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Background: Since the early 2010s, the neuroimaging field has paid more attention to
the issue of false positives. Several journals have issued guidelines regarding statistical
thresholds. Three papers have reported the statistical analysis of the thresholds used
in fMRI literature, but they were published at least 3 years ago and surveyed papers
published during 2007–2012. This study revisited this topic to evaluate the changes in
this field.

Methods: The PubMed database was searched to identify the task-based (not
resting-state) fMRI papers published in 2017 and record their sample sizes, inferential
methods (e.g., voxelwise or clusterwise), theoretical methods (e.g., parametric or
non-parametric), significance level, cluster-defining primary threshold (CDT), volume of
analysis (whole brain or region of interest) and software used.

Results: The majority (95.6%) of the 388 analyzed articles reported statistics corrected
for multiple comparisons. A large proportion (69.6%) of the 388 articles reported main
results by clusterwise inference. The analyzed articles mostly used software Statistical
Parametric Mapping (SPM), Analysis of Functional NeuroImages (AFNI), or FMRIB
Software Library (FSL) to conduct statistical analysis. There were 70.9%, 37.6%, and
23.1% of SPM, AFNI, and FSL studies, respectively, that used a CDT of p ≤ 0.001. The
statistical sample size across the articles ranged between 7 and 1,299 with a median of
33. Sample size did not significantly correlate with the level of statistical threshold.

Conclusion: There were still around 53% (142/270) studies using clusterwise inference
that chose a more liberal CDT than p = 0.001 (n = 121) or did not report their CDT
(n = 21), down from around 61% reported by Woo et al. (2014). For FSL studies, it
seemed that the CDT practice had no improvement since the survey by Woo et al.
(2014). A few studies chose unconventional CDT such as p = 0.0125 or 0.004.
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Such practice might create an impression that the threshold alterations were attempted
to show “desired” clusters. The median sample size used in the analyzed articles was
similar to those reported in previous surveys. In conclusion, there seemed to be no
change in the statistical practice compared to the early 2010s.

Keywords: false-discovery rate, familywise error rate, fMRI, Gaussian random field, literature, Monte Carlo
stimulation, threshold, threshold-free cluster enhancement

INTRODUCTION

Functional magnetic resonance imaging (fMRI) studies—
particularly the task-based fMRI studies, the most popular type
of fMRI study—enable researchers to examine the human brain
about various aspects ranging from sensation to cognition.
Findings may bear clinical relevance such as the identification of
neural correlates of diseases or the enabling of a neuro-functional
assessment of clinical treatments.

The reproducibility of a neuroscience report depends
on numerous factors—including the methodological details,
statistical power and flexibility of the analyses (Carp, 2012).
One of the most important factors that could be assessed
relatively easily is the statistical approach used. Every paper may
set its own significance level for the statistical tests reported
(Hupé, 2015), and therefore, one may need to interpret the
significant results from different papers differently. Considering
the mass-univariate analytic approach utilized by various popular
fMRI data-processing software—such as Statistical Parametric
Mapping (SPM) (Penny et al., 2011), Analysis of Functional
NeuroImages (AFNI) (Cox, 1996), and FMRIB Software Library
(FSL) (Jenkinson et al., 2012) —correction for multiple
comparisons is crucial for simultaneous statistical tests on several
thousands of voxels. With regard to proper corrections for
multiple comparisons, Carp (2012) revealed that an astonishing
41% of his 241 surveyed studies, which were published during
2007–2012, did not report formal corrections. As an extension
to his work, Guo et al. (2014) reported a much reduced 19%
for their 100 surveyed studies, which were published in six
leading neuroscience/neuroimaging/multidisciplinary journals
during 2010–2011. Similarly, Woo et al. (2014) reported that
6% of their 814 surveyed studies, which were published in
seven leading journals during 2010–2011, did not apply formal
statistical corrections. Uncorrected results may contain high
false-positive rates, and therefore, their reproducibility and
clinical relevance could potentially be undermined. Even for
corrected results, the improper setting of statistical thresholds
may also lead to inflated false-positive rates. Woo et al. (2014)
and Eklund et al. (2016) have repeatedly stated that routine
voxelwise correction methods are adequate for controlling false
positives whereas cluster-defining primary thresholds (CDT)
for clusterwise inferences should be set at p = 0.001 or
lower because more liberal thresholds, such as p = 0.01, may
cause highly inflated false-positive rates for parametric methods.
Clusterwise inference was the most popular method because
it is more sensitive when detecting significance (i.e., more
powerful); however, its spatial precision is inferior to that of
voxelwise inference, as a large significant cluster can only indicate
that significant activations are contained within the cluster.

Clusterwise inference gives no information with regard to which
voxels are significantly activated (Woo et al., 2014).

In 2016, two journals issued guidelines regarding their
stance on the standard statistical thresholds of reported
fMRI/neuroimaging results (Carter et al., 2016; Roiser et al.,
2016). Table 1 lists the key points of these guidelines and the
suggestions of Woo et al. (2014) and Eklund et al. (2016).
Moreover, several years have lapsed since 2014, the year when the
last survey was published (Guo et al., 2014). It is time to conduct
a literature survey on the statistical thresholds used by the fMRI
studies published most recently.

MATERIALS AND METHODS

In accordance with the methods of previous studies (Carp,
2012; Guo et al., 2014), articles published in 2017 and written
in English were identified with the keywords “fMRI,” “BOLD,”
and “task” in the PubMed database. The search was performed
on July 20, 2017. These criteria yielded 1,020 articles (listed in
Supplementary File S1). For this study, all 1,020 articles were
initially included, and each was assessed by reading its full text
and excluded if it did not report task-based human fMRI studies
and did not report results from SPM. In other words, studies that
reported animal studies, resting-state fMRI, connectivity, multi-
voxel pattern analysis or percent of signal change were excluded.
The screening excluded 632 articles accordingly and finally a total
of 388 articles entered the analysis (Supplementary File S1). For
the 388 articles, items including sample size, inferential method
(e.g., voxelwise or clusterwise), theoretical method of correction
for multiple comparisons (e.g., parametric or non-parametric),
significance level, CDT (if applicable), volume of analysis (whole
brain or region of interest; ROI) and software used were recorded
manually. For articles that used multiple thresholds, the most
stringent one used for the main analyses was chosen (Woo et al.,
2014). Pearson’s correlation test was performed to evaluate the
relationship between the sample size and the levels of CDT in the
articles using clusterwise inference.

RESULTS

Sample Size and Software Used
The sample size reported in 388 papers ranged from 7 to 1,299
with a median of 33. One hundred and thirty-eight studies
(35.6%) analyzed data from 25 or fewer subjects, 152 studies
(39.2%) had 26–50 subjects, 54 studies (13.9%) had 51–75
subjects, 23 studies (5.9%) had 76–100 subjects and 21 studies
(5.4%) had 101 or more subjects (Figure 1).
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TABLE 1 | Recently published recommended statistical practices for controlling false positives.

Publication name Recommendations

Woo et al., 2014 1. Set the default cluster-defining primary threshold (CDT) at p < 0.001. 2. Use a stringent CDT or voxelwise inference for highly powered
studies.

Eklund et al., 2016 1. The parametric method works well for voxelwise inferences but not for clusterwise inferences (unless a stringent CDT is set at p < 0.001).
2. The permutation method works well for both voxelwise and clusterwise inferences.

Roiser et al., 2016 1. For clusterwise inferences, choose a stringent CDT (e.g., p < 0.001) unless the permutation method was employed. 2. For voxelwise
inferences, p-values should be corrected for multiple comparisons. 3. Complementary approaches, such as false-discovery rate or
threshold-free cluster enhancement, can be considered. 4. Preregister the proposed studies in which the planned statistical analyses
methods are documented clearly.

Carter et al., 2016 1. Studies investigating very small brain regions should use a high voxel threshold (e.g., p < 0.001). 2. Studies not targeting precise
localization may consider a more liberal threshold and focus on controlling false negatives by data reduction (e.g., region-of-interest
analyses), as studies with fewer than 50 subjects per group usually have limited power.

FIGURE 1 | Choices of inferential methods and sample sizes used by the surveyed studies. The majority of the surveyed studies used clusterwise inference and
recruited 50 subjects or fewer. For the studies using clusterwise inference, the cluster-defining primary thresholds (CDTs) used by them were recorded. According to
Woo et al. (2014) and Eklund et al. (2016), a CDT at or more stringent than p = 0.001 is recommended (indicated by red portions of the bars in the lower panel). This
was achieved by 70.9%, 37.6%, and 23.1% of studies using SPM, AFNI, and FSL, respectively.
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TABLE 2 | The 125 journals that published the 388 analyzed articles.

Journal list Count % Journal list (continued) Count %

Neuroimage 23 5.9 Alzheimers Dement (Amst) 1 0.3

Cortex 14 3.6 Appl Neuropsychol Child 1 0.3

Neuropsychologia 14 3.6 Arch Gerontol Geriatr 1 0.3

Brain Imaging Behav 13 3.4 Behav Res Ther 1 0.3

Cereb Cortex 13 3.4 BMC Psychiatry 1 0.3

Hum Brain Mapp 13 3.4 Br J Psychiatry 1 0.3

J Neurosci 12 3.1 Br J Sports Med 1 0.3

PloS One 12 3.1 Cerebellum 1 0.3

Sci Rep 12 3.1 Cogn Neurosci 1 0.3

J Cogn Neurosci 11 2.8 Cultur Divers Ethnic Minor Psychol 1 0.3

Behav Brain Res 10 2.6 Dev Psychol 1 0.3

Psychiatry Res 9 2.3 Einstein (Sao Paulo) 1 0.3

J Affect Disord 8 2.1 Emotion 1 0.3

Neuroimage Clin 8 2.1 Epilepsy Behav 1 0.3

Brain Struct Funct 6 1.5 Eur Child Adolesc Psychiatry 1 0.3

Neuroscience 6 1.5 Eur Eat Disord Rev 1 0.3

Soc Cogn Affect Neurosci 6 1.5 Eur J Paediatr Neurol 1 0.3

Addict Biol 5 1.3 Eur J Pain 1 0.3

Biol Psychol 5 1.3 Eur Neuropsychopharmacol 1 0.3

Dev Psychopathol 5 1.3 Eur Radiol 1 0.3

Neuropsychopharmacology 5 1.3 Front Aging Neurosci 1 0.3

Psychol Med 5 1.3 Front Neuroanat 1 0.3

Soc Neurosci 5 1.3 Front Psychol 1 0.3

Addiction 4 1 Int J Neuropsychopharmacol 1 0.3

Brain Cogn 4 1 Int J Neurosci 1 0.3

Brain Res 4 1 Int J Psychophysiol 1 0.3

Cogn Affect Behav Neurosci 4 1 J Alzheimers Dis 1 0.3

Dev Sci 4 1 J Am Acad Child Adolesc Psychiatry 1 0.3

Eur J Neurosci 4 1 J Atten Disord 1 0.3

Front Behav Neurosci 4 1 J Autism Dev Disord 1 0.3

Front Hum Neurosci 4 1 J Child Sex Abus 1 0.3

Mult Scler 4 1 J Clin Exp Neuropsychol 1 0.3

Transl Psychiatry 4 1 J Hypertens 1 0.3

Biol Psychiatry 3 0.8 J Neurol Neurosurg Psychiatry 1 0.3

Brain Behav 3 0.8 J Neuropsychol 1 0.3

Brain Lang 3 0.8 J Neurotrauma 1 0.3

Elife 3 0.8 J Orthop Sports Phys Ther 1 0.3

Eur Arch Psychiatry Clin Neurosci 3 0.8 J Physiol Anthropol 1 0.3

Neural Plast 3 0.8 J Psycholinguist Res 1 0.3

Psychopharmacology (Berl) 3 0.8 J Speech Lang Hear Res 1 0.3

Schizophr Res 3 0.8 J Vis Exp 1 0.3

Alcohol Alcohol 2 0.5 J Voice 1 0.3

Am J Psychiatry 2 0.5 JAMA Psychiatry 1 0.3

Bipolar Disord 2 0.5 Nat Commun 1 0.3

Brain Stimul 2 0.5 Neural Regen Res 1 0.3

Brain Topogr 2 0.5 Neurobiol Learn Mem 1 0.3

Brain 2 0.5 Neurodegener Dis 1 0.3

Clin Physiol Funct Imaging 2 0.5 Neurogastroenterol Motil 1 0.3

Depress Anxiety 2 0.5 Neurol Med Chir (Tokyo) 1 0.3

Dev Cogn Neurosci 2 0.5 Neurology 1 0.3

Drug Alcohol Depend 2 0.5 Neuropsychobiology 1 0.3

Exp Brain Res 2 0.5 Neuroradiology 1 0.3

(Continued)
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TABLE 2 | Continued

Journal list Count % Journal list (continued) Count %

Hippocampus 2 0.5 Nutr Neurosci 1 0.3

J Int Neuropsychol Soc 2 0.5 Obes Res Clin Pract 1 0.3

J Psychiatr Res 2 0.5 Physiol Rep 1 0.3

J Psychopharmacol 2 0.5 PLoS Biol 1 0.3

Mol Psychiatry 2 0.5 Proc IEEE Inst Electr Electron Eng 1 0.3

Neurobiol Aging 2 0.5 Psychiatry Clin Neurosci 1 0.3

Proc Natl Acad Sci USA 2 0.5 Psychophysiology 1 0.3

Prog Neuropsychopharmacol Biol Psychiatry 2 0.5 Res Dev Disabil 1 0.3

Psychoneuroendocrinology 2 0.5 Schizophr Bull 1 0.3

Acta Radiol 1 0.3 Swiss Med Wkly 1 0.3

Alcohol Clin Exp Res 1 0.3

The studies were published in 125 journals (Table 2). The
studies predominantly used SPM for statistical analyses
(202, 52.1%)—followed by FSL (79, 20.4%), AFNI (71,
18.3%), BrainVoyager (11, 2.8%), Resting-State fMRI Data
Analysis Toolkit (6, 1.5%), Statistical Non-Parametric
Mapping (SnPM; 5, 1.3%), and Matlab but other toolbox
than SPM or SnPM (5, 1.3%). There was one study that
used FreeSurfer, one used MAsks for Region of INterest
Analysis, one used FIDL (developed by Washington University
in St. Louis), one used TFCE toolbox (University of
Jena) and one used XBAM (developed by King’s College
London).

Choice of Inferential Method, Theoretical
Method, and Significance Level
The majority of studies (371, 95.6%) reported main results with
statistics corrected for multiple comparisons. Of the analyzed
studies, 270 (69.6%) reported clusterwise inference for their
main analyses whereas 92 (23.7%) reported using voxelwise
inference and nine (2.3%) reported using the threshold-
free cluster enhancement (TFCE) inference (Figure 1). Most
of the studies defined significance at corrected p = 0.05.
There were 338 studies (87.1%) that reported whole-brain
results for their main analyses and 244 of them (72.2%)
used clusterwise inference (Table 3). Fifty studies (12.9%)
reported ROI results and 17 studies (4.4%) reported uncorrected
statistics.

Corrections for multiple comparisons were achieved
by various theoretical methods (Table 4)—predominantly
parametric methods, regardless of inference at cluster or voxel
level. Five studies did not mention their theoretical methods, and
all of them used FSL software.

Cluster-Defining Primary
Threshold (CDT) of Studies Using the
Clusterwise Inferential Method
As mentioned above, 270 studies used clusterwise inference and
thus required a CDT. Nearly half of them (128, 47.4%) defined
their CDTs at or more stringent than p = 0.001 (Table 5).
For studies using SPM, AFNI, and FSL, the proportions of

TABLE 3 | Thresholds of statistical significance used by the 338 surveyed studies
reporting whole brain results.

Inferential method n %

Cluster-level inference (n = 244)

Corrected p = 0.05 228 93.4

Corrected p = 0.025 1 0.4

Corrected p = 0.01 8 3.3

Corrected p = 0.001 7 2.9

Voxel-level inference (n = 71)

Corrected p = 0.05 67 94.4

Corrected p = 0.025 1 1.4

Corrected p = 0.01 1 1.4

Corrected p = 0.005 1 1.4

Corrected p = 0.001 1 1.4

Threshold free cluster enhancement (n = 7)

Corrected p = 0.05 7 100.0

Uncorrected inference (n = 16)

p = 0.05, k = 40 1 6.3

p = 0.005, k = 50 1 6.3

p = 0.005, k = 20 1 6.3

p = 0.005, k = 10 1 6.3

p = 0.005 1 6.3

p = 0.001, k = 20 4 25.0

p = 0.001, k = 15 1 6.3

p = 0.001, k = 10 3 18.8

p = 0.001, k = 5 1 6.3

p = 0.001 2 12.5

k means the minimal cluster size expressed in number of voxels.

CDTs reaching this standard were 70.9%, 37.6%, and 23.1%,
respectively (Figure 1). Eighteen studies (6.7%) did not report
their CDTs. The CDT level did not have a significant correlation
with the sample size (r2

= 0.001, p = 0.683). One of the studies
had a sample size of 1,299 subjects, which was much larger
than the second-largest sample size at 429. If this outlier was
excluded, there was still no significant correlation (r2

= 0.007,
p= 0.180).
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TABLE 4 | Cross-tabulation of the theoretical methods and statistical thresholds of the 371 surveyed studies reporting corrected statistics.

Inferential method Theoretical method Total count

Parametric (FWE) Parametric (FDR) Parametric (Monte Carlo) Permutation Unknown

Voxelwise 72 18 2 92

Clusterwise 155 12 92 6 5 270

TFCE 9 9

There were 17 studies reporting uncorrected statistics; thus, only 371 studies were included in the table. TFCE, threshold-free cluster enhancement.

TABLE 5 | Cluster-defining primary thresholds (CDTs) of 270 studies using
clusterwise inferences.

CDT (p-value) N %

0.05 9 3.3

0.025 1 0.4

0.02 1 0.4

0.0125 1 0.4

0.01 60 22.2

0.005 49 18.1

0.001 124 45.9

0.0004 1 0.4

0.0001 2 0.7

0.00001 1 0.4

Unknown 21 7.8

DISCUSSION

The updated literature survey reported in this study reaffirmed
that clusterwise inference remains the mainstream approach
(270/388, 69.6%) for a cohort of 388 fMRI studies, compared
to the previous numbers reported by Carp (2012) (53.2%), Guo
et al. (2014) (63%), and Woo et al. (2014) (75%). There were
still around 53% (142/270) studies using clusterwise inference
that chose a more liberal CDT than p = 0.001 (n = 121) or
did not report their CDT (n = 21), down from around 61%
reported in Woo et al. (2014). The ratio of studies reporting
uncorrected statistics was much lower than the ratios reported
by Carp (2012) (40.9%), Guo et al. (2014) (19%), and Woo et al.
(2014) (6%).

With regard to the sample size used in the surveyed studies,
the median sample size was 33. A previous study reported that
the median sample size used in the studies published in 2015
was 28.5, based on automated data extraction from Neurosynth1

database (Poldrack et al., 2017). It was reassuring that studies
using clusterwise inference with smaller sample sizes did not use
more liberal CDTs.

In terms of inferential methods, it is still true that FSL
studies mainly set their CDTs at p = 0.01 (default setting of
the software), which is more liberal than the p = 0.001 that
was highly recommended by various reports (Woo et al., 2014;
Eklund et al., 2016; Roiser et al., 2016). Compared with the
articles surveyed by Woo et al. (2014), a similar proportion of
FSL studies surveyed in the current report used p = 0.001 or

1neurosynth.org

more stringent thresholds (around 23.1% vs. 20%). The false-
positive rate may be influenced by multiple factors, such as the
degree of spatial smoothing, experiment paradigm, statistical
test performed and algorithms written in the statistical software.
Hence, even if the statistical thresholds were set according to
recommendations, the rate of false positives could still be high
and inhomogeneous across the brain (Eklund et al., 2016).
Therefore, some may advocate the use of false-discovery rate
(FDR) (Genovese et al., 2002) or non-parametric approaches
(Nichols and Holmes, 2002). However, few studies used FDR or
non-parametric methods. Potential drawbacks of these methods
are that problems may arise when inference is drawn from
non-parametric methods (Hupé, 2015), whereas FDR results
depend on the probability of non-null effects, which conceptually
may not always be valid and different studies may set different
thresholds (Hupé, 2015). Regardless of the theoretical methods
used, the effect sizes should be reported alongside the brain maps
of p-values for better comprehension of the results (Wasserstein
and Lazar, 2016).

The current study has certain limitations. It would be
beneficial to evaluate the effects of altering the statistical
thresholds on the outcomes of the surveyed articles. However, it
is not possible for a literature survey to achieve this. It should be
noticed that the statistical practice is only one of the important
aspects of an article. Readers should also evaluate other aspects—
such as methodological details, study power and the flexibility of
the analyses. It is important for readers to notice the statistical
threshold used for different parts of the results. All of these
may influence the quality of an article. Publishing replication
studies regardless of statistical significance may help readers
better comprehend the data quality (Yeung, 2017). Meanwhile,
conducting meta-analysis of functional neuroimaging data can
also establish consensus on the locations of brain activation to
confirm or refute hypothesis (Wager et al., 2007; Zmigrod et al.,
2016; Yeung et al., 2017b,d, 2018).

CONCLUSION

A considerable amount of studies still used statistical approaches
that might be considered as having inadequate control over
false positives. There were still around 30% SPM studies
that chose a more liberal CDT than p = 0.01 or did not
report their CDT, in spite of the present recommendations.
For FSL studies, it seemed that the CDT practice had no
sign of improvement since the survey by Woo et al. (2014).
A few studies, as noted in Table 5, chose unconventional
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CDT such as p = 0.0125 or 0.004. Such practice might tend
to create an impression that the threshold alterations were
attempted to show “desired” clusters. As the neuroimaging
literature is often highly cited and has continued to grow
substantially over the years (Yeung et al., 2017a,c,e), there is a
need to enforce a high standard of statistical control over false
positives. Meanwhile, the median sample size of the analyzed
articles did not differ largely from that of previous surveys,
and studies with smaller sample sizes did not use more liberal
statistical thresholds. In short, there seemed to be no change in
the statistical practice compared to the early 2010s.
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