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Abstract 

Two series of simply supported bending tests on aluminium alloy square and rectangular hollow 

sections have been performed. The test program comprised 14 three-point bending tests and 15 

four-point bending tests. The test specimens were fabricated by extrusion from grades 6061-T6 

and 6063-T5 heat-treated aluminium alloys, with width-to-thickness ratios ranging from 2.8 to 

20.5. Measured geometric and material properties, together with the full load-deflection histories 

from the test specimens, were reported. Observed failure modes included local buckling, material 

yielding and tensile fracture. Further experimental data were gathered from the literature. Finite 

element (FE) models were developed and validated against the test results, and then used to 

perform parametric studies, in which a total of 132 numerical results were generated. The 

experimental and numerical results were used to evaluate the bending resistance provisions of the 

American [1], Australian/New Zealand [2] and European [3] Specifications, as well as the 

continuous strength method (CSM). The moment capacities predicted by the three design 

specifications were found to be generally conservative, while the CSM provided more accurate 

and more consistent predictions due to the recognition and systematic exploitation of strain 

hardening.  
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1. Introduction 

 

Aluminium alloys are gaining increasing usage in the construction industry, offering high 

strength-to-weight ratios, good durability and ease of fabrication. A wide variety of cross-section 

types are available, enabling aluminium alloys to be used efficiently under a broad range of 

loading conditions. The behaviour of design of aluminium alloy cross-sections in flexure is the 

subject of the present study. 

 

The earliest documented structural tests on aluminium alloy members subjected to bending were 

conducted by Dumont and Hill [4]. Since then, both experimental and numerical studies have 

been carried out by numerous researchers, seeking to improve the design provisions for 

aluminium alloy beams. For instance, Lai and Nethercot [5] developed finite element (FE) 

models, which incorporated heat-affected zones to investigate their influence on flexural capacity. 

Moen et al. [6, 7], De Matteis et al. [8, 9] and Manganiello et al. [10] conducted a number of 

experimental and numerical investigations into the strength and rotation capacity of aluminium 

alloy beams subjected to a moment gradient. Eberwien and Valtinat [11] proposed a method to 

obtain the moment-curvature response of symmetrical aluminium cross-sections, while recently, 

the direct strength method (DSM), initially developed by Schafer and Peköz [12] for the design of 

cold-formed steel structural members, was extended to aluminium alloy thin-walled sections, and 

verified against a series of beam tests conducted by Zhu and Young [13]. 
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The post-yield material properties of aluminium alloys - strain hardening and ductility – have 

been found to have a strong influence on the flexural behaviour of aluminium alloy beams [6, 7, 

14]. With an emphasis on these two factors, Kim and Peköz [15] conducted tests and developed 

numerical models of aluminium alloy stocky section beams to determine the ultimate inelastic 

bending capacities, where it was found that the ultimate material strength could be achieved. 

Recently, a deformation-based design approach, the continuous strength method (CSM), was 

proposed for non-linear metallic structural members [16-20]. The CSM involves determining a 

limiting strain for the cross-section which is used in conjunction with a strain hardening material 

model to determine load-carrying capacities.  

 

There are a number of international aluminium alloy design specifications. The most widely used 

are the Aluminum Design Manual [1], the Australian/New Zealand Standard [2] and Eurocode 9 

[3]. The width-to-thickness ratio and the yield stress are recognized as the governing design 

parameters in the design of cross-sections in these specifications. In the case of flexural members, 

the design strengths predicted by these specifications are generally overly conservative [6, 13, 15 

and 21], especially for stocky (non-slender) sections. This is recognised in Annex F of EC9 [3], 

where an alternative design method accounting for strain hardening is provided, and this more 

favourable approach is employed herein for all comparisons made with EC9. 

 

The majority of available beam test results from the literature relate to experiments conducted on 

specimens of relatively slender proportions. Hence, the assessment of design specifications for 

stocky cross-sections is relatively limited. This paper firstly presents three-point and four-point 

bending tests on aluminium alloy tubular sections, the results of which are subsequently 

compared. Secondly, numerical models of both configurations are developed and validated 

against the experimental data, after which a parametric study is conducted to generate 132 



additional numerical results. Finally, the test and numerical results generated in the present study, 

together with those gathered from previous tests conducted by other researchers, are compared 

with the design strengths predicted by the American [1], Australian/New Zealand [2] and 

European [3] specifications as well as the CSM.  

2. Experimental investigation 

 
An experimental program comprising three-point and four-point bending tests was conducted on 

aluminium alloy square and rectangular hollow sections (SHS/RHS). The test specimens were 

manufactured by extrusion from grades 6061-T6 and 6063-T5 heat-treated aluminium alloys. 

There were 29 flexural specimens, defined using the symbols illustrated in Figure 1. The cross-

sectional dimensions and tensile material properties shown in Tables 1 and 2 are the average 

measured values for each test specimen. The symbols presented in Tables 1 and 2 are defined as 

follows: L is the beam length, E is the Young’s modulus, fy is the 0.2% proof stress, which is 

conventionally used as the yield stress, fu is the ultimate tensile stress and n is the exponent of the 

Ramberg-Osgood expression. The measured material properties of each specimen were 

determined by means of longitudinal tensile coupon tests and Webster hardness measurements. 

Coupon tests conformed to the Australian standard AS 1391 [22] and the ASTM standard [23]. 

Webster hardness measurements were conducted according to the Standard Test Method for 

Indentation Hardness of Aluminium Alloys by Means of a Webster Hardness Gage [24]. The 

average measured local imperfection amplitude of the test specimens was 0.2 mm. 

 

The specimens were labelled according to the type of material, cross-sectional dimensions and 

test configuration. For example, the label “H70×55×4.2B3-R” defines an RHS specimen of high 

“H” strength aluminium alloy 6061-T6, with nominal cross-sectional dimensions of width (70 

mm) × height (55 mm) × thickness (4.2 mm). If the label starts with “N”, it means the specimen is 



of normal strength aluminium alloy 6063-T5. The symbol “B3” following the dimensions refers 

to the three-point loading configuration, whereas “B4” signifies the four-point loading 

configuration. If a test is repeated, a letter “R” is included in the label. The arrangement of the 

cross-sectional dimensions also refers to the bending axis. In this case, the specimen 

H70×55×4.2B3-R was bent about the minor axis, while the specimen H55×70×4.2B3 was bent 

about the major axis. 

 

The bending tests were conducted to assess the flexural resistance and rotation capacity of 

aluminium alloy beams, as well as the significance of strain hardening. Stiffening steel plates of 

100 mm width and 10 mm thickness, as well as wooden blocks, were employed at the loading 

points and the supports to prevent web crippling due to load concentration. Furthermore, steel 

bearing plates were placed between the specimens and rollers/half rounds for the purpose of 

spreading the concentrated loads. A servo-controlled hydraulic testing machine was used to apply 

compressive force by displacement control to the specimens at a constant rate of 0.8 mm/min. The 

applied loads, as well as the readings from the LVDTs and strain gauges, were recorded by a data 

logger at one second intervals during the tests. Hinges and pins were simulated by half rounds and 

rollers, respectively. The distance between the loading point and the supports was 300 mm. In the 

three-point bending tests, the simply supported specimens were loaded at the mid-span, as shown 

in Figures 2 and 3. One 100 mm LVDT was used to measure the vertical deflection at mid-span. 

Two 25 mm LVDTs were placed at each end of the specimens to measure the end rotation. For 

the relatively slender sections (H70×55×4.2B3, H55×70×4.2B3 and H64×64×3.0B3), three strain 

gauges were adhered to the compression flange at a distance of 5 mm from the loading point, with 

two gauges near the flange-web junctions and one in the middle of the flange, to monitor possible 

local buckling. The moment–end rotation curves from the three-point bending tests are plotted in 

Figure 4. In the four-point bending tests, the simply supported specimens were loaded 



symmetrically at two points through a spreader beam, as shown in Figures 5 and 6. One 100 mm 

LVDT and two 50 mm LVDTs were used to measure the vertical deflection at mid-span and at the 

loading points, respectively, in order to obtain the mid-span deflection and curvature in the 

constant moment region. Two 25 mm LVDTs were placed at each end of the beams to measure 

the end rotation. As for the three-point bending tests, three strain gauges were affixed at mid-span 

on the compression flange for the relatively slender sections (H70×55×4.2B4, H55×70×4.2B4 and 

H64×64×3.0B4) to monitor local buckling. The moment–curvature graphs from the four-point 

bending tests are presented in Figure 7. 

 

The specimens generally failed by spread of plasticity and inelastic local buckling, except for 

beams H50×95×10.5B3 and H70×120×10.5B3 which failed by tensile material fracture at mid-

span. A distinct sound was heard when the material split on the tension flange at failure, as seen in 

Figure 8. The material fracture failure mode arose in two specimens (H50×95×10.5B3 and 

H70×120×10.5B3), both of which were of very stocky proportions (such that local buckling was 

precluded) and had reached the plastic moment prior to fracture. It should be noted that significant 

visual local buckling was not observed in the beams. A comparison between the test results 

obtained in the three-point and four-point bending configurations is given in Table 3. 

 

Previous studies conducted by other researcher also provide relevant experimental results, 

including those obtained from three-point bending tests [6] and four-point bending tests [5, 13 and 

19], all of which are included in Tables 1 and 2. The data gathered from the literature and the 

newly generated results from the present study are both used to evaluate the design provisions for 

aluminium alloy elements in bending given in the three considered specifications and the 

continuous strength method. The results are summarised in Tables 4 and 5, and will be discussed 

further in Section 5. 



3. Numerical study 

 
Numerical analyses were performed in parallel with the experimental studies. The finite element 

(FE) package ABAQUS version 6.10 [25] was employed to simulate the bending experiments and 

to conduct parametric investigations. In the parametric study, the influence of two key parameters 

of the aluminium alloy beams, namely the cross-sectional slendernessλp and the width-to-height 

ratio b/h, was examined.  

 

3.1 Model validation 

 

The reduced integration 4-noded doubly curved general-purpose shell element S4R was employed 

in all FE models, with a chosen mesh size of 10 mm × 10 mm. Bearing plates were modelled 

using 10 mm thick solid elements that were free to rotate in-plane. Hard contact in the normal 

direction and friction penalty contact (with the friction coefficient = 0.1) in the tangential 

direction were adopted between the solid plate (master surface) and the beam surface (slave 

surface). It should be noted that, as in the tests, web-crippling was not observed in the numerical 

models. Simple support conditions were simulated by restraining the relevant degrees of freedom 

at mid-span and at the ends of the beams. The true material stress–strain relationships were 

derived from the engineering stress–strain curves obtained from the tensile coupon tests (see 

Figure 9), and input into ABAQUS. The beams were restrained longitudinally at the mid-span 

only. Residual stresses were not measured in the experimental work, but have been found 

previously to have only a very small effect on the load-bearing capacity of aluminium alloy 

members [26]. Displacement-controlled non-linear analyses were carried out employing the Riks 

method. 

 



Initial local geometric imperfections were included in the numerical models. The imperfections 

were incorporated in the form of the lowest appropriate (i.e. a regular pattern) elastic buckling 

mode shape as obtained from linear eigenvalue buckling analyses, as shown in Figure 10. The 

initial geometric imperfection amplitude was taken as 0.2 mm, which represented the average 

local imperfection amplitudes measured on the test specimens.  

 

The experimental and numerical results are compared in Table 6, and may be seen to be in good 

overall agreement, indicating that the model was capable of replicating the experimentally 

observed structural response of the specimens. In general, the initial stiffness, failure modes 

(Figures 11-12) and the general shape of the moment-rotation curves of the FE models followed 

those obtained from the experiments closely. Two typical load-displacement curves (for specimen 

H120×120×9.0B3) obtained from the experiments and FE models are compared in Figure 13.  

 

3.2 Parametric study 

 

Having validated the numerical model against the experimental results, it was used to carry out an 

extensive parametric study to assess the bending behaviour of aluminium alloy beams over a 

wider range of cross-section slendernesses. Both major and minor axis bending was modelled. 

Local imperfections were assumed to be in the pattern of the lowest regular elastic buckling mode 

shape with an amplitude of 0.2 mm, as measured in the experimental program. The material 

properties of a typical high strength aluminium alloy specimen H64×64×3.0B3 and a typical 

normal strength aluminium alloy specimen +N95×50×10.5B5III (a specimen not reported in this 

paper with fy = 109.5 MPa and fu= 177.4 MPa) were employed in the models to represent high 

strength and normal strength aluminium alloys, respectively. A wide range of both b/h ratios (0.29 

- 3.35) and b/t ratios (4.25 - 55.14) were considered in the parametric study. Outer section 



dimensions and thickness up to 180 mm and 12 mm, respectively, were modelled. The distance 

between supports and loading points varied from 400 mm to 900 mm. The parametric study 

generated a total of 132 numerical results, with half in three-point bending and half in four-point 

bending. The results are compared with a series of design methods in Section 5 of this paper.  

 
 

4. Comparison between three-point and four-point bending tests 

 

Each cross-section in the present study was tested in two loading configurations － three-point 

bending and four-point bending. In the former case, the members experience a moment gradient 

with coexistent shear while in the latter case, the members are subjected to a central region of 

constant moment and zero shear. Typical failed specimens from three-point and four-point 

bending tests are presented in Figures 11 and 12, respectively. Test moment resistances and 

rotation capacities, as well as the comparisons between the results obtained for the two loading 

configurations, are shown in Table 3. Note that an LVDT error occurred in the H120×120×9.0B4 

test, which meant that end rotation of this specimen could not be obtained. 

 

It should be noted that the definition of the rotation capacity R related to rotation θrot at the 

theoretical plastic hinge location for the three-point bending tests (Equation 1) or to constant 

curvature κrot developed in the uniform moment region for the four-point bending tests (Equation 

2).  

1rotR
pl

θ
θ

= −  (1) 

1rotR
pl

κ
κ

= −  (2) 



Where θpl and κpl are the elastic rotation and curvature corresponding to the plastic moment Mpl = 

Wplfy and θrot and κrot are the rotation and curvature at the point where the moment resistance 

drops back below Mpl. The definitions of rotation capacity based on the moment-rotation and the 

moment-curvature relationships have been explained and employed by Chan and Gardner [27]. 

 
It can be seen from Table 3 that the ultimate moment capacities obtained from the three-point 

bending tests Mexp(B3) are consistently higher than those obtained from the four-point bending 

tests Mexp(B4). For the normal strength aluminium (6063-T5) specimens, Mexp(B3)/Mexp(B4) 

ranged between 1.12 and 1.41, while for the high strength (6061-T6) material, this ratio varied 

between 1.01 and 1.20. The presented comparative results obtained in this section coincide with 

the findings of others [27-31]. This behaviour was explained by the fact that local buckling is 

delayed in the presence of a moment gradient due to the restraint that the most heavily loaded 

cross-section experiences from the adjacent material which is at a lower stress level.    

Meanwhile, similar conclusions are also reached for rotational capacities by Theofanous et al. 

[28], who found that both the ultimate moment capacity and rotation capacity are improved in the 

presence of a moment gradient, as compared to uniform bending. However, most of the test 

moments in this study did not drop back below Mpl due to large deformations and premature 

fracture, which prevents meaningful comparisons of rotation capacity.  

 

 

5. COMPARISON OF TEST RESULTS WITH DESIGN STRENGTHS 

In this section, the ultimate bending capacities obtained from the testing (Mexp) and numerical 

modelling (MFE) carried out in the present study, as well as from existing experiments collected 

from the literature are compared with the calculated elastic (Mel) and plastic (Mpl) moments, and 

the nominal flexural design strengths predicted by the Aluminum Design Manual [1] (MAA), the 



Australian/New Zealand Standard [2] (MAS/NZS), Eurocode 9 [3] (MEC9) and the continuous 

strength method (Mcsm) for aluminium structures -see Tables 4, 5 and 7 as well as Figures 14-15. 

The comparisons were performed using the measured material properties and geometries, with all 

safety factors set equal to unity. The AA [1] provides design rules for aluminium alloy simply 

supported beams, in which the nominal weighted average design moment is defined as the sum of 

elastic modulus of each element multiplied by its individual flexural stress, as indicated in Clause 

F8.3, Part I of the Aluminum Design Manual [1]. The design rules in the AS/NZS provisions are 

similar to the AA, except using the weighted average compressive stress for the gross section, i.e. 

the average value of flexural stress in terms of each compressive element’s area. In EC9, 

resistance is defined as the yield stress multiplied by the plastic modulus Wpl for Class 1 and 2 

sections, by the elastic modulus Wel for Class 3 sections and by the elastic modulus of an effective 

section Weff for slender Class 4 cross-sections. EC9 also provides an alternative design method in 

Annex F to enable higher capacities to be determined for Class 1 sections by taking account of 

strain hardening. All comparisons made herein with EC9 use the more favourable Annex F 

approach.  

 

The continuous strength method (CSM) is a deformation based design framework that allows for 

the beneficial influence of strain hardening for all non-slender cross-sections [16-20]. A base 

curve defining a continuous relationship between local slenderness and cross-section deformation 

capacity [19] together with a strain hardening material model [20] are the two main features of the 

CSM. The relationships between moment capacity and cross-section slenderness for the four 

considered design methods (AA, AS/NZS, EC9 and CSM) are illustrated in Figure 16. 

 

The CSM base curve, given by Equation 2, where εcsm is the limiting strain for the cross-section, 

εy=fy/E is the yield strain andλp is the cross-section slenderness, has already been shown to 



provide an accurate prediction of deformation capacity for carbon steel and stainless steel cross-

sections in compression and bending [19], as well as aluminium alloy cross-sections in 

compression [20]. In Figure 17, the deformation capacities obtained from the bending tests and 

numerical models generated herein are plotted against cross-section slenderness, alongside the 

CSM base curve. The deformation capacities were derived from the four-point bending tests and 

models following the procedure described in [19]. For comparison, deformation capacity data 

derived from experiments on aluminium alloy cross-sections in compression [20] are also shown 

in Figure 17. The base curve may be seen to provide a good representation of both the 

compression and bending data, indicating its suitability for the prediction of the deformation 

capacity of aluminium alloy cross-sections. 

 

0.25
3.6

εcsm =
εy λ p

  but 
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εy

≤ lesser (15, 
0.5εu
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)     forλp ≤ 0.68  (2) 

Cross-section slendernessλp is defined as: 

 
λ = f /σp y cr            (3) 

 

where σcr is the elastic buckling stress of the cross-section, which may be determined numerically 

using programs such as CUFSM [32] or using simplified analytical expressions [33]. 

Alternatively,λp may be determined on an element by element basis, by taking the cross-section 

slenderness as that of its most slender constituent plate.              

 

Using the base curve (Equation 2) to determine the level of strain that a cross-section can carry 

εcsm, cross-section resistance may then be derived by means of a suitable material σ-ε model. The 



CSM employs a bi-linear (elastic, linear hardening) material model, as shown in Figure 18, where 

the slope of the strain hardening region Esh is given by: 

 

0.5
f -fu yE =sh ε - εu y

 (4) 

where εu is the strain at the material ultimate tensile stress, which may be taken as [20]: 

 

                                                    εu = 0.13(1- fy / fu) + 0.059                                               (5) 

 

Having determined the strain hardening modulus Esh, cross-section bending resistance Mcsm may 

subsequently be determined from Equation 6, which was derived from simple mechanism in [17]. 

 

2[1 ( 1) (1 ) / ( ) ]E W Wsh el csm el csmM W fcsm pl y E W Wpl y pl y

ε ε
ε ε

= + − − −   (6) 

 

Note that the exponent on the final term of Equation 6 is dependent upon the shape of the cross-

section – a value of 2 applies to SHS/RHS [17]. 

 

Comparisons between the experimental and numerical results and the four design methods are 

shown in Tables 4-5, while Table 7 and Figures 14-15 summarise the comparisons with both 

experimental and numerical results. Considering the three international design specifications, the 

performance of the Eurocode [3] and American standard [1] regarding the prediction of flexural 

capacity is more accurate than the AS/NZS [2] standard. The AS/NZS generally underestimated 

the resistance of the simply supported beams by approximately 50% with a large scatter (mean 

Mexp/MAS/NZS = 1.47 and coefficient of variation (COV) = 0.20 for specimens with slenderness less 



than 0.68; considering all specimens, the mean Mexp/MAS/NZS = 1.39 and COV = 0.21), as shown in 

Table 7. Meanwhile, the AA and EC9 provide better predictions with mean values of 1.33 and 

1.22 with a corresponding COV of 0.18 and 0.11 for the experimental-to-predicted moment ratios 

Mexp/MAA and Mexp/MEC9 of non-slender sections(λp ≤ 0.68), respectively, while considering the 

full range of specimens, the mean values are 1.27 and 1.21 with COV of 0.19 and 0.11 for 

Mexp/MAA and Mexp/MEC9, respectively. EC9 (Annex F) provides the most consistent prediction 

among the three specifications. The predictions of these specifications are particularly 

conservative for the stocky sections, as presented in Tables 4 and 5 and Figures 14 and 15. The 

CSM approach, which only applied to non-slender sections, given a mean Mexp/Mcsm = 1.12 and 

COV = 0.11 and provides a more accurate prediction of the bending capacity, with up to 

approximately 30% increases in capacity compared to the AS/NZS predictions, and more than 

20% increases compared to the AA predictions. These improvements are linked to the 

deformation based approach of the CSM and the systematic use of strain hardening. 

 

CONCLUSIONS 

Two series of experiments on aluminium alloy hollow section beams, consisting of 14 three-point 

bending tests and 15 four-point bending tests and considering two material grades - 6061-T6 and 

6063-T5, have been presented. The test specimens were of non-slender proportions, and were 

mostly Class 1 sections according to Eurocode 9 [3]. Measured geometric and material properties, 

together with the load-deflection curves from the test specimens have been reported herein. 

Failure modes of local buckling, material yielding and tensile fracture were observed in the tests. 

A further 33 three-point bending test results and 18 four-point bending test results on both slender 

and non-slender sections were collected from the literature and analyses. FE models were 

developed and validated against the experiments, after which they were employed in the 

parametric study to generate 132 numerical results. The plane slenderness ratio b/t of the cross-



sections has been extended beyond the tested range to a wider range (4.25 - 55.14) in the 

parametric study. The combined data set from the tests and the numerical simulations were used 

to assess the accuracy of three international design specifications: the Aluminum Design Manual 

[1], the Australian/New Zealand Standard [2] and Eurocode 9 [3] and the CSM for predicting the 

moment capacity of simply supported aluminium alloy beams. The results revealed that the three 

design specifications generally underestimate the observed moment resistance, especially for 

stocky sections, where capacities well beyond the fully plastic moment resistance were typically 

achieved in the tests. Through a deformation based approach that incorporated strain hardening, 

the continuous strength method was shown to offer improved predictions of capacity, up to 30% 

beyond those achieved in current specifications. 
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Notation 

B     = Section width 

b     = Flat width of flange 

COV     = Coefficient of variation 

E     = Young's modulus 

Esh        = Strain hardening modulus 

fy   = Yield strength, taken as the 0.2% proof strength 



fu    = Ultimate tensile strength 

H         = Section depth 

h       = Flat depth of web 

L    = Member length 

MAA    = Ultimate moment capacity predicted by the AA (2010) 

MAS/NZS    = Ultimate moment capacity predicted by the AS/NZS (1997) 

Mcsm       = Ultimate moment capacity predicted by the CSM 

MEC9     = Ultimate moment capacity predicted by Annex F of EC9 (2007) 

Mel    = Welfy is the elastic moment capacity 

Mexp    = Experimental ultimate moment 

MFE = Ultimate moment capacities of simulated models 

Mpl    = Wplfy is the plastic moment capacity 

n    = Exponent in Ramberg-Osgood expression 

R    = Rotation capacity 

t    = Wall thickness 

Weff    = Elastic modulus of effective section 

Wel    = Elastic section modulus 

Wpl    = Plastic section modulus 

εcsm   = CSM limiting strain 

εu = Strain at ultimate tensile stress 

εy = fy/E is the yield strain  

κpl = Elastic curvature corresponding to the plastic moment Mpl  

κrot = Curvature at the point where the moment resistance drops back below Mpl 

λp         = Cross-section/plate slenderness 

θpl = Elastic rotation corresponding to the plastic moment Mpl  



θrot = Rotation at the point where the moment resistance drops back below Mpl 

σcr  = Elastic buckling stress  
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Table 1. Measured three-point bending specimen dimensions and material properties from tensile coupon tests 

Specimen B     
(mm) 

H    
(mm) 

t        
(mm) 

L      
(mm) 

E     
(GPa) 

f y 
(MPa) 

f u    
(MPa) n Webster 

hardness 

H70×55×4.2B3 69.8 55.2 4.09 694.8 67 207 222 16 13 
H55×70×4.2B3 54.7 69.8 4.09 693.4 67 207 222 16 13 
H95×50×10.5B3 94.7 49.6 10.34 695.0 68 229 242 11 11 
H50×95×10.5B3 49.5 94.6 10.34 693.0 68 229 242 11 12 
H64×64×3.0B3 63.9 63.8 2.89 692.7 67 232 245 10 12 
H120×120×9.0B3 120.0 119.9 8.90 691.4 65 225 234 13 12 
H120×70×10.5B3 119.8 69.8 10.28 691.4 68 226 238 10 12 
H70×120×10.5B3 69.8 119.8 10.26 691.8 68 226 238 10 12 
H70×55×4.2B3-R 69.8 54.8 4.07 694.1 65 193 207 22 12 
H50×95×10.5B3-R 49.5 94.7 10.33 692.8 68 229 242 11 11 
H64×64×3.0B3-R 63.9 63.9 2.83 696.3 67 232 245 10 12 
N120×70×10.5B3 120.0 69.9 10.4 689.1 71 139 194 9 10 
N70×120×10.5B3 69.9 119.9 10.4 688.1 71 139 194 9 10 
N120×120×9.0B3 119.9 119.9 8.9 692.8 69 181 228 9 11 
Q1-1m-1# 99.6 100.3 5.91 1000.0 69 316 324 --- --- 
Q1-1m-2# 99.6 100.3 5.91 1000.0 69 316 324 --- --- 
Q1-2m-1# 99.6 100.3 5.91 2000.0 69 316 324 --- --- 
Q1-2m-3# 99.6 100.3 5.91 2000.0 69 316 324 --- --- 
Q2-1m-1# 100.0 100.0 5.91 1000.0 67 177 284 --- --- 
Q2-1m-2# 100.0 100.0 5.91 1000.0 67 177 284 --- --- 
Q2-2m-1# 100.0 100.0 5.91 2000.0 67 177 284 --- --- 
Q2-2m-2# 100.0 100.0 5.91 2000.0 67 177 283 --- --- 
Q3-1m-1# 100.0 99.7 2.87 1000.0 67 120 221 --- --- 
Q3-1m-2# 100.0 99.7 2.87 1000.0 67 120 221 --- --- 
Q3-2m-1# 100.0 99.7 2.87 2000.0 67 120 221 --- --- 
Q3-2m-3# 100.0 99.7 2.87 20000 67 120 221 --- --- 
Q4-2m-1# 100.1 100.0 5.97 2000.0 67 314 333 --- --- 
Q4-2m-2# 100.1 100.0 5.97 2000.0 67 314 333 --- --- 
R1-1m-1# 60.0 119.4 2.45 1000.0 67 289 302 --- --- 
R1-2m-1# 60.0 119.4 2.45 2000.0 67 289 302 --- --- 
R1-2m-2# 60.0 119.4 2.45 2000.0 67 289 302 --- --- 
R1-3m-1# 60.0 119.4 2.45 3000.0 67 289 302 --- --- 
R1-3m-2# 60.0 119.4 2.45 3000.0 67 289 302 --- --- 
R2-1m-1# 60.1 100.0 2.93 1000.0 66 281 290 --- --- 
R2-1m-2# 60.1 100.0 2.93 1000.0 66 281 290 --- --- 
R2-2m-1# 60.1 100.0 2.93 2000.0 66 281 290 --- --- 
R2-2m-2# 60.1 100.0 2.93 2000.0 66 281 290 --- --- 
R2-3m-1# 60.1 100.0 2.93 3000.0 66 281 290 --- --- 
R2-3m-2# 60.1 100.0 2.93 3000.0 66 281 290 --- --- 
I1-2m-1# 119.9 120.2 7.96 1000.0 67 312 324 --- --- 
I2-1m-1# 70.0 80.35 4.97 1000.0 67 279 301 --- --- 
I2-1m-2# 70.0 80.35 4.97 1000.0 67 279 301 --- --- 
I2-1m-3# 70.0 80.35 4.97 1000.0 67 279 301 --- --- 
I2-2m-1# 70.0 80.35 4.97 2000.0 67 279 301 --- --- 
I2-2m-2# 70.0 80.35 4.97 2000.0 67 279 301 --- --- 
I2-2m-3# 70.0 80.35 4.97 2000.0 67 279 301 --- --- 
I2-3m-1# 70.0 80.35 4.97 3000.0 67 279 301 --- --- 

# Test results from Moen et al. [6] 
--- Data are not available 

 



 
Table 2. Measured four-point bending specimen dimensions and material properties from tensile coupon tests 

Specimen B     
(mm) 

H    
(mm) 

t        
(mm) 

L      
(mm) 

E     
(GPa) 

f y 
(MPa) 

f u    
(MPa) n Webster 

hardness 

H70×55×4.2B4 69.9 54.9 4.09 990.0 67 207 222 16 14 
H55×70×4.2B4 54.9 69.9 4.10 993.1 67 207 222 16 14 
H95×50×10.5B4 94.7 49.6 10.35 993.8 68 229 243 11 12 
H50×95×10.5B4 49.6 94.7 10.37 988.3 68 229 243 11 12 
H64×64×3.0B4 63.9 63.9 2.86 991.2 67 232 245 10 12 
H120×120×9.0B4 120.0 112.0 8.92 995.8 65 225 234 13 12 
H120×70×10.5B4 119.8 69.8 10.40 993.6 68 226 238 10 12 
H70×120×10.5B4 69.9 119.8 10.30 996.5 68 226 238 10 12 
H64×64×3.0B4-R 63.8 63.9 2.87 993.4 67 232 245 10 12 
H70×55×4.2B4-R 70.0 54.9 4.08 989.5 67 207 222 16 14 
H55×70×4.2B4-R 54.9 70.0 4.09 989.5 67 207 222 16 14 
N50×95×10.5B4 49.7 94.8 10.36 995.3 69 164 211 10 11 
N120×70×10.5B4 119.8 69.9 10.42 989.1 71 139 194 9 10 
N70×120×10.5B4 69.9 119.8 10.42 996.3 71 139 194 9 10 
N120×120×9.0B4 119.9 119.9 8.91 993.2 69 181 228 9 11 
S1-PB# 44.6 44.6 1.14 --- 68 296 300 --- --- 
R1-PB# 100.1 44.1 1.32 --- 70 260 276 --- --- 
R2-PB# 99.8 43.9 2.90 --- 69 275 283 --- --- 
R2-PB-R# 99.8 44.0 2.91 --- 69 275 283 --- --- 
H32×32×2* 32.0 32.0 1.94 1240.0 66 243 261 --- --- 
H40×40×5* 39.9 39.9 4.85 1440.0 70 226 246 --- --- 
H50×50×2* 50.7 50.7 1.95 1640.0 67 264 271 --- --- 
H50×50×3* 50.5 50.5 3.09 1640.0 64 268 273 --- --- 
H65×65×3* 64.1 64.1 2.99 1840.0 68 222 236 --- --- 
H76×76×3* 76.1 76.1 3.10 1840.0 68 246 264 --- --- 
H90×90×2* 88.2 88.2 1.75 2040.0 67 246 263 --- --- 
H100×100×2* 102.0 102.0 2.31 2240.0 68 234 258 --- --- 
H110×110×3* 111.6 111.6 3.13 2640.0 66 290 291 --- --- 
H153×153×3* 153.6 153.6 3.36 3000.0 72 244 267 --- --- 
N-1000-P-2^ 50.9 102.2 4.50 1200.0 71 373 430 33 --- 
N-1000-P-3^ 50.9 102.2 4.50 1200.0 71 373 430 33 --- 
N-2000-P-1^ 50.9 102.2 4.50 2200.0 71 373 430 33 --- 
N-2000-P-2^ 50.9 102.2 4.50 2200.0 71 373 430 33 --- 
# Test results from Zhu and Young [21]   
* Test results from Zhu and Young [13]    
^ Test results from Lai and Nethercot [5] 
--- Data are not available 
 

 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

Table 3. Comparison of moment and rotation capacity between the three-point and four-point bending tests. 
 

 Three-point bending Four-point bending 
Mexp
Mexp

Β

Β

( 3)

( 4)
 

Specimen Mexp (B3) 
(kNm) 

Rotation 
capacity  
R (B3) 

Mexp (B4) 
(kNm) 

Rotation 
capacity  
R (B4) 

H70×55×4.2B3/B4 4.75 7.04 4.72 6.97 1.01 
H55×70×4.2B3 /B4 6.76 9.00 6.49 7.70 1.04 
H95×50×10.5B3/B4 12.09 6.02 10.35 7.25 1.17 
H50×95×10.5B3/B4 21.09 10.76 18.04 12.75 1.17 
H64×64×3.0B3 /B4 4.10 2.71* 3.59 0 1.14 
H120×120×9.0B3/B4 44.42 5.75 38.75    --- 1.15 
H120×70×10.5B3/B4 23.59 6.58 19.66 6.12 1.20 
H70×120×10.5B3 /B4 37.86 8.30 33.00 14.76 1.15 
N120×70×10.5B3/B4 20.73 11.44 14.97 17.29 1.38 
N70×120×10.5B3 /B4 37.30 31.50 26.45 29.31 1.41 
N120×120×9.0B3/B4 40.53 25.48 36.22 12.46 1.12 
Mean     1.18 

* Test moments did not drop back to Mpl except specimen H64×64×3.0B3 
--- Data are not available 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Table 4. Summary of comparisons between three-point bending test results and design strengths 

Specimen b/t λp 
 exp

el

M
M

  
 exp

pl

M
M

   exp

AA

M
M

  
/

 exp

AS NZS

M
M

 
9

 exp

EC

M
M

  
 exp

csm

M
M

  

H70×55×4.2B3 11.5 0.40 1.42 1.20 1.31 1.42 1.20 1.17 
H55×70×4.2B3  15.1 0.32 1.41 1.15 1.58 1.77 1.15 1.08 
H95×50×10.5B3 2.8 0.22 1.61 1.24 1.52 1.61 1.22 1.19 
H50×95×10.5B3 7.2 0.10 1.73 1.29 1.46 1.73 1.28 1.24 
H64×64×3.0B3  20.1 0.56 1.29 1.10 1.18 1.29 1.29 1.13 
H120×120×9.0B3 11.5 0.34 1.45 1.20 1.32 1.45 1.21 1.16 
H120×70×10.5B3 4.8 0.28 1.52 1.22 1.42 1.52 1.21 1.17 
H70×120×10.5B3  9.7 0.17 1.68 1.30 1.45 1.68 1.29 1.25 
H70×55×4.2B3-R  11.5 0.40 1.44 1.22 1.33 1.44 1.21 1.18 
H50×95×10.5B3-R 7.2 0.10 1.70 1.27 1.44 1.70 1.26 1.22 
H64×64×3.0B3-R  20.5 0.57 1.37 1.16 1.25 1.37 1.37 1.21 
N120×70×10.5B3 4.7 0.21 1.86 1.49 1.74 1.86 1.33 1.26 
N70×120×10.5B3 9.5 0.13 2.30 1.78 1.98 2.30 1.59 1.50 
N120×120×9.0B3 11.5 0.29 1.43 1.19 1.30 1.43 1.07 0.99 
Q1-1m-1# 15.0 0.49 1.16 0.97 1.06 1.16 1.16 0.98 
Q1-1m-2# 15.0 0.49 1.16 0.97 1.06 1.16 1.16 0.98 
Q1-2m-1# 15.0 0.49 1.13 0.95 1.03 1.13 1.13 0.95 
Q1-2m-3# 15.0 0.49 1.14 0.96 1.04 1.14 1.14 0.96 
Q2-1m-1# 14.9 0.37 1.37 1.15 1.25 1.37 1.15 0.96 
Q2-1m-2# 14.9 0.37 1.36 1.14 1.24 1.36 1.14 0.95 
Q2-2m-1# 14.9 0.37 1.32 1.11 1.20 1.32 1.11 0.92 
Q2-2m-2# 14.9 0.37 1.36 1.14 1.24 1.36 1.14 0.95 
Q3-1m-1# 32.8 0.65 1.06 0.92 1.01 1.06 1.07 1.01 
Q3-1m-2# 32.8 0.65 1.04 0.90 0.99 1.04 1.11 0.99 
Q3-2m-1# 32.8 0.65 1.03 0.89 0.98 1.03 1.10 0.98 
Q3-2m-3# 32.8 0.65 1.08 0.93 1.03 1.08 1.15 1.03 
Q4-2m-1# 14.8 0.49 1.20 1.01 1.09 1.20 1.20 1.00 
Q4-2m-2# 14.8 0.49 1.16 0.97 1.06 1.16 1.16 0.97 
R1-1m-1# 46.7 0.73 0.94 0.77 0.85 0.94 0.96 --- 
R1-2m-1# 46.7 0.73 0.94 0.77 0.85 0.94 0.96 --- 
R1-2m-2# 46.7 0.73 0.94 0.77 0.85 0.94 0.96 --- 
R1-3m-1# 46.7 0.73 0.88 0.72 0.80 0.88 0.90 --- 
R1-3m-2# 46.7 0.73 0.87 0.71 0.79 0.87 0.89 --- 
R2-1m-1# 32.1 0.59 1.15 0.95 1.02 1.11 1.15 1.01 
R2-1m-2# 32.1 0.59 1.15 0.95 1.02 1.11 1.15 1.01 
R2-2m-1# 32.1 0.59 1.14 0.94 1.01 1.10 1.14 1.00 
R2-2m-2# 32.1 0.59 1.17 0.96 1.04 1.13 1.17 1.03 
R2-3m-1# 32.1 0.59 1.20 0.99 1.07 1.16 1.20 1.05 
R2-3m-2# 32.1 0.59 1.19 0.98 1.06 1.15 1.19 1.04 
I1-2m-1# 20.5 0.57 1.02 0.91 0.98 1.02 1.16 0.94 
I2-1m-1# 14.2 0.51 1.21 1.06 1.14 1.29 1.16 1.05 
I2-1m-2# 14.2 0.51 1.17 1.02 1.10 1.25 1.13 1.02 
I2-1m-3# 14.2 0.51 1.17 1.02 1.10 1.25 1.14 1.02 
I2-2m-1# 14.2 0.51 1.16 1.01 1.09 1.23 1.15 1.01 
I2-2m-2# 14.2 0.51 1.17 1.02 1.10 1.25 1.14 1.02 
I2-2m-3# 14.2 0.51 1.19 1.04 1.12 1.27 1.11 1.04 
I2-3m-1# 14.2 0.51 1.13 0.99 1.06 1.20 1.14 0.98 
Mean (Sections withinλp ≤ 0.68)   1.46 1.21 1.33 1.47 1.25 1.15 
COV (Sections withinλp ≤ 0.68)   0.22 0.19 0.20 0.21 0.11 0.11 



Mean (All cross-sections)   1.37 1.14 1.29 1.41 1.24 1.15 
COV (All cross-sections)   0.25 0.22 0.12 0.22 0.11 0.11 

# Test results from Moen et al. [6]   
--- Data are not available 
 

 
 

Table 5. Summary of comparisons between four-point bending test results and design strengths 

Specimen b/t λp 
 exp

el

M
M

  
 exp

pl

M
M

   exp

AA

M
M

  
/

 exp

AS NZS

M
M
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 exp

EC

M
M

  
 exp

csm

M
M

  

H70×55×4.2B4 11.4 0.66 1.13 0.95 1.31 1.43 0.95 0.92 
H55×70×4.2B4  15.1 0.94 1.34 1.10 1.51 1.69 1.10 1.03 
H95×50×10.5B4 2.8 1.32 1.38 1.06 1.30 1.38 1.04 1.01 
H50×95×10.5B4 7.1 0.17 1.47 1.10 1.25 1.48 1.09 1.05 
H64×64×3.0B4  20.4 0.23 1.14 0.97 1.04 1.14 1.14 1.00 
H120×120×9.0B4 11.5 0.30 1.26 1.04 1.15 1.26 1.05 1.01 
H120×70×10.5B4 4.7 0.43 1.25 1.01 1.17 1.25 1.00 0.97 
H70×120×10.5B4  9.6 0.61 1.46 1.13 1.26 1.46 1.12 1.08 
H64×64×3.0B4-R 20.3 0.25 1.14 0.97 1.04 1.14 1.14 1.00 
H70×55×4.2B4-R 11.4 0.34 1.16 0.98 1.35 1.46 0.98 0.94 
H55×70×4.2B4-R 15.1 0.51 1.25 1.03 1.41 1.58 1.03 0.97 
N50×95×10.5B4 7.2 0.89 1.81 1.35 1.53 1.79 1.24 1.16 
N120×70×10.5B4 4.7 0.28 1.54 1.24 1.44 1.54 1.10 1.04 
N70×120×10.5B4 9.5 0.37 1.88 1.45 1.62 1.88 1.30 1.23 
N120×120×9.0B4 11.5 0.57 1.47 1.22 1.34 1.47 1.10 1.02 
S1-PB# 37.1 0.98 0.98 0.85 1.17 1.16 1.23 --- 
R1-PB# 31.4 0.22 0.63 0.58 1.30 1.32 1.18 --- 
R2-PB# 13.1 0.30 1.03 0.91 1.13 1.21 1.24 --- 
R2-PB-R# 13.1 0.46 1.01 0.89 1.11 1.18 1.22 --- 
H32×32×2* 14.5 0.79 1.27 1.06 1.16 1.27 1.06 1.04 
H40×40×5* 6.2 0.29 1.34 1.06 1.21 1.34 1.02 0.99 
H50×50×2* 24.0 0.36 1.07 0.91 1.00 1.07 1.11 --- 
H50×50×3* 14.3 0.47 1.20 1.01 1.10 1.20 1.01 1.01 
H65×65×3* 19.4 0.68 1.23 1.04 1.12 1.22 1.23 1.06 
H76×76×3* 22.5 0.96 1.09 0.93 1.00 1.09 1.09 1.02 
H90×90×2* 48.4 0.21 0.73 0.63 0.97 0.99 0.98 --- 
H100×100×2* 42.2 0.26 0.88 0.77 1.07 1.09 1.11 --- 
H110×110×3* 33.7 0.34 0.93 0.80 1.04 1.06 1.11 --- 
H153×153×3* 43.7 0.49 0.77 0.67 0.95 0.97 1.00 --- 
N-1000-P-2^ 20.7 0.70 1.65 1.17 1.43 1.65 1.31 1.06 
N-1000-P-3^ 20.7 0.27 1.68 1.20 1.46 1.68 1.34 1.09 
N-2000-P-1^ 20.7 0.33 1.48 1.05 1.29 1.48 1.18 0.96 
N-2000-P-2^ 20.7 0.43 1.52 1.08 1.32 1.52 1.21 0.98 
Mean (Sections withinλp ≤ 0.68)   1.45 1.18 1.32 1.47 1.18 1.10 
COV (Sections withinλp ≤ 0.68)   0.18 0.16 0.16 0.17 0.10 0.09 
Mean (All cross-sections)   1.30 1.07 1.25 1.37 1.18 1.10 
COV (All cross-sections)   0.25 0.22 0.17 0.20 0.09 0.09 
# Test results from Zhu and Young [21] 
* Test results from Zhu and Young [13]    
^ Test results from Lai and Nethercot [5] 
--- Data are not available 
 
 



Table 6. Comparison between experimental and numerical results 
 

Specimen 
Mexp 

(kNm) 
MFE 

(kNm) 
 Mexp

M FE
  Specimen 

Mexp 

(kN) 
MFE 

(kN) 
 Mexp

M FE
 

H70×55×4.2B3 4.8 5.0 0.96 H70×55×4.2B4 4.7 4.3 1.09 
H70×55×4.2B3-R 4.4 4.6 0.95 H70×55×4.2B4-R  4.8 4.3 1.11 
H55×70×4.2B3  6.8 6.2 1.09 H55×70×4.2B4  6.5 6.8 0.96 
H95×50×10.5B3 12.1 11.9 1.02 H55×70×4.2B4-R 6.1 6.8 0.90 
H50×95×10.5B3 21.1 22.0 0.96 H95×50×10.5B4 10.4 10.5 0.99 
H50×95×10.5B3-R 20.8 21.4 0.97 H50×95×10.5B4 18.0 19.1 0.94 
H64×64×3.0B3  4.1 4.3 0.95 H64×64×3.0B4 3.6 3.8 0.95 
H64×64×3.0B3-R 4.3 4.4 0.98 H64×64×3.0B4-R 3.6 3.8 0.95 
H120×120×9.0B3 44.4 44.4 1.00 H120×120×9.0B4 38.8 38.4 1.01 
H120×70×10.5B3 23.6 25.4 0.93 H70×120×10.5B4 33.0 35.5 0.93 
H70×120×10.5B3  37.9 40.8 0.93 N120×70×10.5B4 15.0 17.2 0.87 
N120×70×10.5B3 18.0 20.0 0.90 N70×120×10.5B4 26.5 28.2 0.94 
N70×120×10.5B3  32.4 33.4 0.97 N120×120×9.0B4 36.2 35.5 1.02 
  Mean 0.97   Mean 0.97 
  COV 0.049   COV 0.071 

 
 
 
 

 
 

 
 
 

Table 7. Summary of comparisons between all experimental and numerical results with design strengths 
 

 
 

#Mexp
M AA

  
#

/

Mexp
M AS NZS

  
#

9

Mexp
M EC

  
#Mexp

Mcsm
  

Number of Specimens 155(208) 155 (208) 155(208) 155 
Mean, Pm 1.33 (1.27) 1.47 (1.39) 1.22 (1.21) 1.12 
COV, Vp 0.18 (0.19) 0.20 (0.21) 0.11 (0.11) 0.11 
Note that only 155 specimens are within the limits of applicability of the CSM, while a total of 208 
results are covered by the three international specifications. Values in brackets refer to the full database of 
208 tests 
# Mexp included both experimental and numerical results 
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Figure 1. Definition of symbols for (a) SHS/RHS and (b) I-section 

 

 

 

 

 

 



 

 

 
 

Figure 2. Schematic illustration of three-point bending test configuration (dimensions in mm) 
 

 
 
 
 
 
 
 

 
 

Figure 3. Experimental setup for three-point bending tests 
 
 
 
 
 

 
 
 
 
 
 



 
 
 

 
(a) 

 
 

 
(b) 

 
 

 
Figure 4. Moment–end rotation curves from three-point bending tests on (a) normal strength 6063-T5 aluminium 

alloy beams and (b) high strength 6061-T6 aluminium alloy beams 
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Figure 5. Schematic illustration of four-point bending test configuration (dimensions in mm) 
 

 
 
 
 
 
 

 
 

Figure 6. Experimental setup for four-point bending tests 
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Figure 7. Moment–curvature curves from four-point bending tests on  (a) normal strength 6063-T5 aluminium alloy 

beams and (b) high strength 6061-T6 aluminium alloy beams 
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Figure 8. Material splitting (fracture) on the tension flange of specimen H120×120×9.0B3 

 

 

 

 

Figure 9. Material stress-strain curves for specimen H164×64×3.0B3 
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Figure 10. A typical elastic local buckling mode 

 

 

 

 

 
Figure 11. Three-point bending numerical and tested specimen (H95×50×9.0B3) 

 

 

 
 
 
 
 

 

 
 

Figure 12. Four-point bending numerical and tested specimen (H95×50×9.0B4) 
 
 
 

 



 

 

 

 

 

Figure 13. Experimental and numerical load-displacement curves for specimen H120×120×9.0B3 
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Figure 14. Comparison of three-point bending experimental results and numerical with design strengths 

 
 

 
 
 
 

   
 

Figure 15. Comparison of four-point bending experimental results and numerical with design strengths 
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Figure 16. Curves indicating design capacities from different design approaches aluminium alloy elements in bending 
 
 
 

 
 
 

 
Figure 17. Comparison between four-point bending experimental and numerical results and the CSM design base 

curve  
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Figure 18. CSM bi-linear material model for aluminium alloys 
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