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Abstract 

Potential evaporation (PE), which is related to the water and energy exchange between the 

atmosphere and the Earth’s surface, is the basic component of the global hydrological 

cycle and energy balance. This study detected the temporal and spatial variations of PE and 

related driving factors in Tibet, China, for the period 1961–2001, based on observed data 

recorded at 22 meteorological stations. The results showed that: (1) Tibet has experienced 

a statistically significant decrease of PE between 1961 and 2001, which mainly started 

from the 1980s along with accelerated warming; decreasing trends were detected in all 

seasons and all months except August and November; (2) the mean annual PE in Tibet 

showed an east-to-west increasing trend, and the annual PE recorded at most stations 

presented decreasing trends; (3) an inverse correlation of mean annual PE with elevation in 

this region was detected (low-to-high decreasing trend), and the statistical equations to 

estimate PE were established based on longitude, latitude and elevation; and (4) through 

analysing the relationships between PE and related meteorological variables, it is 

concluded that PE in Tibet can be well expressed by these variables, with vapour pressure 

deficit the dominant factor in determining PE. The results may help to understand the 

change features of PE and the driving mechanism for such regions; this would be valuable 

for hydrology and water resources research. 

Key words potential evaporation; temporal trend; spatial distribution; driving mechanism; 

Tibet 
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1 INTRODUCTION 

As the basic component of hydrological cycle and energy balance, potential evaporation 

(PE hereafter) is closely related to the water and energy exchange between the atmosphere 

and the Earth’s surface, and it is one of the basics of actual evapotranspiration (Xu and 

Singh 2005). In the past century, global climate change (e.g. the significant increase of air 

temperature) has exerted great impacts on the atmospheric water vapour content and 

circulation (IPCC 2007). As PE is regarded as a widely-used indicator in the fields of 

integrated water resources management, crop water requirements prediction, ecological 

environment assessment (Singh 1988, Jaramillo et al. 2013), it is necessary to investigate 

the temporal and spatial variations of PE for designated regions. 

A number of studies have indicated that evaporation in the Northern Hemisphere was 

generally decreasing in the past several decades (Peterson et al. 1995, Brutsaert and 

Parlange 1998). The same phenomenon has been found in the studies on the trend analysis 

of PE in most regions of China (Liu et al. 2004, Cong et al. 2009), including the 

southwestern China (e.g. Tibet) (e.g. Chen et al. 2006, Zhang et al. 2007, Zhu et al. 2011, 

Li et al. 2014). Chen et al. (2006) reported that the annual PE decreased by 13.1 

mm/decade since 1961 in the Tibetan Plateau and the surrounding areas, and wind velocity 

and relative humidity were found to be the most important factors affecting the PE trends. 

Zhang et al. (2007) showed that the decreased PE in the Tibetan Plateau was due to the 

decreases in wind velocity and net radiation, as well as the increase in air temperature. Zhu 

et al. (2011) pointed out that the annual PE in the Hengduan Mountains region had a 
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statistically significant decreasing trend since the 1960s, especially from the 1980s to 

1990s; air temperature, wind velocity and sunshine duration were the three dominant 

factors in determining PE. Li et al. (2014) indicated that southwestern China experienced a 

statistically significant decrease of PE in the period 1961–2009 and the decreased wind 

velocity was the main driving force. 

Normally, PE can be influenced by related meteorological variables such as solar 

radiation, wind velocity, vapour pressure, air temperature and relative humidity (Valiantzas 

2006, Singh 1988). In the past several decades, solar radiation and wind velocity have been 

decreasing in many regions worldwide (Stanhill and Cohen 2001, McVicar et al. 2008, 

Pryor et al. 2009). Similar results were also found in China, including the Tibetan Plateau 

(Zhang et al. 2007). Moreover, for regions with large elevation variations (e.g. 

mountainous regions), PE is characterized by significant spatial variation. Several studies 

indicated that PE generally decreases with elevation increase (Shevenell 1999, Houston 

2006, Shi et al. 2014), and some other studies showed that PE can increase along with 

elevation increase (e.g. Nullet and Giambelluca 1990, Giambelluca and Nullet 1992). 

The above-mentioned studies indicated that the temporal and spatial variations of PE 

are complicated and can be influenced by a variety of factors in different regions. For 

mountainous regions such as Tibet in China, it is valuable to explore the PE variability and 

to examine the driving mechanism behind it. Compared to previous studies (e.g. Chen et al. 

2006, Zhang et al. 2007, Zhu et al. 2011, Li et al. 2014), the significance of this paper can 

be concluded as follows: first, this paper focuses on the region of Tibet rather than the 

Tibetan Plateau or southwestern China, and more meteorological stations over this study 

area are used in the hope of obtaining more reliable results of the PE temporal trends and 
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spatial distributions. Second, this paper aims to investigate the relationship of PE with 

elevation, and statistical equations to estimate PE are established based on longitude, 

latitude and elevation. Third, this paper demonstrated that vapour pressure deficit was the 

most important factor in determining PE in Tibet through analysing the relationships 

between PE and related meteorological variables. Fourth, the modified Dalton model (Shi 

et al. 2014) and the Langbein model (Langbein 1949) were adopted to further strengthen 

the conclusions. This would be helpful to better understand the change features of PE and 

the driving mechanism in such regions. 

2 DATA AND METHODOLOGY 

2.1 Study area and research data 

The study area, Tibet, is located in southwest China (78°25′–99°06′E, 26°50′–36°53′N), 

with a total area of 1.2 × 106 km2 (Fig. 1). Tibet is the main body of the Qinghai-Tibet 

Plateau, and the mean elevation of this region is over 4000 m a.s.l. This region lies in the 

temperate zone, mainly dominated by a plateau monsoon climate. Normally, the maximum 

monthly PE occurs in May right before the rainy season, which is from June to September, 

and the minimum occurs in December. 

There are 38 meteorological stations available in the study area (see Table 1 for details). 

Monthly meteorological data at these stations are available from the year of completion 

(the earliest is 1954) to 2001, and thus, the lengths of the datasets are different. As most of 

these stations were built in the 1950s, only the data from 1961 are used in this study to 

ensure that the lengths of the datasets from different stations are consistent. All the 



7 

 

meteorological data were derived from the Hydrology and Water Resources Bureau of 

Tibet, China. For the designated station, the missing data are interpolated using the data 

from the neighbouring stations; however, stations with great discontinuity (i.e. five years) 

are excluded directly. After this elimination, 22 meteorological stations remain with 

complete monthly observations between 1961 and 2001. Nevertheless, the number of 

meteorological stations used is greater than that of the previous studies in the region of 

Tibet, i.e. nine in the study of Chen et al. (2006), 21 in the study of Zhang et al. (2007), 

and 16 in the study of Li et al. (2014). 

Generally, PE cannot be directly measured; however, several studies have reported that 

it can be inferred from other measurements such as pan evaporation (Dibella et al. 2000, 

Ren et al. 2002, Liu et al. 2004, Fu et al. 2006). Therefore, the PE data used in this study 

are derived from pan evaporation measurements. And, for convenience, this paper refers to 

these derived PE data as the measured PE. The pan evaporation measurements are recorded 

by an E20 pan, which is an evaporimeter with a diameter of 20 cm. Known from previous 

studies, the average conversion coefficient from E20 pan to E-601B pan (an evaporimeter 

with a diameter of 61.8 cm) in Tibet is given as 0.65 (Ren et al. 2002) while the conversion 

coefficient from E-601B pan to PE is 0.9 (Dibella et al. 2000, Fu et al. 2006). As a result, 

the PE data used in this study are derived by using E20 pan observations times a coefficient 

of 0.585 (= 0.9×0.65). The annual and seasonal PE can be derived from the monthly values; 

moreover, in order to obtain the mean annual, seasonal and monthly PE values over Tibet, 

the measured PE data from different meteorological stations are interpolated to the centroid 

of Tibet, considering the different weights of all the stations. The yearly anomalies are 

achieved by removing the long-term means. In addition, it is worth noting that related 
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meteorological data (i.e. vapour pressure, relative humidity, air temperature, surface 

temperature, sunshine duration, and wind velocity), which are used to analyse the impacts 

of these factors on PE, are all pretreated in the same way. 

2.2 Trend test and change point test methods 

The temporal variations of PE and related driving factors are analysed by using the trend 

test and change point test methods, as follows. 

2.2.1 Trend test method 

The Mann-Kendall trend test is a nonparametric rank-based statistical test method that was 

first proposed by Mann (1945) and further developed by Kendall (1975), and it is widely 

used in the fields of meteorology, hydrology and sedimentology (Changnon and Demissie 

1996, Burn and Elnur 2002, Mu et al. 2007, Novotny and Stefan 2007, Shi and Wang 

2015). 

Based on the Mann-Kendall trend test method, the slope of the series can be computed 

by using the Thiel-Sen method (Thiel 1950, Sen 1968). 

 β = median
X

j
− X

i

j − i









  for all i < j  (1) 

where Xj and Xi are the observed values in the jth and ith year (j > i), respectively. 

Moreover, because the autocorrelation series is not applicable for the Mann-Kendall 

trend test method, prewhitening (von Storch and Navarra 1995) is required to eliminate the 

influence of the autocorrelation. 
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 1i i iXp X rX+= −  (2) 

where Xpi is the observed value in the ith year after prewhitening; and r is the first-order 

autocorrelation coefficient of the series. 

2.2.2 Change point test method 

The Pettitt change point test (Pettitt 1979) is a nonparametric rank-based test used for the 

identification of a change point. The statistical parameter Ut,n is given as follows: 

 , 1,
1 1 1

= sgn( )= sgn( )
t n n

t n i j t n t j
i j t j

U X X U X X−
= = + =

− + −    (3) 

The probable change point T should satisfy the condition of KT,n = Max1≤t<n|Ut,n|, and 

then, the relationship between KT,n and the p value of Pettitt change point test which 

represents the significance level, can be expressed as: 

 
2

,

3 2

6
2exp

( )
T nK

p
n n

 
= − + 

 (4) 

For a designated p value, the critical value of KT,n is computed first. Thereafter, each 

Ut,n is compared with this critical value to find out the significant change point in the series. 

In this paper, the series is divided into two subsequences according to the first change 

point; and additional change points in these subsequences are determined if possible. 

2.3 Spatial interpolation method 

In order to compute the spatial distribution of PE over Tibet, a spatial interpolation method 

is necessary. There are several methods available, e.g. the Thiessen polygon method, 

inverse distance weighting (IDW) method, and the kriging method. Among these methods, 
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the Thiessen polygon method, a purely geometric method, is the simplest one; however, its 

interpolation result is usually not satisfied. As a widely-used geometric method, the IDW 

method can present smoother and more accurate interpolation result than Thiessen polygon 

method (Goovaerts 2000, Shi et al. 2014, 2016a). The kriging method is a best-linear-

unbiased-estimation method, but it is difficult to determine its variogram; for accuracy, 

some studies (e.g. Tabios and Salas 1985) showed that this method can provide better 

results than the simpler methods (e.g. Thiessen polygon and IDW methods), while some 

others (e.g. Dirks et al. 1998) reached the opposite conclusion. 

Considering the simplicity and the accuracy of interpolating meteorological variables, 

for this study we selected the IDW method. A general form of the method is given as 

follows: 

 1

1

1

1

N

i
i i

p N

i i

Z
D

Z

D

β

β

=

=

=



 (5) 

where N is the number of used meteorological stations, Zp is the value at the point of 

interest, Zi  is the value at the ith given point, Di is the distance from the ith given point to 

the point of interest, and β is the power of Di. Following common practice (Nalder and 

Wein 1998, Goovaerts 2000, Mito et al. 2011), this study adopted the value β = 2, and the 

IDW method turns into the so-called inverse distance squared method. 
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2.4 Models for PE calculation 

In order to evaluate the relationships between PE and related meteorological variables, 

empirical models should be used to calculate PE with related meteorological variables for 

comparison. It is worth noting that only the sunshine duration data were measured at these 

stations. Although solar radiation can be calculated using the available data (e.g. Allen 

1998, Jaramillo et al. 2013, Jaramillo and Destouni 2014), a number of parameters need to 

be determined, which may introduce other errors to PE calculation. Therefore, a new 

modified Dalton model, which was proposed in our previous study (Shi et al. 2014), was 

adopted in this study. Besides vapour pressure deficit and wind velocity, this model 

includes the influences of both surface temperature and air temperature on PE. As it is 

established based on the measured meteorological data of the Lhasa River basin, Tibet, it 

has been proved to be useful to estimate PE over mountainous regions such as Tibet. Then, 

the monthly PE values can be calculated as follows (Shi et al. 2014): 

 ( ) ( )( )1/220.2835 0.0082 0.0217 exp 0.0203 a s aE u T T e e= + − Δ − −  (6) 

where E is the PE (mm); es is the saturation vapour pressure corresponding to the surface 

temperature (hPa); ea is the air vapour pressure at the height of 1.5 m (for the 

meteorological stations used in this study) above the surface (hPa); u is the wind velocity 

(m/s); and ΔT is equal to the surface temperature, Ts, minus the air temperature, Ta (ºC). 

In addition, the other model used for PE calculation in this study is the Langbein model 

(Langbein 1949), which is only based on mean annual temperature. The simplicity of this 

model makes it useful for PE assessments in various simultaneous regions and global 

analysis (e.g. Shibuo et al. 2007, Asokan et al. 2010, Jaramillo et al. 2013, Jaramillo and 
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Destouni 2014). The annual PE values can be estimated based on the following equation 

(Langbein 1949): 

 2325 21 0.9E T T= + +  (7) 

where E is the PE (mm); T is the mean annual air temperature (ºC). 

2.5 Assessment criteria 

To evaluate the relationships between PE and related meteorological variables, several 

objective functions, i.e. mean relative error (MRE), root mean square error (RMSE) and 

Nash-Sutcliffe coefficient of efficiency (NSCE; Nash and Sutcliffe 1970), are used as 

assessment criteria (see the Appendix for the respective equations). 

3 RESULTS 

3.1 Temporal variation of PE 

3.1.1 Inter-annual variation 

Based on the derived annual PE series (1961–2001), the trend test and change point test 

methods were used to investigate the change characteristics of the PE in Tibet. Further 

analyses were conducted to explain the cause. 

The trend in the PE series was tested by using the Mann-Kendall method and linear 

regression method, respectively, and the conclusions derived from these two results were 

consistent (Fig. 2, Table 2). The mean annual PE was 1200 mm in Tibet in the period 

1961–2001 and the annual PE series presented a decreasing trend (p < 0.1). However, the 
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slope obtained from the Mann-Kendall method (–9.1 mm/decade) was smaller than that 

obtained from the linear regression method (–13.9 mm/decade). This difference was likely 

due to the fact that the Mann-Kendall method can eliminate the abnormal vibration caused 

by external disturbance. 

The change points in the PE series were tested by using the Pettitt method. The first 

change point for the annual PE series (1961–2001) was found in 1976, with a significance 

level of p = 0.1 (Fig. 3(a)). The second change point in the sub-sequence of the annual PE 

series (1977–2001) was found in 1982, with a significance level of p > 0.1 (Fig. 3(b)), 

which indicates that this change point was not a significant one; no additional change 

points could be found in other sub-sequences. As a result, the annual PE series was divided 

into three parts in this study: Period I (1961–1976), Period II (1977–1982) and Period III 

(1983–2001) (Fig. 2). In Period I, the mean annual PE was 1224 mm, larger than the long-

term mean value; and most of the anomalies were positive. Moreover, the annual PE 

decreased significantly at a rate of –19.0 mm/decade in this period. However, a sudden 

drop in annual PE occurred in 1977, with a decrement of 92 mm. Though the annual PE 

showed an increasing trend in Period II, the anomalies were all negative, which indicated 

that the annual PE stayed at a low level (i.e. the mean annual PE was 1151 mm) in this 

period. Thereafter, in Period III, the annual PE decreased at a much larger rate of –30.5 

mm/decade than that in the entire series (Fig. 2); the mean annual PE in this period was 

1194 mm. This decrease started in the 1980s and was mainly due to accelerated warming, 

which is consistent with the conclusions of some studies cited in the introduction section 

(e.g. Zhu et al. 2011, Li et al. 2014). 
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3.1.2 Seasonal and monthly variations 

To further investigate the change characteristics of PE in Tibet, the trends in the four 

seasons were also tested by using the Mann-Kendall method. In this study, spring is from 

February to April, summer is from May to July, autumn is from August to October, and 

winter is from November to January. The mean PE values of these four seasons were 270, 

441, 323 and 166 mm, respectively (Table 3). The mean PE in winter was the lowest, and 

this was less than 40% of that in summer. Figure 4 shows the temporal trends of the 

seasonal PE in Tibet in the period 1961–2001, and Table 3 lists the change rates and 

corresponding values of significance level. It is observed that PE presented the decreasing 

trends in all four seasons, with change rates of –7.3 mm/decade in spring (p < 0.1), –3.8 

mm/decade in summer (p > 0.1), –2.1 mm/decade in autumn (p > 0.1) and –1.9 mm/decade 

in winter (p > 0.1) (Table 3). Spring had the most pronounced decreasing trend, and the 

trends in other three seasons were not statistically significant. Moreover, Fig. 4 also 

demonstrates that the PE values stayed at a low level in Period II in all four seasons, 

consistent with the result of the mean annual PE. 

With reference to monthly variation, the mean monthly PE showed decreasing trends in 

10 months (all except August and November); and the highest change rate occurred in 

April (–3.8 mm/decade) with a significance level of p < 0.1. However, only the trends in 

four months (February, April, June and September) were statistically significant (p < 0.1) 

(Table 4). On the one hand, this could largely explain the significant change rate of spring; 

on the other hand, the change rates of summer and autumn were expected to be dominated 

by those of June (–2.5 mm/decade) and September (–1.6 mm/decade). Moreover, the non-
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significant trends of November, December and January jointly determined the change rate 

of winter. 

3.2 Spatial variation of PE 

Using the IDW method and the observed data recorded at the 22 meteorological stations, 

the spatial distribution of the mean annual PE over Tibet in the period 1961–2001 was 

obtained (Fig. 5(a)). Tsetang station had the highest mean annual PE of 1567 mm, while 

Lhari station had the lowest PE of 819 mm. Generally, the mean annual PE in Tibet 

showed an east-to-west increasing trend. 

The change rates of annual PE recorded at the 22 meteorological stations in the period 

1961–2001 were calculated in this study, and then the relevant spatial distribution was 

obtained (Fig. 5(b)). It is observed that the annual PE recorded at 15 stations presented 

decreasing trends. Among them, Nyalam station had the highest change rate (–78.8 

mm/decade, p < 0.1), followed by Shigatse station (–54.3 mm/decade, p < 0.1) and Amdo 

station (–48.1 mm/decade, p < 0.1). However, seven stations presented increasing trends, 

among which Shiquanhe station had the highest change rate (49.0 mm/decade, p < 0.1), 

followed by Pagri station (30.8 mm/decade, p < 0.1) and Lhasa station (29.6 mm/decade, p 

< 0.1). In addition, the trends in most stations (i.e. 17 in 22) were statistically significant (p 

< 0.1). 

3.3 Relationship between PE and elevation 

As mentioned above, several studies (e.g. Shevenell 1999, Houston 2006, Shi et al. 2014) 

have shown the change feature of PE along with elevation change. Specifically, PE is 
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inversely correlated with elevation in this region (Shi et al. 2014). Therefore, the 

relationship between PE (including the mean annual PE and the change rate of PE) and 

elevation in Tibet in the period 1961–2001 were analysed by using the observed data 

recorded at the 22 meteorological stations (Fig. 6). In this study, these 22 meteorological 

stations were divided into the following two groups: Group I included Lhari, Sog, 

Nyingchi, Dingqing, Bome, Qamdo and Zayu stations, which are located in eastern Tibet; 

while the other 15 stations were regarded as Group II. It is observed that the mean annual 

PE values of the stations in Group I were generally low, possibly due to the relatively 

humid climate affected by the South Asian monsoon; the decrease of PE with elevation 

was not remarkable (i.e. -46 mm/km). In contrast, for Group II, a dramatic inverse 

correlation was found between the mean annual PE and elevation (i.e. –267 mm/km, about 

six times as much as that of Group I). However, the R2 value (0.19) was not high, which 

indicated that other factors should be considered. Figure 5(a) shows that the mean annual 

PE in Tibet presented east-to-west and south-to-north increasing trends. It is well known 

that geographical location (i.e. longitude and latitude) is an important factor in influencing 

PE, as it can determine the distance between this location and oceans, which are the main 

sources of moisture. Thus, in order to establish the better relationship between PE and 

elevation, the geographical locations (i.e. longitude and latitude) of these meteorological 

stations were taken into account in this study, and the statistical equations to estimate PE 

for the two groups were obtained by using the multiple regression method: 

PEI = –20.5X + 38.2Y – 0.12Z + 2128 (R2 = 0.32; p < 0.1)   (8) 

PEII = –15.9X + 70.9Y – 0.44Z + 2365 (R2= 0.44; p < 0.1)   (9) 
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where PEI and PEII denote the mean annual PE (mm) of groups I and II, respectively; and 

X, Y and Z denote the longitude (°), latitude (°) and elevation (m) of each meteorological 

station, respectively. Equations (8) and (9) indicated that the mean annual PE over Tibet 

had east-to-west, south-to-north, and high-to-low elevation increasing trends. However, 

with reference to the change rate of PE, a dramatic inverse correlation was found for Group 

I (–8.6 mm/decade/km), while no significant trend was found for Group II (Fig. 6). 

3.4 Relationships between PE and related meteorological variables 

Potential evaporation can be affected by a variety of related meteorological variables, such 

as vapour pressure, wind velocity, solar radiation, relative humidity and temperature 

(Singh 1988). As a result, to investigate the dominant factor in determining PE in Tibet, 

the correlation features of PE with five related meteorological variables (i.e. vapour 

pressure deficit, air temperature, sunshine duration, wind velocity and relative humidity) 

were analysed based on the observed data recorded at the 22 meteorological stations in the 

period 1961–2001, and expressed by the Pearson correlation coefficient in this study 

(Table 5). It is observed that PE was closely correlated with all of these five meteorological 

variables. Among them, the correlations of PE with vapour pressure deficit, air temperature 

and sunshine duration were relatively obvious, while the correlations with wind velocity 

and relative humidity were relatively weak. The highest correlation coefficient between PE 

and vapour pressure deficit (0.844) demonstrated that vapour pressure was the most 

important factor in determining PE, while the significant influence of air temperature on 

PE in this region has been proved in our previous study (Shi et al. 2014). Moreover, the 

correlations among these five meteorological variables were all statistically significant, 



18 

 

indicating their interactions with each other. The lowest correlation coefficient between 

vapour pressure deficit and wind velocity (-0.095) indicated that these two meteorological 

variables, which are regarded as the dominant variables of the Dalton model (Singh 1988), 

were relatively independent. 

In this study, the temporal trends of these five related meteorological variables in Tibet 

in the period 1961–2001 were tested by using the Mann-Kendall method (Fig. 7). It is 

observed that vapour pressure deficit, sunshine duration and wind velocity presented 

decreasing trends, and only the trend of sunshine duration was statistically significant (p < 

0.1). In contrast, the other two variables (air temperature and relative humidity) presented 

increasing trends, both of them statistically significant (p < 0.1). The decrease of sunshine 

duration and the increase of relative humidity jointly restricted the transfer of water from 

the surface to the atmosphere, also leading to the decrease of PE. Moreover, as is well 

known, PE is proportional to vapour pressure deficit and wind velocity (Chow et al. 1988); 

and thus, the decreased vapour pressure deficit and wind velocity were the other two 

important driving factors, although their decreasing trends were not statistically significant. 

In addition, the temporal trends of related meteorological variables based on the three 

periods (periods I, II and III) were tested (see Fig. 7). It is observed that the increasing 

trend in annual PE in Period II was mainly caused by the increased vapour pressure deficit 

and sunshine duration. 

In addition, Fig. 8 shows the scatter plots of the relationships between PE and the five 

related meteorological variables in Tibet in the period 1961–2001. It is observed that 

vapour pressure deficit had the strongest correlation with monthly PE, that is, higher 

vapour pressure deficit values corresponded to higher monthly PE values while lower 
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vapour pressure deficit values corresponded to lower monthly PE values. This further 

proved the importance of vapour pressure in determining PE. Moreover, as the other 

dominant factor, wind velocity had a symmetrical distribution in its sub-plot, which was 

similar to that of vapour pressure deficit; however, the range of the points was much larger. 

In contrast, the distributions of the other three variables (i.e. air temperature, sunshine 

duration and relative humidity) were asymmetrical, and most of the points were located in 

the upper left parts of their sub-plots. 

4 DISCUSSION 

For Tibet or the surrounding areas, several studies have indicated that PE was generally 

decreasing in the past several decades, although dominated by different factors. Wind 

velocity was regarded as a dominant factor in determining PE by Chen et al. (2006), Zhang 

et al. (2007), Zhu et al. (2011), and Li et al. (2014); moreover, air temperature (Zhang et al. 

2007, Zhu et al. 2011), relative humidity (Chen et al. 2006), and sunshine duration (Zhu et 

al. 2011) were considered to be the driving forces. However, based on the results of the 

present study, it is concluded that vapour pressure deficit was the most important factor in 

determining PE, followed by wind velocity. This is inconsistent with the conclusions of 

previous studies, and may be due to the differences in the study area, the number of 

meteorological stations, and the length and temporal resolution of the datasets used in 

different studies. 

With reference to the relationship between PE and elevation, Chen et al. (2006) 

showed a significant negative correlation between annual trends of PE and elevation for 12 
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stations above 4000 m. Li et al. (2014) pointed out that only the trend magnitudes in 

summer and autumn displayed significant positive correlation with elevation. However, the 

conclusion of the present study was different. Both mean annual PE and change rate of PE 

derived from stations located in eastern Tibet (Group I) showed the significant negative 

correlation with elevation. In contrast, mean annual PE derived from stations in Group II 

showed the more significant negative correlation with elevation, but no significant trend 

was found in change rate of PE. 

In addition, to further evaluate the relationships between PE and related meteorological 

variables, the modified Dalton model (Shi et al. 2014) and the Langbein model (Langbein 

1949) were used to calculate the monthly and annual PE values, based on the measured 

meteorological data recorded at 22 meteorological stations in the period 1961–2001. 

Figure 9 shows a comparison of the calculated PE values against the measured data. For 

the monthly PE values derived from the modified Dalton model, it is observed that the 

calculated values were generally close to the measured data, with a high NSCE of 0.85. 

Moreover, the RMSE was only 15.5 mm and the MRE was only 2.9%. Therefore, it is 

concluded that PE in Tibet can be well expressed by these related meteorological variables, 

including vapour pressure deficit, air temperature and wind velocity. For the annual PE 

derived from the Langbein model, it is observed that the calculated values were far from 

the measured data, and all the points were located in the lower right part of the sub-plot. 

The NSCE was –7.37, and the RMSE (740.6 mm) and MRE (–60.4%) were both quite 

large, indicating that this model was not credible for this region. Therefore, it is concluded 

that PE in Tibet cannot be expressed solely by air temperature. Ignoring the impacts of 

vapour pressure deficit and wind velocity can make the results unreasonable. Furthermore, 



21 

 

it is worth noting that different results may be obtained by using other estimation methods, 

e.g. the Penman-Monteith equation. However, this method was not adopted in this study 

for the following reasons. First, as mentioned above, using the sunshine duration data 

measured at these stations to calculate solar radiation may introduce other errors to PE 

estimation. Second, similar to the Dalton model, vapour pressure deficit and wind velocity 

are also included in the Penman-Monteith equation, which may make it difficult to 

distinguish the importance of vapour pressure deficit and wind velocity through comparing 

the performances of these two methods. 

Generally, sources of uncertainty can be data, model structure and parameters. It is 

worth noting that the spatial distribution of the meteorological stations in the study area is 

uneven. There is only one station (Shiquanhe) in the vast western part of the region, which 

may have had a negative effect on the PE spatial distribution (Fig. 5). Moreover, the PE 

estimation based on the locations of the stations (longitude, latitude and elevation) may be 

constrained by the limitation of data availability, and this can partly explain the reason why 

the R2 values of equations (8) and (9) were not high. Nevertheless, statistical equations to 

estimate the mean annual PE have been established in this study, which was not conducted 

in previous studies. The results would be more credible if better measured data can be 

obtained from a larger number of meteorological stations. 

5 CONCLUSIONS 

In this study, we detected the temporal trend and the spatial distribution of PE in Tibet in 

the period 1961–2001, and analysed the relationships of PE with elevation and related 
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meteorological variables. The main conclusions of this study can be summarized as 

follows:  

1. The annual PE presented a statistically significant decreasing trend in Tibet in the period 

1961–2001, especially from the 1980s; moreover, decreasing trends were found in all the 

seasons and in 10 months (all except August and November).  

2. The mean annual PE in Tibet showed an east-to-west increasing trend, and the annual 

PE recorded at 15 stations presented decreasing trends.  

3. An inverse correlation of the mean annual PE and elevation in Tibet was detected, and 

the mean annual PE showed a low-to-high decreasing trend. Moreover, statistical equations 

to estimate PE were established based on longitude, latitude and elevation. 

4 Through analysing the relationships between PE and related meteorological variables, it 

is concluded that PE can be well expressed by these related meteorological variables, with 

vapour pressure deficit the dominant factor in determining PE in Tibet. 

This paper contributed to a better understanding of the changing features of PE and the 

driving mechanism for mountainous regions such as Tibet. This would be valuable for 

research in the fields of integrated water resources management, ecological environment 

assessment and climate change (e.g. Li et al. 2009, Shi et al. 2015, 2016b). 
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APPENDIX  

The equations used to compute mean relative error (MRE), root mean square error (RMSE) 

and the Nash-Sutcliffe coefficient of efficiency (NSCE) are given as follows: 

 MRE = 1

N
(PE

i ,cal
/ PE

i ,mea
−1)

i=1

N

  (A1) 

 RMSE = 1

N
(PE
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)2
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  (A2) 

 NSCE =1−
PE
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i ,cal( )2
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PE
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− PEmea( )2
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N


 (A3) 

where PEi,mean and PEi,cal are the ith measured and calculated monthly PE values (mm), 

respectively; N is the sample size; and PEmea  is the mean value of the measured data. 
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Table 1 General information on the meteorological stations in Tibet. Stations in italic 

format are excluded from this study. 

Station ID  
number 

Station name 
Longitude

(°E) 
Latitude 

(°N) 
Elevation
(m a.s.l.) 

Year of 
completion 

55228 Shiquanhe 80.08 32.50 4278 1961 
55248 Gaize 84.42 32.15 4415 1973 
55279 Bangor 90.02 31.38 4700 1957 
55294 Amdo 91.10 32.35 4800 1960 
55299 Nagqu 92.07 31.48 4507 1955 
55437 Pulan 81.25 30.28 3900 1973 
55472 Xainza 88.63 30.95 4672 1961 
55493 Damxung 91.10 30.48 4200 1963 
55569 Lhatse 87.60 29.08 4000 1978 
55572 Namling 89.10 29.68 4000 1998 
55578 Shigatse 88.88 29.25 3836 1956 
55585 Nyemo 90.17 29.43 3809 1974 
55589 Gonggar 90.98 29.3 3555 1998 
55591 Lhasa 91.03 29.72 3658 1955 
55593 Maizhokunggar 91.73 29.85 3804 1998 
55598 Tsetang 91.77 29.25 3552 1957 
55655 Nyalam 85.97 28.18 3810 1961 
55664 Tingri 87.08 28.63 4300 1959 
55680 Gyangze 89.60 28.92 4040 1957 
55681 Nagarze 90.40 28.97 4432 1998 
55690 Tsonag 91.95 27.98 4280 1961 
55696 Lhunze 92.47 28.42 3860 1960 
55773 Pagri 89.08 27.73 4300 1957 
56106 Sog 93.78 31.88 4023 1957 
56109 Biru 93.78 31.48 3940 1998 
56116 Dingqing 95.60 31.42 3873 1954 
56128 Riwoqe 96.60 31.22 3810 1998 
56137 Qamdo 97.17 31.15 3306 1954 
56202 Lhari 93.28 30.67 4489 1955 
56223 Lhorong 95.85 30.75 3640 1992 
56227 Bome 95.77 29.87 2736 1955 
56228 Baxoi 96.92 30.05 3260 1998 
56307 Gyaca 92.58 29.15 3260 1998 
56312 Nyingchi 94.47 29.57 3000 1954 
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56317 Mainling 94.22 29.22 2950 1998 
56331 Zogang 97.83 29.67 3780 1978 
56342 Markam 98.60 29.68 3870 1998 
56434 Zayu 97.47 28.65 2328 1960 
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Table 2 Results of the trend test for the annual PE series using the Mann-Kendall method 

and the linear regression method, respectively. 

Test method 
Mean 

(mm) 

Slope 

(mm/decade)

Percentage

(%/decade)
Significance level 

Linear regression 
1200 

-13.9 -1.1 
p < 0.1 

Mann-Kendall -9.1 -0.8 
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Table 3 Mean PE, change rates and the corresponding values of significance level, p, in 

different seasons in the period 1961–2001. 

Season Spring Summer Autumn Winter 

Mean PE (mm) 270  441 323 166 

Change rate (mm/decade) -7.3 -3.8 -2.1 -1.9 

p <0.1 >0.1 >0.1 >0.1 
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Table 4 Mean PE, change rates and the corresponding values of significance level, p, in 

different months in the period 1961–2001. 

Month Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

Mean PE (mm) 52 62 93 114 146 153 142 124 108 91 62 51 

Change rate 

(mm/decade) 
-0.8 -1.8 -1.5 -3.8 -1.3 -2.5 -0.3 0.5 -1.6 -0.4 0.1 -0.6 

p >0.1 <0.1 >0.1 <0.1 >0.1 <0.1 >0.1 >0.1 <0.1 >0.1 >0.1 >0.1 
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Table 5 Correlations between PE and related meteorological variables according to 

correlation analysis with the monthly meteorological data recorded at 22 stations in 

the period 1961–2001. 

Meteorological 

variable 

PE, E 

(mm) 

Vapour 

pressure 

deficit, Δe 

Air 

temperature, 

T  

Sunshine 

duration, 

D  

Wind 

velocity, u  

Relative 

humidity, 

RH  

  (hPa) (°C) (h) (m/s) (%) 

E 1 / / / / / 

Δe 0.844* 1 / / / / 

T 0.605* 0.796* 1 / / / 

D 0.446* 0.191* -0.219* 1 / / 

u 0.208* -0.095* -0.249* 0.234* 1 / 

RH 
-

0.127* 
0.123* 0.509* -0.560* -0.224* 1 

* examination of significance level p = 0.01 is satisfied. 
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 FIGURE CAPTIONS 

Fig. 1 Locations of the meteorological stations in Tibet. 

Fig. 2 Temporal trends of annual PE in Tibet in the period 1961–2001. 

Fig. 3 Results of the change point test for annual PE series using the Pettitt method. 

Fig. 4 Temporal trends of seasonal PE in Tibet in the period 1961–2001. 

Fig. 5 Spatial distributions of (a) mean annual PE and (b) the change rate of annual PE in 

Tibet, 1961–2001. 

Fig. 6 Relationship between PE and elevation of each meteorological station in Tibet, 

1961–2001. 

Fig. 7 Temporal trends of the five related meteorological variables in Tibet, 1961–2001. 

Fig. 8 Scatterplots of the relationships between PE and the five related meteorological 

variables in Tibet, 1961–2001. 

Fig. 9 Comparison of calculated values with measured data recorded at 22 stations in Tibet 

in the period 1961–2001. 
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