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Decoy-state quantum key distribution with more than three types of photon intensity pulses
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The decoy-state method closes source security loopholes in quantum key distribution (QKD) using a laser
source. In this method, accurate estimates of the detection rates of vacuum and single-photon events plus the error
rate of single-photon events are needed to give a good enough lower bound of the secret key rate. Nonetheless,
the current estimation method for these detection and error rates, which uses three types of photon intensities, is
accurate up to about 1% relative error. Here I report an experimentally feasible way that greatly improves these
estimates and hence increases the one-way key rate of the BB84 QKD protocol with unbiased bases selection
by at least 20% on average in realistic settings. The major tricks are the use of more than three types of photon
intensities plus the fact that estimating bounds of the above detection and error rates is numerically stable, although
these bounds are related to the inversion of a high condition number matrix.
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In quantum key distribution (QKD), two trusted parties,
Alice and Bob, share a secret key via preparation and measure-
ment of photons transmitted through a noisy channel controlled
by an eavesdropper, Eve. Most QKD experiments to date em-
ploy phase-randomized Poissonian distributed photon sources
to generate photons at a reasonably high rate and use the
decoy-state method to tackle Eve’s photon-number-splitting
attack on multiple photon events emitted from the Poissonian
sources. (See, for example, Ref. [1] for an overview.) The key
idea of the decoy-state method is that although Eve knows
the photon number in each pulse, she does not know the
probability distribution of photon number from which the pulse
is drawn. So, by preparing each photon pulse independently
from a collection of Poissonian sources with different intensity
parameters (in other words, different average photon number
per pulse), Alice and Bob may obtain a lower bound of
the key rate of the final secret key they share [2,3]. The
decoy-state technique can handle a variety of QKD protocols
including those with two-way classical postprocessing [4],
those involving the transmission of qudits [5], and those with
finite raw key length [6].

However, the state-of-the-art method to date, which em-
ploys a Poissonian source with three different types of
intensities—one high, one weak, and one equal or close to
zero intensity—is inefficient for two reasons. First, using weak
and zero intensity photon pulses lowers the average photon
transmission rate. Second, the provably secure decoy-state key
rate depends on good enough lower bounds on parameters
YX,0, YX,1, YZ,1 together with a good upper bound on eZ,1
to be defined later. Nonetheless, I am going to report later
in the Rapid Communication that the bounds of these four
parameters obtained through the state-of-the-art method used
in Refs. [2,3,6,7] deviate from their actual values with an
average relative erros of ≈1% over a set of randomly chosen
quantum channels.
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Here I show how to perform decoy-state QKD using
higher average photon intensity pulses plus refined upper and
lower bounds on the above four parameters to give a much
improved provably secure key rate in realistic settings used in
typical QKD experiments with finite raw key length. The main
ingredients used here are the use of more than three different
types of photon intensities plus the observation that the lower
and upper bounds obtained are numerically stable, although
one has to effectively invert a large condition number matrix. I
illustrate the key idea using a specific BB84 QKD protocol [8]
which uses the X measurement results to generate the raw key
and the Zmeasurement results to check the channel phase error
here. It is straightforward to extend the analysis to other QKD
schemes such as the six-state scheme and some qudit-based
schemes [9,10].

Suppose Alice and Bob use k � 2 different photon in-
tensities labeled μ1 > μ2 > · · · > μk � 0 with probabilities
pμ1 , . . . ,pμk

. The observed average yield per photon pulse
prepared in the B = X and Z bases using intensity μn is given
by [2,3,7]

QB,μn
=

+∞∑
m=0

μm
n YB,m exp(−μn)

m!
, (1)

where YB,m is the probability of photon detection by Bob given
that the photon pulse sent by Alice contains m photons. (From
now on, B denotes either X or Z.) Similarly, the observed
average bit error rate EB,μn

is given by

QB,μn
EB,μn

=
+∞∑
m=0

μm
n YB,meB,m exp(−μn)

m!
, (2)

where eB,m is the bit error rate for m photon emission events
prepared in the B basis.

As YB,m and eB,m are independent of the intensity parameter
μn used, they can be in estimated or bounded by solving
Eqs. (1) and (2) from a collection of intensity parameters μn.
Numerical stability issue aside, infinitely many intensities μn

are needed to determine all the YB,m’s and eB,m’s. Fortunately,
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they only need to know lower bounds of YX,0,YX,1 and an upper
bound of H2(eZ,1) to give a lower bound of the one-way secret
key rate R of the BB84 QKD protocol with the raw key all
coming from X measurements. This is because the secret key
rate R, which is defined as the number of final secret bits
divided by the expected number of photon pulses sent through
the channel, is given by [6]

R = p2
X

{
〈exp(−μ)〉YX,0 + 〈μ exp(−μ)〉YX,1[1 − H2(ep)]

−〈QX,μH2(EX,μ)〉 − 〈QX,μ〉
�raw

[
6 log2

χ (k)

εsec
+ log2

2

εcor

]}
.

(3)

Here pX is the chance that Alice (Bob) uses X as the
preparation (measurement) basis, the symbol 〈f (μ)〉 denotes∑k

n=1 pμn
f (μn), H2(x) ≡ −x log2 x − (1 − x) log2(1 − x) is

the binary entropy function, ep is the phase error rate of the
single-photon events in the raw key, and �raw is the length of
the raw sifted key bits. For BB84, ep → eZ,1 as �raw → +∞.
Also, the probability that the final secret keys shared between
Alice and Bob are different is at most εcor, Eve’s information on
the final key is at most εsec [11–13], and χ (k) is a QKD scheme
specific factor depending on the number of photon intensities
k as well as the detailed security analysis used. For the case
studied by Lim et al. in Ref. [6], χ (3) = 21.

We shall see from Eq. (4) below, the current method of
getting an upper bound for eZ,1 requires knowledge of the
lower bounds of YZ,0 and YZ,1 plus an upper bound of YZ,1eZ,1
[6,7]. The goal, therefore, is to determine the bounds for the
five parameters—YB,m (B = X and Z, m = 0,1) and eZ,1—as
close to their actual values as possible using finite types of
photon intensities k (and hence a finite number of QB,μn

’s
and QB,μn

EB,μn
’s). The current method uses three different

intensities μ1 > μ2 > μ3 � 0 and the corresponding bounds
are given by

YB,0 �
μ2Q

〈〈1〉〉
B,μ3

exp(μ3) − μ3Q
〈〈0〉〉
B,μ2

exp(μ2)

μ2 − μ3
, (4a)

YB,1eB,1

� (QB,μ2EB,μ2 )〈〈0〉〉 exp(μ2) − (QB,μ3EB,μ3 )〈〈1〉〉 exp(μ3)

μ2 − μ3
,

(4b)

and

YB,1 � μ1

μ1(μ2 − μ3) − μ2
2 + μ2

3

{
Q

〈〈1〉〉
B,μ2

exp(μ2) − Q
〈〈0〉〉
B,μ3

× exp(μ3) +
(
μ2

2 − μ2
3

)[
YB,0 − Q

〈〈0〉〉
B,μ1

exp(μ1)
]

μ2
1

}

(4c)

provided that μ1 > μ2 + μ3 [6,7]. In the above equa-
tions, Q

〈〈i〉〉
B,μn

= QB,μn
+ (−1)i�QB,μn

and (QB,μn
EB,μn

)〈〈i〉〉 =
QB,μn

EB,μn
+ (−1)i�(QB,μn

EB,μn
), where �-ed quantities are

the upper bounds on the statistical fluctuation due to finite-

size sampling. From the Hoeffding inequality [14], these
fluctuations can be taken to be at most

�QB,μn
= 〈QB,μ〉

pμn

{
ln

[
χ(k)
εsec

]
2sB

}1/2

(5a)

and

�
(
QZ,μn

EZ,μn

) = 1

pμn

{ 〈QZ,μ〉〈QZ,μEZ,μ〉 ln
[

χ(k)
εsec

]
2sZ

}1/2

,

(5b)
each with probability at least 1 − εsec/χ (k), where sB is the
number of bits that Alice prepares and Bob successfully
measures in the B basis. Obviously, sX = �raw and sZ ≈ (1 −
pX)2sX/p

2
X. Due to finite key length, the phase error rate of the

single-photon events in the raw key is upper bounded by [15]

ep � eZ,1 + γ̄ (εsec/χ (k),eZ,1,sZYZ,1〈μ exp(−μ)〉/〈QZ,μ〉,
sXYX,1〈μ exp(−μ)〉/〈QX,μ〉) (6)

with probability at least 1 − εsec/χ (k), where

γ̄ (a,b,c,d) ≡
√

(c + d)(1 − b)b

cd
ln

[
c + d

2πcd(1 − b)ba2

]
.

(7)

This equation is based on the estimate in Ref. [6], which
in turn is deduced from Eqs. (18) and (22) in Ref. [15].
However, the factor 1/

√
2π is omitted in Eq. (18); and the

ln 2 factor in Eq. (22) should be in the denominator. The γ̄

above is deducted using the same way as in Ref. [15] with the
corrected equations. Note further that γ̄ is ill-defined if a,c,d

are too large. This is because in such case no ep � eZ,1 exists
with failure probability a. All parameters used in this Rapid
Communication are carefully picked so that γ̄ is well defined.

Interestingly, the YB,0 bound is tight when μ3 → 0 [6,7].
(Similar bounds have been reported in Refs. [2,16].) As for
μ1 and μ2, they cannot be too close to each other in practice.
Otherwise, the YB,1 bound may not be reliable in the case of
finite key length [2]. In most experiments to date, the key rate
R is optimized by choosing μ1 � 0.5, 0.01 � μ2 � 0.1, and
μ3 ≈ 0 [17–21].

While this choice of photon intensities can accurately
determine the value of YB,0, it is not very good at estimating
YB,1 and eZ,1. Using the above photon intensities, ignoring
finite key length effect, and by randomly picking YB,m’s in
[0,1] and eZ,m’s in [0,0.5], I numerically find from Eq. (4) that
the average (maximum) relative errors of the estimated YB,1

and YX,1H2(ep) from their true values can be as high as ≈1%
(≈5%). The deviation of the estimated YB,1 from its actual
value increases as μ1 or μ2 increase; and the deviation of the
estimated YX,1H2(ep) from its actual value increases as μ1 or
eZ,1 increase. Consequently, Alice and Bob face a dilemma.
Using smallμ1 and/orμ2 give much better estimates ofYB,1 and
YX,1H2(ep) at the expense of a lower raw key generation rate
and hence a lower R. This is particularly true in the practical
situation of a finite raw key length of �109 to 1010 bits as using
biased choice of photon intensities pμi

’s cannot increase the
key rate too much.
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Now, I show how to obtain a higher key rate by using a few
larger μn’s and better estimates for YB,1 and YX,1H2(ep). The
trick is to directly solve Eqs. (1) and (2) for k � 2 different
photon intensities. I rewrite Eq. (2) as

YB,m =
k∑

i=1

(M−1)m+1,i

⎡
⎣QB,μi

exp(μi) −
+∞∑
j=k

μ
j

i YB,j

j !

⎤
⎦

≡
k∑

i=1

(M−1)m+1,iQB,μi
exp(μi) +

+∞∑
j=k

Cm+1,j YB,j (8)

for m = 0,1, . . . ,k − 1, where Mij = μ
j−1
i /(j − 1)! for 1 �

i,j � k. In this way, I may express YB,0,YB,1, . . . ,YB,k−1 in
terms of QB,μi

’s for i = 1,2, . . . ,k, YB,j ’s for j � k, and the
k × k matrix M−1. Similarly, I use

YZ,meZ,m =
k∑

i=1

(M−1)m+1,iQZ,μi
EZ,μi

exp(μi)

+
+∞∑
j=k

Cm+1,j YZ,j eZ,j (9)

to solve YZ,meZ,m for m = 0,1, . . . ,k − 1.
At first glance, this straightforward approach appears to

be hopeless because accurate bounds of YB,m’s and YZ,meZ,m’s
(m < k) require the number of photon intensities k to be large.
Nonetheless, large k means that one has to invert the large
condition number matrix M so that the solutions of Eqs. (8) and
(9) are sensitive to perturbation on YB,j ’s and YZ,j eZ,j ’s (j � k)
as well as uncertainty due to finite sample size for QB,μi

’s and
QZ,μi

EZ,μi
’s. Numerical stability is an issue. Also, the bound

on, say, YB,1 requires extremization over all YB,j ∈ [0,1] for
j � k, which further complicates matters.

On second thought, sensitivity to perturbation and numeri-
cal stability are not relevant in computing the lower bound on R

provided that the four variables YX,0, YX,1, YZ,1, and YZ,1eZ,1 are
insensitive to perturbation and numerically stable. I now report
explicit expressions for the bounds on these four variables and
then show that these expressions are indeed numerically stable.

Multiplying column i of matrix M by μi and row j by
1/(j − 1)! gives the corresponding Vandermonde’s matrix.
So I could use the explicit expression of the inverse of this
Vandermonde’s matrix in Ref. [22] to obtain

(M−1)m+1,i = (−1)k−m−1Simm!∏
t 
=i(μi − μt )

(10)

for all 0 � m � k − 1. Here

Sim =
′∑

μt1μt2 · · · μtk−m−1 , (11)

where the primed sum is over all 1 � t1 < t2 < · · · <

tk−m−1 � k with t1,t2, . . . ,tk−m−1 
= i. Since {μi}ki=1 is a
strictly decreasing non-negative sequence, the sign of
(M−1)m+1,i equals (−1)k−m−i . Thus, a lower bound of YB,m

is obtained by replacing QB,μi
in the right-hand side of Eq. (8)

by Q
〈〈k−m−i−1〉〉
B,μi

; and an upper bound of YZ,1eZ,1 is obtained
by replacing QZ,μi

EZ,μi
in the right-hand side of Eq. (9) by

(QZ,μi
EZ,μi

)〈〈k−m−i〉〉. These bounds take care of the worst case

deviations of measured QB,μi
’s and QZ,μi

EZ,μi
’s from their

actual values due to finite sample size through the Hoeffding
inequality.

As for the extremization of YB,0 and YB,1 over YB,j ’s for
j � k, I need to know the signs of Cm+1,j for all j � k defined
in Eq. (8). In the Appendix, I show that C1j � 0 and C2j < 0
(C1j � 0 and C2j > 0) if k is even (odd). In both cases, extrema
occur when YB,j = 0 or 1 for all j � k. For better estimation
of the four variables YX,0, YX,1, YZ,1, and YZ,1eZ,1, whose values
are less than 1/2 in essentially all practical situations, it makes
sense to bound them via Eqs. (8) and (9) when the extrema
occur when YB,j = YZ,j eZ,j = 0 for all j � k. Hence, the lower
bounds of YB,0 (YB,1) should be found from Eq. (8) by putting
YB,j = 0 for all j � k using QB,μi

’s taken from an even (odd)
number of photon intensities; and the upper bound of YB,1eZ,1
should be found from Eq. (9) by putting YZ,j eZ,j = 0 for all
j � k using QZ,μi

EZ,μi
’s taken from even number of photon

intensities.
To obtain a better bound, more photon intensities can be

used. To obtain a higher key rate R, some of the photon
intensities should be as high as 1. (If μ > 1, the chance of
having a multiple photon event is too high that R is com-
promised.) Nevertheless, deviations between the actual and
measured values of QB,μi

’s increase as more photon intensities
k are used to obtain a raw key of a given length �raw. These
deviations may further amplify by M−1 in Eqs. (8) and (9). My
numerical finding suggests that four to five photon intensities
seem to give optimal key rates using realistic parameters. Out
of the k photon intensities, I use data from the least 2�k/2
 of
them to obtain the lower bound of YX,0 and the upper bound of
YZ,1eZ,1. And I use data from the least 2�(k − 1)/2
 + 1 photon
intensities to obtain the lower bound of YB,1. To sum up, the
bounds I use are

YB,0 � max

(
0,

k∑
i=k0

−Q
〈〈k0−i〉〉
B,μi

exp[μi]
∏̂

j 
=iμj∏̂
t 
=i[μi − μt ]

)
, (12a)

YB,1 � max

(
0,

k∑
i=3−k0

−Q
〈〈k0−i〉〉
B,μi

exp[μi]Ŝi∏̂
t 
=i[μi − μt ]

)
, (12b)

and

YZ,1eZ,1 � min

(
1

2
,

k∑
i=k0

[
QZ,μi

EZ,μi

]〈〈k0−i〉〉
exp[μi]Ŝi∏̂

t 
=i[μi − μt ]

)
,

(12c)

where k0 = 1(2) if k is even (odd), and
∏̂

t 
=i is over the

dummy variable t from k0 to k but skipping i. In addition, Ŝi =∑′′
μt1μt2 · · · μtk−k0−1 where the double primed sum is over

k0 � t1 < t2 < · · · < tk−k0−1 � k with t1,t2, . . . ,tk−k0−1 
= i.
[I have added the trivial conditions in Eq. (12) to prevent the
variables used in Eq. (3) from taking on absurd values.]

Interestingly, this method reduces to the bounds in Eq. (4) in
the case of k = 3 and μ3 = 0. More importantly, it is obvious
from Eq. (12) that these bounds are numerically stable provided
that the photon intensities μi are not close, say, with differences
of at least 1/10 so that the loss of precision in 1/(μi − μt ) is not
serious even taking the intensity fluctuation in realistic source
into consideration. (Intensity fluctuation of the order of 10−2 is
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easily attained in real experiments using a strong intensity and
power stable laser plus suitable attenuators.) In contrast, it is
clear that the m! factor in Eq. (10) is the origin of the numerical
instability of finding YB,m’s for large m’s.

I follow Ref. [6] by using the following security parameters:
εcor = 10−15 and εsec = κ�final, where �final ≈ RsX/(p2

X〈QX,μ〉)
is the length of the final key and κ = 10−15 can be interpreted as
the secrecy leakage per final secret bit. Following the derivation
in Ref. [6], χ (k) = 9 + (4k − 2). [The term 4k − 2 comes
from 2 × 2�k/2
 + 2 × [2�(k − 1)/2
 + 1], and the term 9 is
independent of the number of photon intensities used. Note that
using this method, χ (3) = 19, which is less than the χ used by
the current method [6] by 2. It gives a slightly higher R.]

I first study the key rate on a dedicated 100-km-long optical
fiber system using the channel model in Ref. [6], whose channel
parameters are deduced from the experiment in Ref. [23]. In
this system, QB,μ ≈ (1 + pap)(2pdc + ηsysμ) and QB,μEB,μ ≈
(1 + pap)pdc + (emisηch + papηsys/2)μ for 0 � μ � 1, with
after pulse probability pap = 4 × 10−2, dark count probability
pdc = 6 × 10−7, error rate of the optical system emis = 5 ×
10−3, and transmittances of the fiber and the system ηch =
1 × 10−2 and ηsys = 1 × 10−3 [6]. Fixing sX = 109 and the
minimum photon intensity to 1 × 10−6, while optimizing
over pX as well as all other photon intensities μ and all the
pμ’s, I find that the optimized one-way key rates for using
k = 3,4,5 equal 1.51 × 10−5, 1.57 × 10−5, and 1.46 × 10−5,
respectively. That is to say, using k = 4 in this case increases
the key rate by more than about 4% over the standard k = 3
method.

To further study the general performance on different chan-
nels, I compute the average key rate 〈R〉 over a random sample
of uniformly and independently distributed YB,m ∈ [0,Ymax]
and eB,m ∈ [0,emax] for all m � 0. [But I set eB,0 = 1/2 as this
is the basic assumption on the detector used. I also set R = 0
for those sample channels whose key rates from Eq. (3) are
negative.] Table I shows 〈R〉’s for various choices ofμi’s,pμi

’s,
Ymax, and �max using either unbiased or biased bases selection
when emax = 1%. (Note that the intensities and probabilities
of the two k = 3 cases in the table are adapted from actual
experiments [20,21].) As expected, the general trend is that
the higher the value of k, the higher the average key rate in the
infinite �max limit. The increase in 〈R〉 by using six photon
intensities can be as high as 77%. Whereas for �raw = 109

(1010), using four (five) types of photon intensities performs
better because finite-size fluctuations on QB,μi

’s and EB,μi
’s

are relatively smaller. The increase in 〈R〉 in these cases is
at least 26% (12%) using unbiased (biased) bases selection.
Among the cases with the same k, Table I suggests that those
using evenly distributed μi’s in [0,1] in general have a slightly
higher 〈R〉. It is instructive to know why. Lastly, I find that the
relative errors of the bounds YB,1 and YZ,1eZ,1 from their actual
values for cases A–H reduces from ≈10−2 to ≈10−4 when k

increases from 3 to 6 in the infinite raw key length limit. An
explanation is given in the Appendix.

In summary, I demonstrated the effectiveness of using more
than three photon intensities, with several close to 1 intensities
used with significant chance, to obtain a high provably secure
key rate through tighter bounds on YB,1 and eZ,1 and at the
same time a higher value of 〈μ exp(−μ)〉. The initial study
here shows an average of at least 20% improvement on the

TABLE I. Average key rates for different decoy states
with emax = 1% for (a) pX = 0.50 and (b) pX = 0.75 over
a sample of 106 different YB,m’s and EB,m’s. For decoy
parameters in case A, μi’s = (0.66,0.05,10−6) and pμi

’s
= (1/3,1/3,1/3). Corresponding parameters for the other cases
are B: (0.8,0.1,10−6) and (1/2,1/4,1/4); C: (0.8,0.5,0.35,10−6) and
(1/2,1/6,1/6,1/6); D: (1.0,0.67,0.33,10−6) and (1/2,1/6,1/6,1/6);
E: (0.8,0.65,0.5,0.35,10−6) and (1/2,1/8,1/8,1/8,1/8);
F: (1,0.75,0.5,0.1,10−6) and (1/2,1/8,1/8,1/8,1/8); G:
(1,0.8,0.65,0.5,0.35,10−6) and (0.5,0.1,0.1,0.1,0.1,0.1); and H:
(1,0.8,0.6,0.4,0.2,10−6) and (0.5,0.1,0.1,0.1,0.1,0.1).

(a) pX = 0.50

Average key rate when �raw =
Ymax k 109 1010 1011 ∞

0.1 A 3 2.4 × 10−4 2.9 × 10−4 3.2 × 10−4 3.4 × 10−4

B 3 4.4 × 10−4 5.1 × 10−4 5.4 × 10−4 5.6 × 10−4

C 4 4.1 × 10−4 5.7 × 10−4 6.6 × 10−4 7.1 × 10−4

D 4 5.6 × 10−4 6.9 × 10−4 7.4 × 10−4 7.7 × 10−4

E 5 2.2 × 10−4 5.2 × 10−4 7.2 × 10−4 8.7 × 10−4

F 5 5.3 × 10−4 7.3 × 10−4 8.2 × 10−4 8.9 × 10−4

G 6 2.2 × 10−5 1.9 × 10−4 5.0 × 10−4 9.9 × 10−4

H 6 2.1 × 10−4 5.1 × 10−4 7.4 × 10−4 9.4 × 10−4

0.01 A 3 2.4 × 10−5 2.9 × 10−5 3.2 × 10−5 3.3 × 10−5

B 3 4.5 × 10−5 5.1 × 10−5 5.4 × 10−5 5.6 × 10−5

C 4 4.1 × 10−5 5.7 × 10−5 6.6 × 10−5 7.1 × 10−5

D 4 5.6 × 10−5 6.8 × 10−5 7.4 × 10−5 7.7 × 10−5

E 5 2.3 × 10−5 5.2 × 10−5 7.2 × 10−5 8.6 × 10−5

F 5 5.3 × 10−5 7.3 × 10−5 8.2 × 10−5 8.8 × 10−5

G 6 2.2 × 10−6 1.9 × 10−5 5.0 × 10−5 9.8 × 10−5

H 6 2.1 × 10−5 5.1 × 10−5 7.4 × 10−5 9.3 × 10−5

(b) pX = 0.75
Average key rate when �raw =

Ymax k 109 1010 1011 ∞
0.1 A 3 3.6 × 10−4 5.6 × 10−4 6.7 × 10−4 7.5 × 10−4

B 3 7.6 × 10−4 1.0 × 10−3 1.2 × 10−3 1.3 × 10−3

C 4 4.8 × 10−4 9.8 × 10−4 1.3 × 10−3 1.6 × 10−3

D 4 8.5 × 10−4 1.3 × 10−3 1.6 × 10−3 1.7 × 10−3

E 5 1.2 × 10−4 6.9 × 10−4 1.3 × 10−3 2.0 × 10−3

F 5 6.7 × 10−4 1.3 × 10−3 1.7 × 10−3 2.0 × 10−3

G 6 2.4 × 10−6 7.8 × 10−5 5.1 × 10−4 2.2 × 10−3

H 6 1.1 × 10−4 5.8 × 10−4 1.3 × 10−3 2.1 × 10−3

0.01 A 3 3.6 × 10−5 5.6 × 10−5 6.7 × 10−5 7.5 × 10−5

B 3 7.6 × 10−5 1.0 × 10−4 1.2 × 10−4 1.3 × 10−4

C 4 4.9 × 10−5 9.8 × 10−5 1.3 × 10−4 1.6 × 10−4

D 4 8.5 × 10−5 1.3 × 10−4 1.6 × 10−4 1.7 × 10−4

E 5 1.2 × 10−5 6.9 × 10−5 1.3 × 10−4 2.0 × 10−4

F 5 6.7 × 10−5 1.3 × 10−4 1.7 × 10−4 2.0 × 10−4

G 6 2.3 × 10−7 8.0 × 10−6 5.1 × 10−5 2.2 × 10−4

H 6 1.1 × 10−5 5.8 × 10−5 1.3 × 10−4 2.1 × 10−4

average key rate. It is instructive to further optimize the choice
of intensity parameters μi and pμi

to see how far one can go.
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APPENDIX: THE SIGNS OF C0 j AND C1 j

From Eq. (10),

Cm+1,j = (−1)k−mm!

j !

k∑
i=1

μ
j

i Sim∏
t 
=i(μi − μt )

(A1)

for all 0 � m � k − 1. From Eq. (11), only the first two terms
in the above sum contain the factor (μ1 − μ2) in their denomi-
nators; and by summing these two terms, this factor is canceled
if j � 0. Note further that Cm+1,j is a symmetric function of
variables μi . Hence, Cm+1,j is a homogeneous polynomial of
degree �j − m in the case of j � m. If j � 1, terms in the
degree j homogeneous polynomial C1j contain the common
factor

∏k
n=1 μn. Therefore, C1j is actually a constant whenever

1 � j < k. Whereas, for j � k, by counting the leading power
term for μ1 in C1j , I conclude that C1j is a homogeneous
polynomial of degree j . Then, by fixing μ2,μ3, . . . ,μk and
considering the series expansion of 1/(μ1 − μn)’s in the large
μ1 limit, I get

C1j = (−1)k

j !

(
k∏

t=1

μt

)[
μ

j−k

1

k∏
r=2

(
1 + μr

μ1
+ μ2

r

μ2
1

+ · · ·
)

+ f (μ2,μ3, . . . ,μk)

]
(A2)

for some function f independent of μ1. As C1j is a homoge-
neous polynomial, by equating terms in powers of μ1, I arrive

at

C1j = (−1)k

j !

(
k∏

t=1

μt

) ∑
t1 + · · · + tk = j − k,

t1, . . . ,tk � 0

μ
t1
1 μ

t2
2 · · ·μtk

k (A3)

for all j � k. As all μi’s are non-negative, I conclude that
C1j � 0 if k is even and C1j � 0 if k is odd with equality
holds if and only if the least photon intensity μn = 0.

The same argument leads to

C2j = (−1)k−1

j !

(
k∑

t=1

μ1 · · ·μt−1μt+1 · · · μk

)

×
∑

t1 + · · · + tk = j − k,

t1 > 0,t2, . . . ,tk � 0

μ
t1
1 μ

t2
2 · · · μtk

k + f ′(μ2,μ3, . . . ,μk)

(A4)

for all j � k. Here the function f ′ can be found by recursively
expanding Eq. (A1) in the same way as Eq. (A2) in powers
of μ2 but with μ1 set to 0, and then in powers of μ3 with μ1

and μ2 set to 0, and so on. Although the resultant expression is
very complicated, it is easy to see that C2j < 0 if k is even and
C2j > 0 if k is odd. Interested readers may apply this method
to find explicit expressions for Cm+1,j ’s for m > 2.

Finally, suppose the bound of YB,1 or YZ,1eZ,1 is obtained
from a set K of k′ different photon intensities. Then, the relative
error of the bound of YB,1 from its actual value is about |C2k′ |. If
one of the used intensities μr ≈ 0, then Eq. (A4) gives |C2k′ | ≈∏

t∈K\{r} μt/k′!. For the choice of parameters in Table I, |C2k′ |
reduces from about 2% to 0.03%, which is consistent with the
numerical findings. More importantly, this estimation justifies
the use of the least 2�k/2
 or 2�(k − 1)/2
 + 1 intensities to
bound the variables in the main text.
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