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ABSTRACT 
 
This study develops three temporal multivariate random parameters Tobit models to 
analyze crash rate by injury severity; these models simultaneously accommodate 
temporal correlation and unobserved heterogeneity across observations and 
correlations across injury severity. The three models are estimated and compared in 
the Bayesian context with a crash dataset collected from Hong Kong’s Traffic 
Information System, which contains crash, road geometry, traffic, and environmental 
information on 194 directional road segments over a five-year period (2002 to 2006). 
Significant temporal effects are found in all of the temporal models, and the inclusion 
of temporal correlation considerably improves the goodness-of-fit of the multivariate 
random parameters Tobit regression, according to the results of deviance information 
criteria (DIC) and Bayesian R2, indicating the strength of considering cross-period 
temporal correlation. Moreover, after accounting for temporal effects, the magnitude 
of the correlation between the crash rates at various injury degrees decreases, 
probably because a portion of the correlation may be attributed to unobserved or 
unobservable factors with time-dependent or autoregressive safety effects. Among the 
three candidate temporal models, the one with independent temporal effects has lower 
DIC and R2 values, which suggests better model fit performance than the two with 
constant or correlated temporal effects. This finding supports the model with 
independent temporal effects as a good alternative for traffic safety analysis. 
 
Keywords: Crash rate by severity; temporal correlation; random parameters; 
multivariate Tobit model. 



 
1. Introduction 

To better understand how the safety performance of a roadway or an intersection 
is affected by factors related to traffic, geometric design, the environment, and even 
regulations and laws (Dong et al., 2017; Wu et al., 2017), the application of novel 
approaches to model crash frequency (i.e., the crash count at certain road sites over a 
specified period) has long been a research focus in the field of traffic safety analysis. 
As crash frequencies are given as non-negative integers, most of the advocated 
approaches are statistical count models. Poisson regression is the basic model that 
assumes crash occurrence to be a Poisson process (Jovanis and Chang, 1986). To deal 
with various issues related to crash-frequency data (e.g., over-dispersion, 
under-dispersion, excess zero observations, multilevel structure, spatiotemporal 
correlation, and unobserved heterogeneity), numerous Poisson model variations have 
been proposed. Lord and Mannering (2010) and Mannering and Bhat (2014) 
presented detailed descriptions and assessments of these models. 

In the past decade, much research effort has been devoted to the development of 
innovative methods to analyze crash rates (such as the number of crashes per 100 
million vehicle miles traveled), which can be regarded as good alternatives to the 
traditional crash-frequency prediction models (Anastasopoulos et al., 2008). 
Compared with crash frequency, crash rates may be more appealing because they (1) 
are a standardized measure of the relative safety performance of a roadway site, which 
is more directly useable for road safety evaluation by traffic agencies (Anastasopoulos 
et al., 2008); (2) clearly reflect the risk of accident involvement and hence are more 
understandable to the public (Ma et al., 2015b); (3) may be more effective criteria for 
ranking sites in terms of safety improvement (Xu et al., 2014); and (4) are commonly 
used in crash reporting systems. For example, the National Highway Traffic Safety 
Administration uses fatality and injury rates per 100 million vehicle miles traveled to 
describe traffic safety in the United States (NHTSA, 2012). 

Substantially different from crash frequencies, crash rates are continuous, 
non-negative numbers, and are usually left-censored at zero because no crashes may 
be observed at some sites during certain periods. Censoring refers to a limitation on 
data clustering that may result in a lower threshold (left-censored), an upper threshold 
(right-censored), or both. To handle the censoring issue, Anastasopoulos et al. (2008) 
first introduced the Tobit model to analyze crash rates, and studies have since focused 
on developing various forms of random parameters Tobit models to account for the 
heterogeneous effects of risk factors on crash rates (Anastasopoulos et al., 2012a; 
Caliendo el al., 2015; Ma et al., 2015a; Yu et al., 2015; Zeng et al., 2017b). Among 
these models, the random parameters Tobit model in refined temporal scale, 
advocated by Ma et al. (2015a), also demonstrates the significant serial correlation 
across observations in panel data. 

To evaluate the safety performance of roadway sites more comprehensively, the 
relationship between the crash rate/frequency by injury severity and the observed risk 
factors (such as the traffic, geometric, and environmental characteristics of sites) has 
been further investigated (Zeng et al., 2016a). Models for the analysis of 



crash-injury-severity rates/frequencies may reveal deficiencies undetected by the 
overall-crash-rate/frequency models, by over-exposing crash severity (Ye et al., 2009, 
2013). Hauer et al. (2004) suggested that using severity-weighted crash prediction 
models is the most cost-effective way to select sites for engineering improvement. 
Various multivariate count models have been developed to jointly analyze crash 
frequencies at different degrees of injury (Barua et al., 2014, 2016; Chiou and Fu, 
2013, 2015; Chiou et al., 2014; Dong et al., 2016a; El-Basyouny and Sayed, 2009; Ma 
and Kockelman, 2006; Ma et al., 2008; Park and Lord, 2007; Song et al., 2006). 
However, only four studies (Anastasopoulos, 2016; Anastasopoulos et al., 2012b; Xu 
et al., 2014; Zeng et al., 2017a) have focused on joint modeling crash rate by injury 
severity. Their model estimation results all find that crash rates at various severity 
levels are significantly correlated. The significant correlation is attributable to 
common unobserved factors that affect crash rates across injury severity. The 
heterogeneous effects of certain risk factors are also found in the multivariate random 
parameters Tobit model proposed by Anastasopoulos (2016) and Zeng et al. (2017a), 
but none of these multivariate models account for the underlying temporal/serial 
correlation in the data of crash-injury-severity rates, which have been found in the 
prediction models for total crash rate (Ma et al., 2015a), total crash frequency (Castro 
et al., 2012; Dong et al., 2016b; Lord and Persaud, 2000; Noland et al., 2008; Quddus, 
2008; Wang and Abdel-Aty, 2006), and crash frequency by severity (Chiou and Fu, 
2015). Washington et al. (2011) pointed out that ignoring temporal correlation will 
lead to an underestimation the parameters’ variances, and thus potentially result in the 
incorrect identification of the contributing factors, with significant consequences for 
safety. 

The main objective of this study is thus to incorporate temporal correlation into a 
multivariate random parameters Tobit model to simultaneously analyze the crash rate 
by injury severity. The temporal correlation across observation periods will be 
accounted for, along with the correlation between crash rates at different severity 
levels and unobserved heterogeneity across observations. Three candidate temporal 
multivariate random parameters Tobit models are developed and compared in the 
Bayesian context, using the crash-injury-severity-rate data on 194 directional road 
segments over a five-year period (2002-2006) in Hong Kong. 

The remainder of the paper is as follows. In the next section, the proposed models 
and criteria for model comparison are specified. The collected data for model 
demonstration are described in Section 3. The detailed estimation of the proposed 
models is introduced and the results of model comparison and parameter estimation 
are discussed in Section 4. Finally, concluding remarks and directions for future 
research are presented in Section 5. 
 
2. Methods 

In this section, the formulation of the base model, a multivariate random 
parameters Tobit regression, is first explicitly specified. Three forms of temporal 
models (uniform, correlated, and independent) are then proposed. Finally, two criteria, 
the deviance information criteria (DIC) and Bayesian R2, are introduced for the 



purpose of model comparison in the context of Bayesian inference. 
 
2.1. Model specification 
2.1.1. Multivariate random parameters Tobit model 

As stated, crashes may not be reported at some sites during the analysis period, so 
crash rates are generally left-censored at zero. Empirically, on a specific site, the crash 
rate at a more severe injury degree is more likely to be zero. The Tobit regression is an 
appropriate method for analyzing censored data as it can avoid biased and inconsistent 
parameter estimates (Anastasopoulos et al., 2008). To accommodate the possible 
correlation between crash rates at various severity levels and heterogeneity in the 
effects of risk factors, a multivariate random parameters Tobit model has been 
proposed (Zeng et al., 2017a). Using a left-censored threshold of zero, the 
multivariate random parameters Tobit regression for the joint modeling of the crash 
rate by injury severity is expressed as follows: 
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where *k
itY  and k

itY  represent the unobservable and observed crash rates at injury 

severity level k  and site i during period t , respectively; N , T , and K  are the 
number of the observed sites, periods, and categorized injury severity levels, 

respectively; and 1 2, , M
it it itx x x  are the observed values of M  risk factors at site i 

during period t . k
it  denotes the random error term, which is assumed to follow a 

multi-normal distribution with zero mean, that is,  

~ ( , )it KNε 0 Σ , 

1

2

it

it

K
it

it







 
 
   
 
 
 

ε
…

, 

11 12 1

21 22 2

1 2

K

K

K K KK

  
  

  

 
 
 
 
 
 

Σ

 

 

  

 




   


,           (3) 

in which kk  ( 1, 2,k K  ) is the variance of error term k
it  while 

1 2,k k  ( 1 2k k ) 

is the covariance between 1k
it  and 2k

it . 

To account for the possible heterogeneity in the effects of risk factors and their 

correlation, the random parameters 0 1, ,k k kM
it it it    are also assumed to be 

multi-normally distributed as: 
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where mβ  and mΣ  are the mean vector and the variance-covariance matrix of m
itβ , 

respectively. If the covariance of two random parameters is not statistically significant 
(say, at the 95% credibility level), they are assumed to follow independent normal 
distributions (Zeng et al., 2017a). If a random parameter’s variance is statistically 
insignificant (say, at the 95% credibility level), it is simplified to be fixed across 
observations (Anastasopoulos et al., 2012a). 

 
2.1.2. Temporal multivariate random parameters Tobit models 

The temporal correlation may derive from time-dependent factors, which are 
unobserved or unobservable, and factors with time-dependent or autoregressive safety 
effects that are not explicitly specified in the model (Wang and Abdel-Aty, 2006). 

Adding a residual term k
it  with a lag-1 dependence into the link function Eq. (1) is a 

common method of reflecting the possible temporal correlation (Huang et al., 2009). 
To explore the best form of temporal correlation under the multivariate modeling 
framework, three temporal multivariate random parameters Tobit models are 
formulated in this study, based on the lag-1 dependence. 

(1) Temporal model I 

We first consider the case that 1 2 k K
it it it it it           , 1, 2, ,i N  , 

1, 2, ,t T  . Here, it is assumed that, for site i and period t , the temporal effects of 

all K  injury degrees are equal. Accordingly, the link function of Temporal model I 
is: 
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where the temporal terms are assumed to follow the normal distributions, which are 
based on the stationarity assumption (Huang et al., 2009), 
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In the above two equations,   is the autocorrelation coefficient and   is the 

standard deviation of the temporal terms. 
(2) Temporal model II 



Here, we consider the situation when k
it k itv  , 1, 2, ,i N  , 1, 2, ,t T  . 

The temporal effects of all K  injury degrees for any given site and period are thus 
correlated, and the link function is expressed as follows: 
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where kv  is the scale parameter for injury severity level k . 

(3) Temporal model III 

In this subsection, the temporal effects, 1 2, , ,k K
it it it it     , are assumed to be 

mutually independent, and Temporal model III is expressed as: 
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where k  and 
k

  are the autocorrelation coefficient standard deviation for injury 

severity level k , respectively. 
 

2.2. Model comparison 
The DIC and Bayesian R2, which have been extensively used for model 

comparison in research on Bayesian modeling (Huang et al., 2016a; Zeng and Huang, 
2014; Wang et al., 2017), evaluate the above candidate models.  

As a Bayesian generalization of Akaike’s information criteria, the DIC penalizes 
larger-parameter models. Specifically, it provides a Bayesian measure of model 
complexity and fitting (Spiegelhalter et al., 2005) and is defined as: 

 DIC D pD  ,                           (12) 

where  D   is the posterior mean deviance that can be taken as a Bayesian measure 

of fitting, and pD  is a complexity measure for the effective number of parameters. 

In general, models with lower DIC values are preferable, and over 10 differences can 
rule out models with a higher DIC (Spiegelhalter et al., 2005). 

The Bayesian R2, a global model-fit measurement, is used to estimate the ratio of 
the explained sum of squares to the total sum of squares (Zeng and Huang, 2014). The 
Bayesian R2 values of crash rates at each injury severity k and all observations, 

represented by 2
kR  and 2

TR  respectively, are calculated as (Zeng et al., 2017a): 
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In the above equations, 
k
it  represents the expected crash rate at injury severity level 

k and site i  during period t . kY  and Y  are the means of the crash rate at injury 

severity k and all observations, respectively. 
 
3. Data preparation and preliminary analysis 

To demonstrate the temporal correlation and to compare the proposed multivariate 
random parameters Tobit models, a crash dataset is collected from the Traffic 
Information System (TIS) maintained by the Transport Department of Hong Kong. 
This dataset contains 97 road segments (as shown in Fig. 1), whose traffic volumes 
are continuously measured by 97 core stations of the Hong Kong Annual Traffic 
Census (ATC) system. The directional average annual daily traffic (AADT) for each 
road segment adjacent to the 97 core stations ( 194N  ) from 2002 to 2006 ( 5T  ) is 
extracted from the ATC system for the analysis. 

 
[Insert Fig. 1 here] 

 
Crashes are mapped to these directional segments using geographical information 

system (GIS) techniques. The TIS categorizes crashes into three groups according to 
the severity of casualties’ injuries; fatal, serious injury, and slight injury. As fatalities 
are rare, fatal is combined with serious injury to form the category of killed and 
seriously injured (KSI) crashes ( 2K  ). The road geometric, traffic, and 
environmental information is also obtained from the TIS system. 

The yearly crash rate (number of crashes per million vehicle-kilometers traveled) 

by injury severity, k
itCR , which is used as the dependent variable in this study, is 



calculated as: 
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in which _ k
itNo crash  is the number of crashes at injury severity degree k that 

occurred on road segment i  in year t ; t
iAADT  is the AADT on road segment i  in 

year t ; and iL  is the length of segment i . Among the total observations, 64 (6.6%) 

slight injury crash rates and 316 (32.6%) KSI crash rates are 0. Table 1 summarizes 
the definitions and descriptive statistics of the variables used in the model 
development. The results of the correlation tests and multi-collinearity diagnoses 
suggest that the correlation and collinearity among these factors are insignificant. 
 
[Insert Table 1 here] 
 

The lane-changing opportunity (LCO) variable refers to the length-weighted 
average number of eligible opportunities to change lanes in a sub-segment with 
identical lane markings (Zeng et al., 2016b). In road sections with double continuous 
lines, lane changing is not allowed (as shown in Fig. 2(a)); thus, 0LCO  . In sections 
with one continuous line and one broken line, lane changing is only allowed from the 
side of the broken line to the side of the continuous line (shown in Fig. 2(b)); thus, 

1LCO  . In sections with a single broken line, lane changing is allowed between 
both adjacent lanes (as shown in Fig. 2(c)); thus, 2LCO  . Pei et al. (2012) provided 
a more detailed description of LCOs. On urban roadways, a certain proportion of 
traffic collisions occur when one of the vehicles is changing lanes. The defined LCO 
variable is expected to estimate the effect of lane-changing maneuvers (such as 
overtaking) on crash rates. 

 
[Insert Fig. 2 here] 

 
4. Model estimation and result analysis 
4.1. Model estimation 

With advances in computing methods, Bayesian inference has been gaining 
popularity as it can deal with very complex models, particularly those that do not have 
easily calculable likelihood functions (Lord and Mannering, 2010). Freeware 
WinBUGS, which is a popular platform for Bayesian inference, can be used to 
construct a flexible programming environment. Therefore, all the candidate models 
are programmed, estimated, and evaluated in WinBUGS. 

As in previous studies (Barua et al., 2016; El-Basyouny and Sayed, 2009; Zeng et 
al., 2017a), non-informative priors are specified for the parameters and the 

hyper-parameters. A diffused normal distribution 4(0,10 )N  is used as the priors of 



the elements of mβ  0,1, 12m   ,  , kv  and k ( 2)1,k  . A diffused gamma 

distribution (0.001,0.001)gamma  is used as the priors of the precisions of temporal 

effects, 21/   and 21/
k

 ( 2)1,k  . A Wishart prior ( , )W rP  is used for 1Σ  and 

1
m
Σ , where 

1, 0

0, 1

 
  
 

P  represents the scale matrix and 2r   is the degrees of 

freedom. For each model, a chain of 500,000 iterations of the Markov Chain Monte 
Carlo (MCMC) simulation are made, with the first 4,000 iterations acting as burn-ins. 
The Gelman-Rubin statistics available in WinBUGS are used to evaluate the MCMC 
convergence.  
 
4.2. Model comparison 

The results of the DIC, Bayesian R2, and hyper-parameters for model comparison 
are shown in Table 2. Compared to the multivariate random parameters Tobit base 
model, the three Temporal models obviously have much lower DIC values and much 

higher values of 2
1R , 2

2R , and 2
TR , suggesting that the Temporal models fit the 

crash-rate data much better than the base model (Huang et al., 2009). This can be 
further confirmed by the autocorrelation coefficients and standard deviations of the 
temporal terms, which are in the main statistically significant at the 95% credibility 
level. The structured temporal effects may partially capture the unstructured random 

effects, so the random effects of slight injury crash rates ( 11 ) and KSI crash rates 

( 22 ) in the Temporal models are all lower than their respective counterparts in the 

multivariate random parameters Tobit model (Washington et al., 2011). Interestingly, 

the correlation coefficient  ( 12 11 22=   ) varies from significantly positive in 

the base model to significantly negative in Temporal models I and II and to 
insignificantly negative in Temporal model III. Its magnitude drops dramatically from 
0.84 to 0.37, 0.43, and 0.03 after the incorporation of the temporal terms, possibly 
because the correlation between crash rates at the two severity degrees is mainly due 
to unobserved or unobservable factors with time-dependent or autoregressive safety 
effects, which are accounted for by the Temporal models, particularly Temporal model 
III. 

 
[Insert Table 2 here] 

 
The Bayesian R2 measure results for Temporal models I and II are comparable, 

but the latter’s DIC value is smaller, probably due to the substantial difference 

between the scale parameters, 1( 2.50)v   and 2( 5.58)v  . Temporal model III has 



the lowest DIC and the highest values of 2
1R , 2

2R , and 2
TR , which indicate that it 

outperforms the other candidate models and that the temporal effects of the crash rates 
at the two injury-severity levels are independent. According to the estimates in 
Temporal model III, we can see that the difference between the temporal effects 

mainly lies in the variation of the temporal terms’ standard deviations, 
1
( 0.10)   

and 
2
( 0.40)  .  

 
4.3 Interpretation of parameter estimation 

The multivariate random parameters Tobit model with independent temporal 
effect (Temporal model III) significantly outperforms the other three models, so only 
its risk factors’ parameter estimates (shown in Table 3) are discussed in this section. 
According to the estimation results in Table 3, the random parameters’ standard 
deviations of two factors (bus stop and lane width)1 are significant at the 95% 
credibility level for both slight injury and KSI crash rates, which demonstrates that 
these two factors have significantly heterogeneous effects on the crash rates at the two 
injury-severity levels. 

 
[Insert Table 3 here] 

 
Specifically, the effects of BS (bus stop) on the slight injury and KSI crash rates 

are found to follow two independently normal distributions, with means of 0.296 and 
0.759 and standard deviations of 0.472 and 0.685, respectively. Given these 
distributional parameters with their 95% credible intervals away from zero, the 
presence of bus stops on 73.4% and 86.6% of road segments increases the slight 
injury and KSI crash rates, respectively, which is attributable to the increased 
interaction between buses and other vehicles when they enter or leave bus bays (Pei et 
al., 2012; Zeng et al., 2016a); however, for the other 26.6% and 13.4% of road 
segments, the presence of a bus stop decreases the slight injury and KSI crash rates 
respectively, possibly due to the calming effect caused by the decreased speed when 
buses enter or leave their bays. 

Width (lane width) results in random parameters that are normally distributed, 
with means of 0.224 and 0.392 and standard deviations of 0.092 and 0.231 for slight 
injury and KSI crash rates, respectively, which indicates that widening the lanes in the 
majority (99.2% and 95.4%, respectively) of roadway segments would increase the 
slight injury and KSI crash rates, whereas widening the lanes in the minority (0.8% 
and 4.6%, respectively) of road segments would have opposite effects. Gross and 
Jovanis (2007) also found a U-shaped relationship between lane width and crash risk. 

With regard to the safety effects of other factors, which are constant across 
observations, the signs of each factor’s coefficients for both slight injury and KSI 

                                                 
1 The covariance of the two pair of random parameters is not significant at the 95% credibility level. Therefore, 
they are independently and normally distributed in Temporal model III. 



crash rates are identical, which means that they have consistent effects on the crash 
rates at the two injury severity degrees. Nevertheless, some risk factors only have 
significant effects on slight injury or KSI crash rate. 

The significant negative coefficients of AADT indicate that both the slight injury 
and KSI crash rates decrease with increasing daily traffic volume, which can be 
attributed to the reduced travel speeds caused by the greater traffic volume, thus 
decreasing the likelihood of a crash (Anastasopoulos et al., 2012a; Huang et al., 
2016b; Zeng et al., 2017a). It is notable that the crash rates at both injury severity 
levels are lower on roadway segments with higher speed limits, which contradicts 
engineering intuition and the findings of many studies (Aguero-Valverde and Jovanis, 
2008); however, some studies have suggested that roadway segments with high posted 
speed limits are usually high-grade highways with good planning, construction, 
management, and maintenance, thus promoting traffic safety (Milton and Mannering, 
1998; Zeng et al., 2016a, 2016b, 2017a). 

The estimates of the effects of Merge and Curvature on the KSI crash rate show 
that increasing the number of merging ramps or roadway curvature can significantly 
decrease the KSI crash rate. Similarly, Inter produces a significantly negative effect 
on the slight injury crash rate. The risk compensation theory may explain these 
findings; drivers may adapt to an adverse driving environment (more merging ramps 
or intersections, or a more curved roadway) by altering their driving behavior (such as 
being more careful or slowing down) (Mannering and Bhat, 2014; Zeng et al., 2017a). 
Some drivers may overcompensate for the adverse conditions, leading to a lower 
crash risk or a higher slight injury rate. Conversely, from the estimation results of the 
effect of Diverge, we find that an increase in the number of diverging ramps results in 
a higher slight injury crash rate. This conforms to engineering intuition and the 
findings of previous studies (Zeng et al., 2016a, 2017a), as the sites of approaches of 
diverging ramps are hazardous. 

LCO (lane changing opportunity) is found to have a significantly positive effect 
on the KSI crash rate, which is consistent with many studies (Pei et al., 2012; Zeng et 
al., 2016a, b), as the increased vehicle interaction caused by lane changing maneuvers 
may raise the incidence of traffic conflicts. 

 
5. Conclusions and future research 

This study proposes three temporal multivariate random parameters Tobit models 
for the joint analysis of crash rate by injury severity by considering temporal 
correlation and unobserved heterogeneity across observations and correlation between 
crash rates at different severity levels. A crash dataset including crash, road geometric, 
traffic, and environmental information on 194 directional road segments for a 
five-year period (2002-2006) in Hong Kong is used to compare the candidate models. 
They are calibrated and evaluated in the Bayesian context via programming in the 
freeware WinBUGS. 

The temporal effects, represented by (uniform, correlated, or independent) 
residual terms with a lag-1 dependence, are found statistically significant in the 
Temporal models. The results of DIC and Bayesian R2 also show that the temporal 



Tobit models have substantially better fit than the multivariate random parameters 
Tobit model, indicating that the consideration of temporal correlation across 
observations is reasonable. After accounting for the temporal correlation, the 
correlation between slight injury and KSI crash rates becomes smaller or even 
insignificant at the 95% credibility level. The multivariate random parameters Tobit 
regression with independent temporal effects (Temporal model III) is found to 
outperform the multivariate random parameters Tobit regressions with constant and 
correlated temporal effects (Temporal models I and II) in fitting the crash-rate data, 
which suggests that the temporal effects of slight injury and KSI crash rates are 
mutually independent. The results show that bus stop and lane width have 
heterogeneous effects on both slight injury and KSI crash rates.  

In summary, empirical analysis demonstrates the superiority of the multivariate 
random parameters Tobit model with independent temporal effects and the 
significance of independent temporal correlations in crash-rate data, which indicates 
that the model should be proposed to analyze crash rate by severity over successive 
periods. However, due to the limitations of the collected dataset, only two levels of 
injury severity are considered in the empirical analysis. The models presented in the 
paper are essentially bivariate models. Nevertheless, the method can be applied for 
any number (≥2) of dependent variables. Field data with more (≥3) severity categories 
could be used to further compare the models’ performance. Moreover, as with many 
other crash frequency/rate prediction models, the proposed model may suffer from 
underreporting, which would result in biased parameter estimates. Accounting for the 
effects of underreporting simultaneously would be merited. In addition, significant 
spatial correlation may exist across the crash rates of adjacent road sites (Zeng et al., 
2017b), so it would also be beneficial for future research to incorporate spatial 
correlation into the multivariate random parameters Tobit model.  
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Fig. 1. Selected roadway segments in Hong Kong for the analysis. 

 



 

(a) (b) (c) 
Fig. 2. Lane changing opportunities for different road section configurations. 



 
Table 1. Descriptive statistics of the variables. 
Variable Description Mean SD Min. Max. 

Response variable 

Slight 
Slightly injured crash count per million 

vehicle-kilometers traveled 
1.72 2.24 0 24.35 

KSI 
Killed and seriously injured crash count per 

million vehicle-kilometers traveled 
0.48 1.00 0 9.86 

Risk factors 

AADT Average annual daily traffic (103 vehicles) 22.51 20.04 1.16 101.63 

Width Average width of each lane (m) 3.62 0.62 2.60 7.30 

SL Posted speed limit (km/h) 60.62 14.85 50 110 

Merge Number of merging ramps 0.85 1.01 0 4 

Diverge Number of diverging ramps 1.75 2.31 0 17 

Inter Number of intersections 1.87 2.38 0 16 

Gradient Average segment gradient (10-2) 0.04 2.67 -9 9 

Curvature Average segment curvature 22.2 17.6 0 85 

LCO Lane changing opportunity 2.43 1.63 0 7.85 

Median Presence of median barrier: yes = 1, no = 0 0.70 0.46 0 1 

BS Presence of bus stop: yes = 1, no = 0 0.63 0.48 0 1 

Rainfall Annual precipitation (m) 2.28 0.56 1.24 3.22 

 
 



Table 2. Model comparison results. 
 Base model Temporal model I Temporal model II Temporal model III 

DIC  4573 3348 3171 2951 
2

1R  0.771 0.923 0.917 0.932 
2
2R  0.766 0.951 0.951 0.971 
2
TR  0.771 0.945 0.945 0.963 

11  0.26(0.18, 0.35)a 0.10(0.06, 0.14) 0.10(0.06, 0.15) 0.08(0.05, 0.13) 

21 12( )   047(0.33, 0.62) -0.06(-0.11, -0.01) -0.07(-0.12, -0.02) -0.01(-0.04, 0.03) 

22  1.30(0.81, 1.91) 0.28(0.11, 0.51) 0.27(0.12, 0.52) 0.17(0.07, 0.34) 
 b 

0.82(0.73, 0.90) -0.37(-0.61, -0.08) -0.43(-0.64, -0.18) -0.06(-0.35, 0.25) 
  — 0.99(0.97, 1.00) 0.98(0.97, 1.00) — 

  — 0.11(0.05, 0.09) 0.05(0.03, 0.09) — 

1v  — — 2.50(1.59, 3.66) — 

2v  — — 5.58(3.61, 7.30) — 

1  — — — 0.99(0.97, 1.00) 

1
  — — — 0.10(0.04, 0.18) 

2  — — — 0.96(0.92, 0.99) 

2
  — — — 0.40(0.22, 0.57) 

a Estimated mean (95% Bayesian credible interval) for the parameter. Boldface 
indicates statistical significance at the 95% credibility level. 

b 
12 11 22    . 

 
 



Table 3. Parameter estimation in the multivariate random-parameters Tobit model 
with independent temporal effect (Temporal model III)a. 

Variable 
Slight injury Killed and serious injury 

Mean 
95% credible interval 

Mean 
95% credible interval 

2.5% 97.5% 2.5% 97.5% 

Constant 0.438 -0.074 1.135 2.895b 1.673 4.128 

AADT -0.010 -0.018 -0.001 -0.025 -0.041 -0.010 

SL -0.011 -0.019 -0.002 -0.037 -0.055 -0.017 

Merge -0.084 -0.200 0.019 -0.246 -0.490 -0.030 

Diverge 0.068 0.004 0.126 0.005 -0.114 0.125 

Inter -0.090 -0.153 -0.028 -0.045 -0.173 0.083 

BS 0.296 0.066 0.539 0.759 0.171 1.215 

SD of BS 0.472 0.388 0.551 0.685 0.466 0.873 

Curvature -0.004 -0.013 0.004 -0.018 -0.030 -0.005 

LCO 0.053 -0.019 0.121 0.230 0.076 0.393 

Width 0.224 0.079 0.356 0.392 0.158 0.617 

SD of Width 0.092 0.067 0.115 0.231 0.183 0.272 
a Median, Gradient, and Rainfall are excluded, as none of their effects on crash rates 
at the two severity degrees is significant at the 95% credibility level.  
b Boldface indicates statistical significance at the 95% credibility level. 
 
 
 

 


