coarse method also overestimates the peak
size of the particle distribution for K(mi, mj) = mi + mj, a result
of the numerical enhancement of the growth rate, as discussed in
Section 2. The larger mass at the peak of the distribution and the
diffusion in the tails demonstrate why Dra̧żkowska et al. (2014)
saw particles breaking through the bouncing barrier earlier at low
resolution.

To estimate the error in a more quantitative way, we use the Lp

error norm defined by

Lp =
(

1

N

N∑
i

∣∣∣∣ fi − fexact(mi)

max({fexact(mi)})
∣∣∣∣
p
)1/p

, (23)

where fi are the N numerical values and fexact(mi) is the exact solution
for the quantity f evaluated at the same points, mi, as the numerical
solution. We normalize the error estimate to the maximum value
of the analytical solution over the set of mi. In Fig. 2, we show
the L2 error norm of the density per logarithmic interval in mass,
m2 dN

dm
, for the linear kernel K(mi, mj) = (mi + mj). We see that

as well as significantly less numerical diffusion, the fine subgrid
method shows lower error overall and a faster rate of convergence
(close to second order). For K(mi, mj) = 1, the results are similar,
but both methods show second-order convergence, with the fine
subgrid method having lower overall error. We find similar results
for the L1 and L∞ (maximum deviation) error norms.

Since our model kernel lies somewhere between the two analytic
cases, it is useful to compare the methods on two simple prob-
lems using the model kernel. For this, we choose a pure growth
and bouncing model (g+b), along with a model in which we also
include fragmentation according to the two prescriptions (g+b+f).
In the second, physically motivated fragmentation model, the larger
fragmentation threshold (equation 21) was used for both the larger
and smaller grains. For the parameters, we use the default values
in Table 1 evaluated at 1 au. We set the minimum particle size to
0.1 mm and use Nbd = 10 for this test. We assume the initial mass
distribution is a narrow distribution peaked at the size of the small-
est particle, 0.1 mm, which we represent as a Gaussian with width
10 μm. Fig. 3 shows that both methods are generally in reasonable
agreement with each other, with the coarse method still being some-
what more diffusive, but the difference in performance between the
methods appears to be closer to the constant kernel case than the
linear kernel.

Comparing the two different fragmentation models, we see that
the maximum particle size is much smaller when a constant frag-
mentation threshold is used. Conversely, in the mass-dependent
model based on Stewart & Leinhardt (2009), fragmentation only
makes a small difference at this time, increasing the number of small

MNRAS 475, 167–180 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/475/1/167/4693854
by University of Hong Kong Libraries user
on 17 April 2018



174 R. A. Booth et al.

Figure 2. L2 error norm for the fine (solid) and coarse (dotted) subgrid mod-
els in a pure coagulation model with the linear kernel, K(mi, mj) = (mi + mj).
The L2 error is computed for m2 dN

dm
at t = 12 for different numbers of bins

per mass decade, Nbd.

Figure 3. Particle distribution at 1 au after 30 000 yr for the
growth+bouncing (g+b) and growth+bouncing+fragmentation (g+b+f)
models. For the g+b+f model, the black line denotes a model in which the
constant fragmentation threshold is used, while the cyan line shows the sec-
ond model, which used the mass-ratio-dependent threshold [equation (21)],
which produces a similar distribution to the g+b model with the constant
threshold. The different numerical methods are denoted by the line style,
with the fine and coarse subgrid models shown by the solid and dotted lines,
respectively.

grains but hardly affecting the maximum grain size. The difference
highlights the role that small grains are playing in driving a fragmen-
tation rate in the constant threshold model. In the g+b model and
the model with the mass-ratio-dependent fragmentation threshold,
the maximum particle size is still increasing slowly as the particles
grow through the bouncing barrier. However, the high fragmenta-
tion rate in the constant fragmentation threshold g+b+f model has
already driven the distribution into an equilibrium between growth
and fragmentation. As noted by Garaud et al. (2013), the unphysi-
cally high rate of fragmentation caused by small grains causes the
maximum size of dust grains to be dependent on the size of the
smallest grains used. This is not an issue for the mass-dependent
fragmentation model, which we have confirmed by repeating the
g+b+f model with a minimum grain size 10 times smaller.

Figure 4. Particle distribution at 1 au for the full mass-transfer model with
the standard parameters computed at different resolutions. The blue and
black lines show the solutions using the coarse and fine methods, respec-
tively. The magenta line shows a model where the mass-transfer region
of collisions results in bouncing rather than growth. The grey dashed line
denotes one particle per logarithmic interval in mass and disc radius.

The g+b and g+b+f models show that the two numerical meth-
ods are highly successful at capturing the bulk of the mass distribu-
tion and along with the very steep cut-off in the density distribution
that makes resolving low levels of breakthrough so challenging.
These tests show further evidence of excess diffusion in the tail of
the coarse method, along with the slight shift in the peak density
to larger sizes that is likely responsible for the strong resolution
dependence on the breakthrough time found by Dra̧żkowska et al.
(2014).

5 C O N D I T I O N S FO R B R E A K T H RO U G H

5.1 Simple fragmentation model (fixed vf)

We first discuss the range of behaviours seen in the different models
before exploring the parameter space in more detail. The typical
behaviours vary from models that experience no breakthrough at all,
to wholesale breakthrough along with models that show a low level
of breakthrough in which a tiny fraction of particles are able to grow
beyond the bouncing barrier. We base this discussion around models
using our fiducial parameters (Table 1), considering the growth of
particles at 1 au and varying the threshold for mass transfer φ. For
all the models considered in this section, we use a grid that extends
from 1 μm to 10 km.5 For the initial conditions, we assumed that
the grains were all initially close to the minimum particle size
used, 1 μm. To ensure that the initial conditions were resolved, we
represent this with a Gaussian distribution with a mean and standard
deviation of 1 and 0.1 μm, respectively, although the results are not
sensitive to this choice. Fig. 4 shows the results of models with
φ = 100 at 6000 yr computed with both methods. Instead of n(m),
we plot m d�

dm
= m2n(m)H , a proxy for the vertically integrated

5 Our coagulation model has not been designed for such large particles (∼km
size). Neglected processes, including the particles’ gravity, are important for
accurate modelling of these large sizes. For our purpose, which is to study
breakthrough of the bouncing barrier, the detailed growth of these particles
is less important than the fact that growth beyond the barrier at around mm
sizes can occur at all.
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Figure 5. Time evolution of the standard breakthrough model, computed
with the fine subgrid method and Nbd = 20. The grey dashed line denotes
one particle per unit logarithmic internal in mass and disc radius.

mass per unit logarithmic interval. In addition to the mass-transfer
models, Fig. 4 includes a modified g+b+f model in which high-
velocity collisions (v > vf) with mass ratio above φ are assumed to
result in bouncing instead of growth by mass transfer.

The main features of this model have been described in detail by
Garaud et al. (2013) and Dra̧żkowska et al. (2014), but we repeat
them here for clarity. Considering first the models without growth
by mass transfer, we see that the mass distribution is monotoni-
cally decreasing for sizes beyond the peak. This small number of
particles beyond the peak size is already a sign of lucky growth,
when compared with models that do not include the full distri-
bution of collision velocities (cf. Windmark et al. 2012b; Garaud
et al. 2013), which instead show a sharp cut-off in the mass dis-
tribution due to a sharp transition from growth to fragmentation.
However, because the mean collision velocity continually increases
above the bouncing threshold the probability of growth continually
decreases while the probability of fragmentation increases, result-
ing in a monotonic decrease in the number of particles with size.
Conversely, in cases that include mass transfer, we see that once
particles reach a given size (a few cm in this model), the most likely
outcome becomes growth again. We will say that particles that have
successfully reached this region have broken through the bouncing
barrier. Finally, it is worth noting that the maximum size of parti-
cles that have broken through will eventually be limited by removal
of the largest grains by radial drift (Birnstiel et al. 2010; Estrada
et al. 2016), which is not included in our local models.

Although the mass-transfer models with φ = 100 show break-
through (Fig. 4), we see that the level of breakthrough is very small
in both cases, so much so that no particles can be expected to break-
through within the lifetime of the disc. Both methods are able to
identify that breakthrough is negligible in this case, although it is
clear that the level of breakthrough produced in the coarse subgrid
model is entirely dominated by diffusive growth. In comparison,
the fine subgrid model underestimates the amount of breakthrough.

For this choice of parameters, we are not able to find convergence
with either method, but the fine grid shows considerably less varia-
tion which suggests that it is closer to the true solution. To confirm
this, we computed the mean density of particles per logarithmic
interval for sizes between 2 and 100 cm and performed Richardson
extrapolation on the three highest resolution simulations available
for each method (see Fig. 4) to estimate the level of breakthrough

Figure 6. Particle distribution at 1 au for the full mass-transfer model with
the standard parameters, except with φ = 50. The model is computed with
Nbd = 30 (black) and Nbd = 40 (blue). Above the bouncing barrier, dN

dm

continues to increase until breakthrough occurs after 2.0 × 105 yr.

that the two methods are converging to. This produced estimates
of 10−62 for the coarse subgrid method and 10−68 for the fine-grid
method. Although these estimates are still quite different, given the
vast difference between the numerical results, we can have some
confidence that the two methods are converging towards the same
solution and that the fine subgrid model does a better job of re-
producing it. In Fig. 5, we show the time evolution of the fiducial
model. We see that within about 6 × 104 yr the bulk of the distri-
bution has reached a steady state, with n(m) in the breakthrough
region being constant in time. Beyond the transition size, particles
grow by sweeping up smaller particles, whereas below the transition
collisions result in fragmentation.

The form of the steady-state distribution for the bulk of the mass
distribution is due to self-similar growth. Birnstiel, Ormel & Dulle-
mond (2011) explained the form of the bulk of the distribution
as follows: the mass flux of growing particles is constant with
the small particles being replenished by fragmentation. Similar ar-
guments also apply in the power-law tail of particles beyond the
bouncing barrier. Since in this region the particle density is very
low, collisions between similarly sized particles can be neglected
and growth occurs by sweeping up small particles. The growth rate
of the particles is then simply proportional to their area, dm

dt
∝ m2/3,

which produces a n(m) ∝ m−2/3 distribution. The maximum size of
particles that have broken through continually increases according
to m(t) ∝ t3. From our simulations, we measure n(m) ∝ m−0.65, in
good agreement. We note that this slope is different to the n(m) ∝
m−1.51 that Lee (2000) find for the same cross-section and constant
collision velocities, but the growth rate is the same. The different
slope should be expected since here there is an essentially infinite
reservoir of small particles to drive the growth while in Lee (2000)
growth of the bulk of the distribution occurs predominantly through
collisions with similar sized objects.

In contrast, at φ = 50, we see a different behaviour. In this
case, we eventually observe wholesale breakthrough after about
200 000 yr, as shown in Fig. 6. In conjunction with breakthrough, the
fragmentation rate increases leading to a larger population of small
grains. We note that the structure seen in m d�

dm
at the largest sizes

remains from the initial transient that occurs as the first particles
break through the bouncing barrier (seen at a few 104 cm after
5 × 104 yr in Fig. 6). While the shape of this feature is not dependent
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Figure 7. Breakthrough time for the same model as Fig. 6 as a function of
resolution.

on resolution, we do not ascribe any importance to it as it may
depend on the initial conditions.

Comparing the two resolutions shown in Fig. 6, we see excellent
agreement between the solutions at Nbd = 30 and Nbd = 40 at
5 × 104 yr. Similarly, at 5 × 104 yr, even lower resolutions (not
shown) are also in excellent agreement. However, when the two
models are close to breakthrough, the differences are larger, with
the lower resolutions breaking through earlier. After breakthrough,
once again the two solutions are in excellent agreement. Given the
good agreement before and after breakthrough, this suggests that
diffusive growth should not affect the long-term behaviour when
this type of wholesale breakthrough occurs.

Similarly to Dra̧żkowska et al. (2014), to quantify the resolu-
tion dependence and convergence in breakthrough models, we use
the time at which breakthrough occurs, tbreak. We define this to be
the time at which more than half the mass is in particles of size
s > 10 cm. Fig. 7 demonstrates the resolution dependence of tbreak.
While there is some resolution dependence in tbreak, we see that
at modest resolution (Nbd = 20) the error is already less than 10
per cent. We have not computed tbreak using the coarse method due
to the long integration time and additional computational cost of the
coarse method; however, figs 2 and 3 in Dra̧żkowska et al. (2014)
show a similar error for Nbd = 10 (approximately a factor of 2).

To demonstrate why reducing φ leads to breakthrough, we show
another model for φ = 30 and R = 3 au. In this model (Fig. 8), it is
easy to see that the slow increase in the number density in the tail
occurs along with a gradual shift of the peak of the distribution (near
1 mm) to larger sizes and an increase in number of particles at small
sizes. Thus, lucky growth has two effects: (1) a few particles are
able to grow large enough to be able to sweep up small particles and
grow via mass transfer, essentially by luckily avoiding fragmenting
collisions and (2) as the peak of the distributions moves to larger
sizes, it is able to slowly grow via an increasingly small contribution
of low-velocity collisions. As (2) occurs, the mean collision velocity
increases, increasing the population of small grains produced by
fragmentation. This additionally increases the rate of growth by
mass transfer, eventually leading to rapid breakthrough.

We now turn our attention to how the model parameters affect
the distribution of particle masses by varying R, α, and φ. In Fig. 9,
we show the results of models at Nbd = 20. We see that while
varying R and α affects the bulk of the distribution and the level of
breakthrough in the tail of the distribution, only φ affects whether

Figure 8. Breakthrough at R = 3 au with φ = 30. The solution shown is
computed for Nbd = 20.

breakthrough occurs. The effects of varying R, and α are consis-
tent with results found in previous works (e.g. Brauer et al. 2008;
Windmark et al. 2012b; Garaud et al. 2013): increasing R leads
to particles reaching the bouncing barrier at smaller sizes since the
increase in St (which increases the collision velocity) outweighs the
decrease in cs and � (which decrease the collision velocity), while
increasing α leads to higher collision velocities and hence faster
growth but smaller sizes at the bouncing barrier.

The higher level of breakthrough at α = 10−1 shown in Fig. 9
shows a change in regime. For such strong turbulence, the frag-
mentation barrier appears at the boundary between the turbulence-
dominated and Brownian motion-dominated regimes, where there
is a large jump in the collision velocity (e.g. fig. 3 of Ormel &
Cuzzi 2007). The reason breakthrough happens more readily in this
case is due to the shape of the density distribution. Since there is no
bouncing regime, there is no region of slower growth that causes a
bump in the density distribution. This means that growth by mass
transfer is more efficient relative to fragmentation, making break-
through easier. In this high-α regime, the size at the fragmentation
boundary becomes independent of α, instead being controlled by
the Reynolds number, which we have taken to be 108.

In exploring a full grid of the parameter space shown in Fig. 9 us-
ing the fine subgrid model, we found that at φ = 100 breakthrough is
always restricted to the tails of the distribution, and always at levels
that are low enough to be negligible (i.e. the expected number of
particles breaking through within 106 yr is less than 1). Conversely,
for φ � 50 we found that breakthrough always eventually occurs
in the bulk of the distribution (although this can take considerably
longer than 106 yr at large distances and low α). This gives three
types of behaviour for this model. The extremes are that without
mass transfer no breakthrough occurs, and for efficient mass transfer
eventually the whole distribution overcomes the bouncing barrier.
In the middle region, a few particles in the tail breakthrough; how-
ever, the range of φ in which this behaviour results in a significant
number of particles growing beyond the bouncing barrier is small
(100 � φ � 50).

While quantitative agreement with previous studies is not possi-
ble because they were either affected by excessive diffusive growth
or used a different kernel, we can compare qualitatively our types of
behaviour to previous studies on breakthrough. First, we note that
both methods produce the same phenomenological behaviour in all
cases, i.e. they agree whether breakthrough occurs in the bulk of the
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Figure 9. Mass distribution at 106 yr for different models. All models are computed at a resolution of Nbd = 20 and use the canonical parameters, but at
R = 10 au. In each panel, one of either R, α, or φ are varied. The grey dotted line denotes one particle per logarithmic interval in mass and radius at 10 au. In the
left-hand panel, both φ = 100 (black) and φ = 50 (cyan) are shown. The critical mass ratio φ is much more important for determining whether breakthrough
occurs than the other parameters.

distribution, the tails, or not at all. We find excellent phenomenolog-
ical agreement with Garaud et al. (2013), who use the same kernel
as us and the coarse subgrid approach at a lower resolution. For
example, they also find wholesale breakthrough at φ = 50, while at
φ = 100 they find that breakthrough only occurs in the tails, albeit
at a much higher level than we do. A comparison with Windmark
et al. (2012b) is more difficult as they only present a single model
at 50 000 yr and with a different velocity law. In our closest model
to theirs, i.e. with φ = 50, we find wholesale breakthrough after
200 000–250 000 yr, and also find higher levels of breakthrough
at 50 000 yr. Since our method produces lower diffusion than the
coarse subgrid method (which they use), the higher level of break-
through likely reflects that breakthrough is easier when accounting
for the full distribution than using a Maxwellian approximation, as
found by Garaud et al. (2013). Similarly, we agree with Dra̧żkowska
et al. (2014) in the resolution needed to accurately resolve the break-
through time. The relatively good qualitative agreement that we find
with these previous works shows that their conclusions are robust
despite the numerical problems they encountered.

5.2 Physically motivated model

We now consider how the physically motivated fragmentation and
mass-transfer model affects lucky growth and breakthrough. In
Section 4, we already saw that the total fragmentation rate can
be much lower than in the simple model, and thus, we expect break-
through to occur more readily. In Fig. 10, we show the evolution of
the default model, but using the physically motivated fragmentation
and mass-transfer model, with εm = 0.1. The evolution again fol-
lows the pattern of rapid growth up to mm sizes, which stalls and is
then followed by breakthrough.

As in the simple model with low values of the critical mass-
transfer ratio, breakthrough is driven by a combination of the slow
increase in the peak grain size and mass transfer in the tail. This is
illustrated in Fig. 11, where εm has been varied. At 3 × 103 yr, the
models with εm = 10−2 and 0.1 have the same density at the peak
size (∼10−2 cm), but the number of particles in the tails differs. Once
the number of particles that breakthrough becomes significant, the
evolution at the peak begins to differ as well. This demonstrates that

Figure 10. Evolution of the mass distribution for the physically motivated
fragmentation model, with εm = 0.1, at 1 au, computed using the fine subgrid
model and Nbd = 20.

mass transfer is not affecting the evolution of the peak size prior
to wholesale breakthrough. However, the mass-transfer efficiency
does affect the time taken to breakthrough, though fairly weakly
with tests over a range of conditions showing the breakthrough time-
scales as ∼(εm)1/2. Conversely, the growth rate once breakthrough
has occurred is more sensitive to the mass-transfer efficiency, as can
be seen by the maximum size of particles in Fig. 11.

Similarly to the simple fragmentation model, the fine subgrid
model is more effective at resolving the density structure, as shown
in Fig. 12. Both methods are again effective at capturing the phe-
nomenological behaviour, but as before the coarse subgrid model
shows artificially enhanced growth. This results in slightly earlier
breakthrough, which leads to the turnover in the density appearing
at larger sizes. This difference persists as the evolution continues.
At higher resolution, the differences are smaller with the coarse
subgrid model converging towards the fine subgrid model.

We have also explored whether this model ever gives rise to the
type of growth seen in the simple model with large φ: the bulk of the
mass remaining below the bouncing barrier, but with a small number
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Figure 11. Mass distribution for different mass-transfer efficiencies at two
different times, for a model with α = 10−3 and R = 5 au. Models were
computed with the fine subgrid model and Nbd = 20. At 3 × 104 yr, the
model with εm = 0.01 is just beginning to break through the bouncing
barrier.

Figure 12. Convergence of the mass distribution for the physically moti-
vated fragmentation model (with εm = 0.1) using both the fine (black) and
coarse (cyan) subgrid models at two times.

of particles able to breakthrough and grow to large sizes. However,
we find that reducing the mass-transfer efficiency, εm, does not
produce this behaviour, instead it just delays the wholesale break-
through and slows subsequent growth. We also experimented with
re-introducing the critical mass ratio, φ, such that only collisions
between particles of mass ratio greater than φ are considered for
growth by mass transfer, again finding that this increases the break-
through time without changing the phenomenological behaviour.

6 D ISCUSSION

The tendency of grains to bounce off of each other even at relatively
low velocity (a few cm s−1 when compact; Seizinger & Kley 2013)
presents a barrier to growth that can trap grains at millimetre to
centimetre sizes. The extra stickiness of icy grains in the outer disc
means that they may remain porous and avoid the bouncing barrier
(Okuzumi et al. 2012; Krijt et al. 2015), thus bouncing is likely most
important in the inner disc. However, it has been suggested that this
barrier may be overcome through a combination of rare low-velocity

collisions between particles that result in growth and mass transfer,
a process in which one of the colliding particles fragments and is
partially accreted by the other (Windmark et al. 2012a,b; Garaud
et al. 2013; Estrada et al. 2016).

The efficiency of these processes in overcoming the bouncing
barrier has, however, remained uncertain. This is in part due to the
previous studies lacking the necessary resolution to accurately de-
termine the outcome, further exacerbated by overly simple growth
and fragmentation models usually employed. The simple models
employed assume that collisions above a fixed threshold velocity
resulted in fragmentation, unless the mass ratio between the collid-
ing particles was above some critical threshold, φ, in which case the
result was instead growth by mass transfer. To resolve the numerical
issues, we have conducted a detailed study of breakthrough using a
pair of numerical approaches, including a standard Smoluchowski
equation based approach (Brauer et al. 2008; Garaud et al. 2013)
and a rapidly converging variant based upon Lee (2000) to separate
physical behaviour from numerical artefacts.

Here, we investigated the overly optimistic case in which mass
transfer is assumed to be perfectly efficient, i.e. high-velocity col-
lisions between pairs of particles above the threshold result in
sticking, whereas those below it result in fragmentation. These
two numerical methods show that despite difficulties achieving
numerically converged results, the phenomenological behaviour
seen in previous studies is robust (Windmark et al. 2012b; Garaud
et al. 2013; Dra̧żkowska et al. 2014). These results can be sum-
marized into three behaviours. Without mass transfer, a few lucky
particles may grow beyond the bouncing barrier, but never to large
sizes. With mass transfer and φ � 100, fragmentation is so efficient
that growth far beyond the bouncing barrier is limited to a few lucky
particles that managed to grow without fragmenting. Using high-
resolution models, we determined that the number of particles that
manage to proceed growth this way is negligibly small, and thus,
growth essentially stops at the bouncing barrier in this region too.
For φ � 50, the phenomenological behaviour was entirely different:
Growth beyond the bouncing barrier proceeds initially with a small
number of particles, but this continually increases until the whole
distribution of particles breakthrough.

The above results would appear to suggest that growth beyond
the bouncing barrier is not important in general because the mass-
transfer efficiency is typically much smaller than 100 per cent. Nu-
merical and experimental results suggest that the efficiency of mass
transfer is typically only around 10 per cent (Beitz et al. 2011;
Windmark et al. 2012a; Seizinger & Kley 2013). Whether a lower
mass-transfer efficiency would require a lower φ for breakthrough
in the bulk of the distribution is not immediately clear, because this
form of breakthrough is associated with the slow increase in the
average size of the particles, which can occur due to lucky growth
of particles at the bouncing barrier. However, φ clearly affects the
rate at which an average size particle grows (compare Fig. 6 with
Fig. 8, which breaks through earlier despite the lower collision rate
at 3 au), and the time taken for breakthrough (which can be seen
from Fig. 9, where φ = 30 has broken through at 106 yr but φ = 50
has not). This suggests that a smaller critical φ may be needed with
a lower mass-transfer efficiency.

However, Estrada et al. (2016) found significant levels of break-
through (albeit never in the bulk of the mass distribution) in global
models that were based on a physical prescription for mass trans-
fer and fragmentation following Windmark et al. (2012a), that also
included erosion and are based upon experimental data (Güttler
et al. 2010). This result is surprising in the context of the results
above due to the lower mass-transfer efficiency. To explore this,
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we have also investigated breakthrough in a model that includes a
more physically motivated fragmentation model, which takes into
account the dependence of the fragmentation threshold on the mass
ratio of the colliding particles (see Section 3). The essence of this
is that when the mass ratio is large, collisions above the standard
fragmentation threshold may fragment the smaller particle, without
having the energy to fragment the larger one, resulting in a higher
fragmentation threshold for the larger particle. Collisions between
the two thresholds were assumed to result in mass transfer, with
some efficiency, εm ≤ 1. This greatly reduces the fragmentation
rate between pairs of particles with large mass ratios.

The lower fragmentation rate of particles near the bouncing
threshold in the physically motivated model means that break-
through can occur much more readily. Our models showed that even
at low mass-transfer efficiencies breakthrough can eventually occur
in the bulk of the distribution. However, we note that for low mass-
transfer efficiencies, breakthrough will be prevented by radial drift
removing the largest particles before they grow large enough be-
cause the radial drift time-scale is typically shorter than the growth
time-scale for Stokes numbers close to unity (Birnstiel, Klahr &
Ercolano 2012), except perhaps in the case of porous growth (Krijt
et al. 2016). This model shows the prospects for breakthrough re-
main more optimistic than the simple models would suggest, and
that differences between such simple models and the global models
of Estrada et al. (2016) are attributable to a different treatment of
fragmentation.

The physically motivated models presented here, along with
Estrada et al. (2016), show that the bouncing barrier is likely ‘soft’,
i.e. given enough time particles are able to grow beyond it until
limited by some other process. In smooth discs, this is likely the
removal of large grains by radial drift. However, in particle traps
where radial drift is prevented growth to large sizes may be possible.
Finally, erosion, which we have also not included, also likely plays
an important role for determining how large the grains are able to
grow.

Recent experimental work supports the idea of growth beyond
the bouncing barrier. Kruss, Teiser & Wurm (2017) found that even
though large particles do not grow through low-velocity collisions
because the aggregate is too weak and breaks apart again. They
also showed that large particles at the bouncing barrier are able to
still grow by sweeping up small particles. Since infrequent high-
velocity collisions are able to maintain a reservoir of small particles
(see e.g. Garaud et al. 2013), particles at the bouncing barrier will
be able to continue to grow. Thus, the prospects for growth beyond
the bouncing barrier to larger sizes are good.

7 C O N C L U S I O N S

Using a high-precision Smoluchowski equation approach to coagu-
lation and fragmentation (based on Lee 2000), we have revisited the
role of bouncing, fragmentation, and mass transfer in the evolution
of compact grains that are close to the bouncing barrier (mm or cm
sizes). Taking into account the full distribution of collision veloci-
ties, we have investigated the role of lucky growth in the evolution,
i.e. whether particles can grow beyond the bouncing barrier through
infrequent collisions at low velocity despite the high mean collision
velocity.

Our models confirm previous work based on simple models for
mass transfer and fragmentation, which found that growth by mass
transfer, in which one particle is fragmented and partially accreted
by the other, can help particles grow beyond the bouncing bar-
rier (e.g. Windmark et al. 2012b; Garaud et al. 2013; Dra̧żkowska

et al. 2014). Using a numerical approach with low diffusion, we
were able to demonstrate that typically the number of particles
breaking through the bouncing barrier is negligibly low unless the
critical mass ratio, φ, above which high-velocity collisions result in
growth rather than fragmentation is low (φ � 50). Given that we
assumed an overly efficient model for mass transfer, this appeared
to suggest that growth beyond the bouncing barrier is unlikely.

However, in a second model that includes the fact that the frag-
mentation threshold increases with mass ratio, we found that growth
beyond the bouncing barrier can occur much more readily. The dif-
ferences arise because the slow growth beyond the bouncing barrier
is in competition with fragmentation. Since fragmentation requires
higher velocities at higher mass ratio, this model produces a lower
fragmentation rate and thus growth is much easier.
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