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Abstract: The casting of concrete in concrete-filled steel tube (CFST) can, via the 

confinement effect of the steel tube, significantly increase the ductility of the concrete 

and, in the case of high-strength concrete (HSC), alleviate the shortfall in ductility of 

the HSC. This kind of structure is gaining popularity but its behaviour is quite 

complicated. In an axially loaded circular CFST column, the confinement is uniform 

and equi-biaxial (isotropic within the cross-section). But, when the circular CFST 

column is under eccentric load, the confinement becomes non-uniform and anisotropic. 

Such complicated confinement effect is not easy to analyse and for such analysis, a 

rigorous finite element (FE) method is generally needed. In this paper, a new FE model 

considering the lateral strain-axial strain relation of the confined concrete covering the 

full range from the initial elastic stage to the inelastic stage is developed for the analysis 

of circular CFST columns under eccentric load. The FE model is used to analyse a total 

of 95 CFST specimens tested by other researchers and the numerical results are 

compared to the published test results for verification. 
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1. Introduction 

 

 In recent years, the strength grade of concrete is becoming higher and higher. 

However, the ductility of concrete is generally lower at higher strength [1]. But for 

survivability of a concrete structure subjected to impact and earthquake, both the 

strength and ductility of its structural components are important. Hence, while the 

strength grade of concrete is pushed upwards to save weight and space, it is necessary to 

restore the ductility of structural components cast of the concrete to at least the original 

level. One good solution to this problem is to provide confinement. A conventional way 

of providing confinement is to put in internal steel hoops. However, this has the obvious 

drawback that the confinement so provided is discontinuous because of the finite 

spacing between successive steel hoops. In this regard, the provision of a steel tube, 

which is continuous, so that the structural component becomes a concrete-filled steel 

tube (CFST) [2-14] is generally more effective. 

 

 Like concrete confined by a fibre-reinforced polymer (FRP) jacket, the 

confining stress in a CFST is induced by the dilatancy of concrete under axial 

compression and the compatibility of lateral strains of the confining material and the 

confined concrete. Nonetheless, steel tube confinement and FRP confinement are not 

quite the same. Whilst the hoop stress in the FRP jacket keeps on increasing with the 

lateral strain right from the beginning until the FRP ruptures, the hoop stress in the steel 

tube is negligibly small at the initial elastic stage and becomes significant only after the 

concrete has become inelastic when its dilatancy is much larger than before. This is 

because the Poisson’s ratio of concrete is generally smaller than that of steel at the 

initial elastic stage causing concrete-steel delamination at the beginning and the 

dilatancy of concrete gradually increases at the inelastic stage after the formation of 

splitting cracks. Hence, the variation of the hoop stress in the steel tube of CFST is 

fairly complicated. 

 

 In existing theoretical methods for predicting the structural performance of 

CFST, the confining stresses are sometimes assumed to be uniform and equi-biaxial (the 

confining stresses along the two minor principal axes in the cross-section have equal 

values) [6,11,13,15,16]. Such simplifying assumption allows easy calculations but is 
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applicable only when the CFST is subjected to axial load with no eccentricity. In more 

general cases, where the confining stresses could be non-uniform and anisotropic, the 

finite element (FE) method is generally used [17-24], and commercial software, such as 

ANSYS or ABAQUS, which adopts the associated or non-associated plastic flow rule 

and Drucker-Prager failure surface in the constitutive modelling of concrete, is often 

employed. The plastic flow rule governs the direction of plastic strain vector, which 

should be normal to the flow potential surface. In this regard, the associated flow rule 

assumes that the flow potential surface is identical to the failure surface, whereas the 

non-associated flow rule assumes that the flow potential surface may be decoupled from 

the failure surface. The latter has more freedom in customizing the constitutive model to 

account for the plastic deformation characteristics of the material. 

 

 Regarding the Drucker-Prager failure surface, the friction angle φ
f
 and cohesion 

c' of the material are the two parameters governing the geometry of the failure surface. 

The function of the Drucker-Prager failure surface is given by: 

  F'  = √J2 - I1tanφ
f
 - c'  = 0 (1) 

where I
1
 is the first stress invariant and J

2
 is the second deviatoric stress invariant. In 

ANSYS, the flow potential function has the same format as Eq. (1) except that the 

friction angle φ
f
 is replaced by the dilation angle φ

d
 [25]. If φ

d
 is set equal to φ

f
 , the 

associated flow rule is applied, as shown in Fig. 1(a), whereas if φ
d
 is different from φ

f
 , 

the non-associated flow rule is applied, as shown in Fig. 1(b) [26]. In ABAQUS, the 

flow potential function is also of the same form as Eq. (1) except that the friction angle 

φ
f
 is replaced by the dilation angle φ

d
 [27] and the extended Drucker-Prager failure 

surface is used so that the convexity of the failure surface can be modified. 

 

 In both ANSYS and ABAQUS, the dilatancy behaviour of concrete under 

triaxial stress state is governed by the dilation angle φ
d
. Mirmiran et al. [26] tried a zero 

dilation angle in ANSYS when they modelled the behaviour of axially loaded 

FRP-confined concrete columns. It turned out that the predicted axial stress-strain 

curves could fit quite well with the experimental results if proper values were chosen for 

the friction angle and cohesion. However, they also conceded that the numerical and 

experimental results showed completely different trends in the variations of the 
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dilatancy and volumetric strain. This was because the choice of a zero dilation angle 

implies that the unconfined concrete will not experience any further volumetric dilation 

once its plastic limit is reached and if FRP confinement is provided, the volume of the 

specimen will be contracting all the way. Such implications are not reasonable and in 

fact do not match the observed volumetric dilation by Imran and Pantazopoulou [28]. 

 

 Yu et al. [29,30] noticed this problem in the commercial software and introduced 

a solution-dependent-field-variable (SDFV) technique into ABAQUS to the effect that 

the dilation angle φ
d
 is taken as a variable whose value is determined according to the 

field outputs after each iteration step so as to make sure that the lateral strain-axial strain 

relation of the concrete will match the constitutive model proposed by Teng and Lam 

[31], which was derived by fitting experimental results. Somehow, they employed only 

one value of confining stress f
r
 in the lateral strain-axial strain relation. When the two 

lateral principal stresses σ
1
 and σ

2
 are equal to each other, f

r
 = σ

1
 = σ

2
. When σ

1
 ≠ σ

2
, an 

effective value of f
r
 (denoted by f

r,eff
) is assumed, as given below: 

  f
r,eff

 = 
2 (σ1 + 0.039fc) (σ2 + 0.039fc)

(σ1 + σ2 + 0.078fc)
 - 0.039f

c
 (2) 

in which f
c
 is the unconfined compressive strength of concrete. With better modelling of 

the dilation and lateral strains of the confined concrete under triaxial compression, the 

SDFV technique augmenting the non-associated flow rule has enabled more accurate 

prediction of the dilatancy behaviour of confined concrete. 

 

 However, the authors are of the view that concrete is not entirely plastic and 

there are alternative methods other than those based on the plasticity theory to simulate 

the inelastic dilatancy behaviour of confined concrete. In this paper, a new FE model 

that directly incorporates the lateral strain-axial strain relation of the confined concrete 

is developed via the Fortran 90 computer language to simulate the confinement effect of 

the steel tube in CFST. In the lateral strain-axial strain relation incorporated, the gradual 

increase in dilatancy at the inelastic stage due to the formation of splitting cracks is fully 

accounted for and there is no need to use any solution dependent field variable. After 

analysing the lateral strains and confining stresses from the lateral strain-axial strain 

relation of the confined concrete and the in-plane lateral equilibrium and compatibility 
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conditions of the CFST section, the axial stress-strain relation at each location within 

the section is obtained and the load-deflection behaviour of the eccentrically loaded 

CFST column is evaluated by member analysis.  
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2. Constitutive modelling 

 

2.1 Modelling of confined concrete 

 

 As in previous research recently published by the authors [32,33], the FE model 

simulates the constitutive behaviour of concrete under confinement using the lateral 

stain-axial strain relation developed by Dong et al. [34], the triaxial failure surface 

developed by Menétrey and Willam [35] and the axial stress-strain relation of confined 

concrete developed by Attard and Setunge [36]. For easy reference, a summary of the 

mathematical expressions in these models are given in Table 1. 

 

 According to Dong et al. [34], the in-plane lateral strains of concrete each 

comprises of two components, an elastic component and an inelastic component. Based 

on this postulation, the in-plane principal lateral strains ε
1
 and ε

2
 in each concrete 

element can be expressed as ε
1
 = ε1

e  + ε1

p
 and ε

2
 = ε2

e  + ε2

p
, in which ε1

e  and ε2
e  are 

the elastic components, and ε1

p
 and ε2

p
 are the inelastic components. With these defined, 

the constitutive equation of concrete at element level may be expressed as: 

 {

σ1

σ2

τ12

}  = λc [

1 - νc νc 0

νc 1 - νc 0

0 0
1 - νc

2

] {

ε1 - ε1

p

ε2 - ε2

p

γ
12

}  + λcνc {

ε3

ε3

0
} (3a) 

 λc = 
Ec

(1 + νc)(1 - 2νc)
 (3b) 

where E
c
 and ν

c
 are the Young’s modulus and Poisson’s ratio of the concrete. The 

inelastic components in Eq. (3a) are dependent on the axial strain in the longitudinal 

direction ε
3
 and the lateral confining stresses σ

1
 and σ

2
 [32-33,37-38]. Although in this 

FE model, the explicit expressions for the inelastic lateral strains given by Dong et al. 

[34] are used, in theory, any proven expressions for the inelastic lateral strains may be 

incorporated into this FE model. 

 

 Triangular three-noded T3 elements are used to discretize the concrete section as 

shown by the white elements in Fig. 2. The stiffness matrix equation of the concrete 

elements in the global coordinate system is derived as: 
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 F = ∆ {BTA
T

C A B u - BTA
T
Cε1,2

p
 + BT(λνcε3)} (4) 

in which ∆ is the area of the T3 element; B is the strain-displacement matrix of the T3 

element; A is the strain transformation matrix converting the global lateral strain vector 

{ε
x
 ε

y
 γ

xy
}

T
 to the local principal strain vector {ε

1
 ε

2
 γ

12
}

T
; u is the nodal displacement 

vector {u
1
 υ

1
 u

2
 υ

2
 u

3
 υ

3
}

T
 for the T3 element; ε1,2

p
 is the local inelastic strain vector {ε1

p
 

ε2

p
 0}

T
; ε

3
 is the axial strain vector {ε

3
 ε

3
 0}

T
 in both local and global coordinate systems; 

and C is the constitutive matrix of the concrete. In the numerical analysis, the axial 

strain ε
3
 is taken as that at the centroid of the T3 element. 

 

 The triaxial failure surface developed by Menétrey and Willam [35] is given by 

the following mathematical expression: 

 F (ξ, ρ, θ) = (√1.5
ρ

fc
)

2

 + m [
ρ

√6fc
r(θ, e) + 

ξ

√3fc
]  - c = 0 (5) 

where ξ is the hydrostatic length; ρ is deviatoric length; θ is the Lode angle; m is the 

friction parameter; e is the out-of-roundness parameter; and c is the cohesion parameter. 

The uniaxial tensile strength f
t
 is assumed as -0.1f

c
. When Eq. (5) is only describing the 

failure surface, c should be equal to 1. The value of e can be derived by putting σ
1
 = 0 

and σ
2
 = σ

2
 = 1.5∙f

c

0.925
 in Eq. (5):  

e = 
44.55∙fc

-0.075
 + 6.75∙fc

-0.15 - 3

89.1∙fc
-0.075 - 6.75∙fc

-0.15
 + 3

 (6) 

as per Papanikolaou and Kappos’s [39] suggestion that the biaxial-to-uniaxial 

compressive strength ratio of concrete should be given by 1.5∙f
c

-0.075
. As far as the 

failure surface is concerned, σ
3
 in Eq. (5) is equivalent to f

cc
 and can be calculated from 

the lateral confining stresses σ
1
 and σ

2
 at each iteration step.  

 

 The relation between the axial strain ε
3
 and the axial stress σ

3
 of each concrete 

element within the cross-section may be determined by Attard and Setunge’s model [36]. 

The mathematical expression of this model is given by: 
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σ3

fcc
 

 = 
a1(

ε3
εcc
) + a2(

ε3
εcc
)

2

1 + a3(
ε3
εcc
) + a4(

ε3
εcc
)

2
 (7) 

where ε
cc

 is axial strain at peak stress corresponding to the confined concrete strength, 

and a
1
, a

2
, a

3
 and a

4
 are coefficients governing the shape of the stress-strain curve. The 

detailed mathematical formulations of Attard and Setunge’s model can be found in 

Table 1. It should be stressed that Attard and Setunge’s original mathematical 

expressions for the confined concrete strength f
cc

 [36] is only applicable to the cases in 

which the confining stresses along the two principal axes have the same magnitude, i.e. 

σ
1
 = σ

2
 = f

r
, and is replaced by Menétrey and Willam’s triaxial failure surface [35] since 

the latter is more suitable for anisotropic cases. f
r
 is also used to determine other 

parameters in Attard and Setunge’s model. When σ
1
 and σ

2
 are not equal to each other, 

an equivalent value of f
r
 should be adopted. Therefore, the assumption of f

r
 = min{σ

1
, σ

2
} 

that has been verified in the two previous studies by the authors [32-33] is again applied 

and tested herein. 

 

 The lateral strain-axial strain relation, triaxial failure surface and longitudinal 

axial stress-strain model are integrated together as shown in Fig. 3. At each loading step, 

the axial strain in each concrete element is first determined by member analysis of the 

CFST column. Then, from the lateral strain-axial strain relation, the inelastic lateral 

strains are determined using the previously obtained lateral confining stresses. With the 

inelastic lateral strains in each concrete element determined, the elastic lateral strains 

and lateral confining stresses are evaluated by a 2-D FE analysis of the cross-section 

taking into account the lateral equilibrium and compatibility between the confined 

concrete and the steel tube. Having evaluated the lateral confining stresses, the inelastic 

lateral strains are updated using the newly evaluated lateral confining stresses and the 

procedure is repeated until convergent values of lateral confining stresses are obtained. 

Then, from the lateral confining stresses, the triaxial failure surface is employed to 

evaluate the ultimate axial strength, i.e. the peak axial stress, of the confined concrete. 

Having evaluated the peak axial stress, the longitudinal axial stress-strain curve of the 

confined concrete is updated for determination of the axial stress in the concrete 

element. 



7/3/2017 

9 

 

 

2.2 Modelling of steel tube 

 

 Firstly, the von-Mises yield criterion is adopted for the steel, as given below: 

 Fs = √
1

2
[(σx - σy)

2
 + (σy - σz)

2
 + (σz - σx)

2
 + 6(τxy

2  + τyz
2  + τzx

2 )] - σv = 0 (8) 

where σ
v
 is the von-Mises stress, σ

z
 = σ

3
, ε

z
 = ε

3
 and εz

p
 = ε3

p
. It is assumed that the steel 

is linearly elastic and perfectly plastic without strain hardening. Hence, σ
v
 is taken 

simply as f
y
. For an eccentrically loaded circular CFST column, the 2D FE analysis is 

conducted on the critical section, i.e. the mid-height section, where the out-of-plane 

shear stresses τ
yz

 and τ
zx

 are taken as zero due to symmetry. 

 

 Secondly, the associated flow rule is applied to calculate the plastic strains in the 

steel, i.e. εx
p
, εy

p
, 𝜀3

𝑝
 (= 𝜀𝑧

𝑝
) and γ

xy
p . The constitutive equation of the steel at element 

level is therefore given by: 

 {

σx

σy

τxy

}  = λs [

1 - νs νs 0

νs 1 - νs 0

0 0
1 - νs

2

]{

εx - εx
p

εy - εy
p

γ
xy

 - γ
xy
p

}  + λsνs {

ε3 - ε3

p

ε3 - ε3

p

0

} (9a) 

 λs = 
Es

(1 + νs)(1 - 2νs)
 (9b) 

where E
s
 and v

s
 are the Young’s modulus and Poisson’s ratio of the steel. Triangular 

three-noded T3 elements are employed for the steel tube as shown by the grey elements 

in Fig. 2. The stiffness matrix equation of the steel elements in the global x-y coordinate 

system is derived as: 

F' = ∆ {BT
C'Bu - B

T
C'ε

p
 + λsνsB

T
(ε3 - ε3

p
)} (10) 

where ε
p
 is the in-plane plastic strain vector {εx

p
 εy

p
 γxy

p }
T
, ε3

p
 is the axial plastic strain 

vector {ε3

p
 ε3

p
 0}

T
, and C' is the constitutive matrix of the steel. 

 

2.3 Modelling of concrete-steel interface 

 

 In order to simulate the interaction mechanism between the concrete core and 
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the steel tube, concrete-steel interface elements are inserted between them, as shown in 

Fig. 2(b). The constitutive equation of the interface element is given by: 

{
 

 
Q

1

R1

Q
2

R2}
 

 
 = 

[
 
 
 
 
 -C  S

-S -S

 C -S

 S  C]
 
 
 
 
 

[
kh 0

0 kv
] [

-C -S

S -S

C S

-S C
] {

u1

υ1
u2

υ2

} (11) 

where k
h
 is the shear stiffness along the interface; k

v
 is the normal stiffness in the 

direction normal to the interface; C and S stand for cosθ
i
 and sinθ

i
 respectively, θ

i
 is the 

orientation angle of the interface element in the global x-y coordinate system,  {u
1
 υ

1
 u

2
 

υ
2
}

T
 is the nodal displacement vector, and {Q

1
 R

1
 Q

2
 R

2
}

T
 is the nodal force vector. k

h
 

and k
v
 are expressed as: 

[
kh

kv
]  = 

bi

Li
[
Eh

Ev
] (12) 

where b
i
 is the nominal width of the interface element as half the arc length from the last 

to the next interface element; L
i
 is the length of a hypothetical finite gap between the 

two material, assumed as 0.1 mm; E
h
 and E

v
 are the nominal elastic moduli of the 

interface element, both having the initial value of 100E
s
 to represent that the concrete 

and steel are in “hard contact” and “perfect bond” at the start.  

 

 Unlike other forms of composite structures with connectors provided at the 

concrete-steel interfaces, CFST columns seldom have connectors provided to bond the 

concrete and steel tube together. Hence, delamination could occur at the concrete-steel 

interfaces. When the normal strain is tensile, delamination occurs and then the normal 

stress, normal stiffness, shear stress and shear stiffness are set equal to zero. Hence, 

after delamination, bond-slip can occur. Numerically, this is achieved by subtracting a 

residual vector term comprising equal amount of elastic nodal forces to those in the 

interface elements from the global force vector, i.e. the dot product of the global 

stiffness matrix and the displacement vector at the same iteration step. The process is 

repeated until the numerical results are convergent. On the other hand, when the normal 

strain is compressive, hard contact occurs and then the normal stiffness is restored to its 

initial hard contact value. At the meantime, the friction is assumed to be large enough to 

effect perfect bond. 
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3. FE analysis of eccentrically loaded circular CFST columns 

 

 As shown in Fig. 3, the role of FE analysis in the model is to calculate the field 

of confining stresses. The axial stress of each concrete or steel T3 element in Fig. 2 is 

normal to the plane of the element (x-y plane). It should be noted that based on the 

authors’ previous research [32], with high mesh density adopted, numerical result on T3 

elements are not so different from those on T6. The eccentricity is defined along the 

x-axis, and the rotation of the section is therefore about y-axis. Because the eccentrically 

loaded CFST section is symmetric about the x-axis, only one half of the section needs to 

be meshed for the simulation, and the nodes on the x-axis do not have displacements 

along the y-axis as the boundary condition. By doing so, the time consumption will be 

significantly reduced without compromising the accuracy of the FE analysis. The time 

reduction is also dependent on the meshing technique or more specifically the 

bandwidth of the stiffness matrix. 

 

 The axial strain ε
e
 at x = d

e
 of the mid-span section is used as the primary input 

in terms of evenly spaced small steps to drive the analysis process. The section of an 

eccentrically loaded circular CFST column is subjected to axial load and bending 

moment at the same time, and based on the assumption that “plane sections remain 

plane after loading” [40-42], the axial strain ε
3
 any point (x, y) in the section can be 

determined by the axial strain ε
e
 at x = d

e
 and the curvature ω

m
 about the y-axis over the 

mid-span section, as shown by the following equation: 

ε3 = εe + ωm(x - de) (13) 

The value of ω
m
 needs to be calculated through iterations, with its initial trial set to be 

ω
m
 = 0. 

 

 With ε
3
 of each concrete and steel element being calculated through Eq. (13), the 

inelastic lateral strain vector ε1,2

p
 of concrete in Eq. (4) can be determined by Dong et 

al.’s [34] lateral strain-axial strain relation, and the plastic strain vectors ε
p
 and ε3

p
 of 

steel in Eq. (10) can be determined by von-Mises yield criterion and the associated 

plastic flow. Subsequently, by assembling the constitutive equations for each concrete 
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element, steel element and interface element, the global stiffness matrix equation can be 

obtained as follows: 

K∙u =  Fp{ε1,2

p
[σ(u),ε3], ε

p
} - F3(ε3, ε3

p
) (14) 

where Fp and F3 are load vectors related to the residual strains (inelastic lateral strains 

of concrete and plastic strains of steel) and axial strains in the concrete elements and 

steel elements. It is found that Eq. (14) is a nonlinear matrix system because the residual 

strain vectors on the right hand side are also dependent on the nodal displacement vector 

on the left hand side. Hence an iteration process is adopted to calculate the approximate 

solutions to Eq. (14) in each loading step of the FE analysis. For example, a nodal 

displacement vector u
i
 can be calculated using the current values of axial strains and 

confining stresses in Step i: 

K ∙ ui =  Fp{ε1,2

p
[σi,ε3], ε

p
} - F3(ε3, ε3

p
) (15) 

 

 The global stiffness matrix equation is solved for u
i
 using LDU decomposition 

(or Cholesky decomposition) and band-solver. Then the new nodal displacement vector 

can be used to produce a new stress vector σi', which is used to compute the confining 

stresses for the i+1
th

 iteration: 

σi+1 = r ∙ σi + (1 - r) ∙ σi'(ui), (0 < r < 1) (16) 

where r is the relaxation factor. Normally the value of r is set between 0.3 and 0.7 to 

maintain the convergence rate during the iteration process. 

 

 After the principal lateral stresses σ
1
 and σ

2
 of each concrete element are 

converging to steady values, i.e. their approximate solutions are found, they can be used 

to evaluate f
cc

 via Menétrey and Willam’s [34] triaxial failure surface. With the input of 

ε
3
, f

cc
, f

r
 = min{σ

1
, σ

2
}, and the use of Attard and Setunge [35] axial stress-strain relation, 

the axial stress σ
3
 of each concrete element can be evaluated. Meanwhile, the axial 

stress σ
3
 of each steel element is determined also by von-Mises yield criterion and the 

associated plastic flow. The eccentric load P can be calculated by integrating σ
3
 over the 

whole CFST section and the internal moments M
in

 about y-axis can be calculated by 

integrating σ
3
x. The moment equilibrium incorporating the secondary moment effect 

must be fulfilled, which is given by: 
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P(δm + de) + Min = 0  (16) 

where δm is the mid-span deflection of the column, which should be updated through a 

second-order member analysis at the end of each iteration. The iterations about δm are 

denoted by j. When j = 1, the deflections along the column, including δm, are set to be 0. 

 

 Within the j
th

 iteration about δm, if the moment equilibrium of Eq. (16) is not 

reached, the curvature ω
m
 about the y-axis over the mid-span section should be adjusted 

using the secant method, until the remainder moment (RE) is small enough to be 

neglected: 

ωm,k+2 = ωm,k+1 - 
(ωm,k+1 - ωm,k)∙REk+1

REk+1 - REk
 (17) 

It should be noted that the iterations about ω
m
 are denoted by k. 

 

 After the moment equilibrium of Eq. (16) is reached temporarily, the member 

deflection curve of the j+1
th

 iteration should be updated for the calculation of secondary 

moment. The deflection curve can be derived from the boundary conditions that the 

deflection δo = 0 at x = 0 mm and the mid-span slope δ̇m, as given by: 

δj+1(x)= ∬ (
Mex

EI
)
j
dx

2  - x∫ (
Mex

EI
)
j
dx

L/2

0

x

0
 (18) 

δm is equal to the result of Eq. (18) at x = L/2. Numerical integration is performed, and 

the values of eternal moment M
ex

 at the integration point can be evaluated by: 

Mex,j(x) = Pj[δj(x) + de] (19) 

The value of flexural stiffness EI is taken as -M
in,j

/ω
m
 right after Eq. (16) is fulfilled. 

The process of updating the deflection curve of the column due to secondary moment 

will finally stop when the variation of deflection between two consecutive iterations is 

very small. 

 

Overall, there are two levels of analyses in the program, as shown in Fig. 4. The 

external level is about the member analysis, where δ
m
 and ω

m
 are calculated through 

iterations. The internal level is for the section analysis with the proposed 2D FE model 

incorporating the solution-dependent residual strain vectors ε1,2

p
, ε

p
 and ε3

p
 to obtain 

convergent values of confining stresses. After all, the program advances with the 

gradually increasing axial strain ε
e
 at x = d

e
 of the mid-span section. 
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4. Analysis results of CFST specimens 

 

 To validate the new FE model, it is applied to analyse a total of 95 eccentrically 

loaded circular CFST specimens tested by previous researchers [44-50]. The structural 

parameters and material properties of these specimens are listed in Table 2. It should be 

noted that the values of fc given therein are the cylinder strengths of the concrete. As per 

Section 3.1 of Eurocode 2 Part 1-1 [51], the UK National Annex of Eurocode 2 [52] and 

Eurocode 4 [53], the true uniaxial compressive strength of the concrete is taken as 0.85 

times the cylinder strength in the FE analysis. 

 

 Before starting the FE analyses, a convergence study is carried out to find out 

whether the finite element mesh is fine enough for accurate analysis by trying different 

mesh sizes in the analysis of the specimen ZC-16 tested by Zeghiche and Chaoui [47]. 

The numerical results so obtained are presented in Table 3. It is found that as the mesh 

size decreases, the predicted maximum load gradually converges to a constant value, but 

the computer time also increases dramatically. To strike a balance between accuracy and 

computer time, it is decided to adopt a nominal element size of 2 mm which requires a 

total of 1843 elements for the FE analysis. With such a mesh size, the predicted 

maximum load is only 0.8% higher than the convergent value. 

 

 The predicted maximum loads of the specimens analysed are compared to the 

corresponding test results in the last three columns of Table 2, where P
test

 denotes the 

test result and P
FE

 stands for the maximum load obtained by the FE analysis. From the 

values of P
FE

/P
test

 tabulated in the last column, it is seen that the FE result is sometimes 

slightly higher and sometimes slightly lower than the corresponding test result. For 

overall evaluation of numerical accuracy, the mean value of P
FE

/P
test

 in each group of 

specimens analysed is also presented in the table. It is evident from these mean values 

that the mean P
FE

/P
test

 ratio ranges from 0.93 to 1.10. For all the 95 specimens analysed, 

the mean value of P
FE

/P
test

 is 1.02, indicating that on average, the maximum load 

predicted by the FE analysis is about 2% higher than the test result. 

 

 To study whether the predicted maximum load by the FE analysis is equally 
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accurate at different concrete strengths, the P
FE

/P
test

 ratio of each specimen is plotted 

against the concrete strength in Fig. 5. From the figure, it is obvious that the data points 

plotted are quite random but all lie closely to a trend line that is almost horizontal, 

indicating that the prediction error is independent of concrete strength and is basically 

caused by random experimental or numerical errors. Hence, the new FE model is 

applicable to normal-strength, high-strength and ultra-high-strength concrete with 

cylinder strength ranging from 25 to 115 MPa. Likewise, to study the variations in 

accuracy with the slenderness ratio L/D and the eccentricity ratio de/D, the P
FE

/P
test

 ratio 

is plotted against L/D and de/D in Figs. 6 and 7, respectively. From these figures, it is 

apparent that in general the P
FE

/P
test

 ratio increases slightly with both the slenderness 

ratio L/D and the eccentricity ratio de/D, albeit the maximum P
FE

/P
test

 ratio is only about 

1.19, which is not too high. Nevertheless, in future research, particular attention should 

be paid to the failure behaviour of CSFT columns with large L/D and de/D ratios. 

 

 More detailed comparisons of the FE analysis results with the corresponding test 

results in the 7 groups of specimens analysed are presented in the following. 

 

 Neogi et al.’s [44] group of specimens comprises of 7 slender CFST columns 

with similar effective length and diameter. The steel tubes were all of grade S275 and 

classified as Class 1 as per Eurocode 3 [54]. The thickness of the steel tube varied from 

5.11 to 8.81 mm whereas the concrete grade varied from Grade 20 to 40. Moreover, the 

eccentricity has two distinct values of 38.1 and 47.6 mm. For this group of specimens, 

the P
FE

/P
test

 ratios have a mean value of 0.98 and a standard deviation of 0.023. 

 

 In Kilpatrick and Rangan’s [45] group, there are two series of specimens. In the 

first series denoted by SC-0 to SC-7, the effective length varied from 802 to 2402 mm 

with all other parameters unchanged and the steel tubes belonging to Class 2, whereas in 

the second series denoted by SC-9 to SC-15, the eccentricity varied from 10 to 50 mm 

with all other parameters set constant and the steel tubes belonging to Class 3. All steel 

tubes were of grade S355, and all concretes were of Grade 50. For this group of 

specimens, the P
FE

/P
test

 ratios have a mean value of 1.05 and a standard deviation of 

0.042. Experimental axial load-lateral deflection curves have been provided in Ref.[45] 
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and the opportunity is taken to compare the FE results with these experimental results, 

as shown in Fig. 8, where the load-deflections curves of some typical specimens, SC-0, 

SC-7, SC-9 and SC-15, are plotted. From the figure, it is evident that the load-deflection 

curves by the FE analysis match the corresponding experimental curves quite well at 

both the pre-peak stage and the post-peak stage. In this regard, it should be noted that 

displacement control was exercised during the loading tests and thus stable post-peak 

load-deflection curves were obtained from the experiments. 

 

 In O’Shea and Bridge’s [46] group, there are a total of 22 specimens with two 

nominal effective lengths (660 and 745 mm), two diameters (165 and 190 mm), and five 

steel tube thicknesses (0.86, 1.13, 1.52, 1.94 and 2.82 mm). The steel tubes were all 

Sub-class 3 sections but their grade varied from lower than S235 to S355. On the other 

hand, the concrete cylinder strength varied from 41.0 to 112.7 MPa. All these CFST 

specimens were subjected to axial loads with relatively small eccentricity of 6.5 to 20.8 

mm. For this group of specimens, the P
FE

/P
test

 ratios have a mean value of 0.93 and a 

standard deviation of 0.079. 

 

 In Zeghiche and Chaoui’s [47] group, there are 8 specimens with two effective 

lengths (2000 and 4000 mm) and eccentricity varying from 8 to 32 mm in steps of 8 mm. 

The steel tubes were Class 1 sections with nominal thickness of 5 mm, nominal 

diameter of 160 mm and steel grade of S275; whereas the concrete was of Grade 100. 

For this group of specimens, the P
FE

/P
test

 ratios have a mean value of 0.96 and a 

standard deviation of 0.021. Since experimental axial load-lateral deflection curves have 

been provided, the opportunity is taken to compare the FE results with these 

experimental results, as shown in Fig. 9, where the load-deflections curves of ZC-16, 

ZC-17, ZC-18 and ZC-19 are plotted. From the curves plotted, it is apparent that the 

load-deflection curves by the FE analysis match well the experimental curves only at 

the pre-peak stage and do not agree well with the experimental curves at the post-peak 

stage. In this regard, it should be noted that load control was exercised during the 

loading tests. Quite possibly, the specimens failed rapidly due to prescribed load applied 

to each specimen at the point of failure, leading to unstable control and unreliable 

post-peak load-deflection curves. 
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 Muciaccia et al. [48] conducted 2 sets of 4 tests with identical materials 

properties and almost identical configurations. The effective length varied from 1230 to 

4670 mm with the eccentricity set constant at 25 mm and all other parameters remaining 

unchanged. The steel tubes were all Class 2 sections having nominal diameter of 140 

mm, nominal thickness of 4 mm and steel grade of S355; whereas the concrete was of 

Grade 60. For this group of specimens, the P
FE

/P
test

 ratios have a mean value of 1.03 

and a standard deviation of 0.075. 

 

 Portoles et al.’s [49] group comprises of 32 slender CFST columns having an 

effective length of either 2135 or 3135 mm and an eccentricity of either 20 or 50 mm. 

The steel tubes were all Class 1 sections with varying thickness and diameter. The steel 

grade was S275, whereas the concrete strength ranged from Grade 30 to 90. Overall, the 

P
FE

/P
test

 ratios have a mean value of 1.10 and a standard deviation of 0.063, indicating 

that for this group, the FE results are slightly higher than the test results. 

 Xue et al.’s [50] group comprises of 3 specimens with the steel tube thickness 

varying from 3 to 5 mm. The effective length was 820 mm and the eccentricity was 50 

mm. The steel tubes have a fixed diameter of 219 mm but could be of Class 2, Class 3 

or Sub-class 3. The steel was of Grade S275 whereas the concrete was of Grade 50. For 

these specimens, the P
FE

/P
test

 ratios have a mean value of 0.96 and a standard deviation 

of 0.021. 

 

5. Conclusions 

 In the analysis of a CFST member, it is important to properly simulate the lateral 

strain-axial strain relation of the confined concrete because the lateral strains, which do 

not follow any plastic flow theory, have great effects on the confining stresses induced. 

In this research, Dong et al.’s lateral strain-axial strain model [34], Menétrey and 

Willam’s triaxial failure surface [35] and Attard and Setunge’s axial stress-strain model 

under confined condition [36] are integrated together to form a new FE model for the 

analysis of CFST members. The new FE model has been applied to analyse a total of 95 

eccentrically loaded circular CFST specimens tested by other researchers [44-50], 

which cover very wide ranges of concrete strength, steel strength, slenderness ratio and 

eccentricity ratio, and the FE results are compared to the respectively experimental 

results so as to evaluate the accuracy and applicability of the FE model. 
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 For each specimen analysed, the predicted maximum load by the FE analysis 

P
FE

 is compared to the corresponding experimental result P
test

 in the form of the 

P
FE

/P
test

 ratio. It has been found that for all the 95 specimens analysed, the mean value 

of the P
FE

/P
test

 ratio is 1.02, indicating that on the whole, the predicted maximum loads 

by the FE analysis agree very well with the experimental results. Plotting the P
FE

/P
test

 

ratio against the concrete strength, slenderness ratio and eccentricity ratio, it has also 

been found that the P
FE

/P
test

 ratio remains at around 1.02 within the whole range of 

concrete cylinder strength from 25 to 115 MPa, whereas the P
FE

/P
test

 ratio is slightly 

lower than 1.00 when the slenderness ratio and eccentricity ratio are relatively small and 

increases slightly as these two ratios increase. Hence, the FE model should be equally 

applicable to normal-strength, high-strength and ultra-high-strength concretes but may 

not be as accurate when the slenderness ratio and/or eccentricity ratio are relatively 

large. 

 Regarding the nonlinear load-deflection curves, it is evident that for the 

specimens tested under displacement control, the axial load-lateral deflections curves 

obtained by the FE analysis agree quite well with the experimentally curves at both the 

pre-peak stage and the post-peak stage, but for the specimens tested under load control, 

the axial load-lateral deflection curves obtained by the FE analysis agree well with the 

experimentally curves only at the pre-peak stage and do not always agree well at the 

post-peak stage. The discrepancy between the analytical and experimental axial 

load-lateral deflection curves at the post-peak stage does pose some concern. It is 

recommended that in future, all tests should be carried out under displacement control 

and the FE model should be refined to consider the second order effect incurred by 

dimensional imperfection of the steel tube. 

 Lastly, it should be emphasized that the newly developed FE model is an open 

framework. In theory, any lateral strain-axial strain model, any triaxial failure surface 

and any axial stress-strain model under confined condition other than those incorporated 

herein can be used. Hence, if there is any better model based on a more advanced theory 

or based on a more comprehensive set of test results, the better model may be plugged 

into the framework for further development and enhanced performance of the FE model. 

Moreover, the FE model may also be a basis for future extension to three-dimensional 

analysis and to cater for local buckling of the steel tube. 
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(a) Associated plastic flow 

 
(b) Non-associated plastic flow 

 

Figure 1. Drucker-Prager failure surface and plastic flow rules 

I1 

√J2 

c' 

φ
f
 

dε
p 

Drucker-Prager failure surface 

I1 

√J2 

c' 

φ
f
 

dε
p 

Drucker-Prager failure surface 

Non-associated plastic flow potential 

φ
d
 



7/3/2017 

2 

 
(a) Overall view 

 
(b) Interface between steel and concrete 

 

Figure 2. FE mesh for a CFST section 
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Figure 3. Integration of the three concrete models 
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Figure 4. Procedures for the FE analysis 
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Figure 5. Variation of P
FE
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test

 with f
c
 

PFE/Ptest = 1.02 + 0.00004fc 

R² = 0.0001 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.0 20.0 40.0 60.0 80.0 100.0 120.0

P
F

E
/P

te
st

 

fc (MPa) 



7/3/2017 

29 

 

 
 

Figure 6. Variation of P
FE
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test

 with L/D 
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Figure 7. Variation of P
FE

/P
test

 with de/D 
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Figure 8. Eccentric load - mid-height lateral deflection curves of 

Kilpatrick and Rangan’s specimens [45] 
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Figure 9. Eccentric load - mid-height lateral deflection curves of 

Zeghiche and Chaoui’s specimens [47] 
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Table 1. Adopted concrete models 

Authors Model Expressions 

Dong et al. [34] 

ε1

p
 = -19.1(ε3 - ε3,1

lim)
1.5
{0.1 + 0.9 [exp(-5.3 (

σ1

f
c

)
1.1

)]}  

ε2

p
 = -19.1(ε3 - ε3,2

lim)
1.5
{0.1 + 0.9 [exp(-5.3 (

σ2

f
c

)
1.1

)]}  

where: 

ε3,1
lim = εco(0.44 + 0.0021f

c
 - 0.00001f

c

2) [1 + 30 exp(-0.013f
c
)

σ1

f
c

]  

ε3,2
lim = εco(0.44 + 0.0021f

c
 - 0.00001f

c

2) [1 + 30 exp(-0.013f
c
)

σ2

f
c

]  

Menétrey and 

Willam [35] 

F (ξ, ρ, θ) = (√1.5
ρ

f
c

)
2

 + m [
ρ
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Attard and 

Setunge [36] 

σ3

fcc

 = 
𝛼1(

ε3
εcc
) + 𝛼2(

ε3
εcc
)2

1 + α3(
ε3
εcc
) + 𝛼4(

ε3
εcc
)2

  

εcc

εco
 = 1 + (17 - 0.06f

c
) (

fr

fc
)  

Ascending branch: 

𝛼1 = 
Etiεco

fc
  

α2 = 
(α1-1)

2

Eti
Ec
(1 - 

fpl

fc
)

 + 
α1
2(1 - 

Eti
Ec
)

(
Eti
Ec
)
2
[
fpl

fc
 - (

fpl

fc
)

2

]

 – 1  

α3 = 𝛼1 – 2  

α4 = 𝛼2 + 1  

Descending branch: 

α1 = (
ε2i - εi

εco
) (

ε2iEi

fcc - fi
 - 

4εiE2i

fcc - f2i

)  

α2 = (ε2i - εi) (
Ei

fcc - fi
 - 

4E2i

fcc - f2i

)  

α3 = 𝛼1 – 2  

α4 =  𝛼2 + 1  

fi

fcc

 = 

fic
fc
 - 1

5.06(
fr
fc
)

0.57

 + 1

 + 1  

f2i

fcc

 = 

f2ic
fc
 - 1

6.35(
fr
fc
)

0.62

 + 1

 + 1  

εi

εcc
 = 

fic
fc
 - 2

1.12(
fr
fc
)

0.26

 + 1

 + 2  

ε2i = 2εi - εcc  

f2ic

fc
 = 1.45 - 0.25ln(f

c
)  



6/3/2017 

1 

Table 2(a). Data of the eccentrically loaded circular-sectioned CFST specimens (Part I). 

Ref. Specimen ID 
L 

(mm) 

D 

(mm) 

ts 

(mm) 

fy 

(MPa) 

fc 

(MPa) 

fc,d 

(MPa) 

de 

(mm) 

Ptest 

(kN) 

PFE 

(kN) 

PFE

Ptest

 

[44] 

M1 3327.4 169.42 5.11 308.9 45.6 38.8 47.6 621.8 604.5 0.97 

M2 3327.4 169.16 5.26 308.9 43.8 37.2 38.1 701.5 668.3 0.95 

M3 3327.4 168.91 5.66 295.0 33.4 28.4 47.6 599.8 571.9 0.95 

M4 3327.4 168.40 6.55 298.1 30.6 26.0 47.6 624.7 611.0 0.98 

M5 3327.4 169.16 7.19 312.0 26.4 22.4 47.6 652.6 654.2 1.00 

M6 3327.4 169.16 7.29 312.0 27.3 23.2 38.1 738.3 732.2 0.99 

M7 3302.0 168.91 8.81 322.8 27.2 23.1 47.6 757.3 771.9 1.02 

Mean (group) 0.98 

Standard deviation (group) 0.023 

[45] 

SC-0 802 76.0 2.2 435.0 58.0 49.3 15.0 246.0 242.0 0.98 

SC-1 1032 76.0 2.2 435.0 58.0 49.3 15.0 208.0 215.6 1.04 

SC-2 1262 76.0 2.2 435.0 58.0 49.3 15.0 184.0 193.5 1.05 

SC-3 1487 76.0 2.2 435.0 58.0 49.3 15.0 162.0 173.0 1.07 

SC-4 1717 76.0 2.2 435.0 58.0 49.3 15.0 141.0 153.7 1.09  

SC-5 1947 76.0 2.2 435.0 58.0 49.3 15.0 121.0 135.7 1.12 

SC-6 2172 76.0 2.2 435.0 58.0 49.3 15.0 107.0 119.9 1.12 

SC-7 2402 76.0 2.2 435.0 58.0 49.3 15.0 96.0 105.5 1.10 

SC-9 1947 101.7 2.4 410.0 58.0 49.3 10.0 361.0 360.3 1.00 

SC-10 1947 101.7 2.4 410.0 58.0 49.3 15.0 309.0 311.8 1.01 

SC-11 1947 101.7 2.4 410.0 58.0 49.3 20.0 275.0 276.4 1.01 

SC-12 1947 101.7 2.4 410.0 58.0 49.3 25.0 240.0 250.4 1.04 

SC-13 1947 101.7 2.4 410.0 58.0 49.3 30.0 220.0 229.5 1.04 

SC-14 1947 101.7 2.4 410.0 58.0 49.3 40.0 188.0 196.0 1.04 

SC-15 1947 101.7 2.4 410.0 58.0 49.3 50.0 158.0 169.1 1.07 

Mean (group) 1.05 

Standard deviation (group) 0.042 

[46] 

S30E210B 660.0 165.0 2.82 363.3 112.7 95.8 6.8 2246.0 2296.1 1.02 

S30E110B 660.0 165.0 2.82 363.3 112.7 95.8 15.6 1880.0 1967.6 1.05 

S30E280A 661.0 165.0 2.82 363.3 80.2 68.2 9.4 1904.0 1767.2 0.93 

S30E180A 661.0 165.0 2.82 363.3 80.2 68.2 17.9 1653.0 1541.9 0.93 

S30E150B 661.5 165.0 2.82 363.3 48.3 41.1 17.2 1123.0 1184.7 1.05 

S30E250B 662.0 165.0 2.82 363.3 48.3 41.1 7.0 1525.0 1358.9 0.89 

S16E110B 742.0 190.0 1.52 306.1 112.7 95.8 12.9 2420.0 2386.9 0.99 

S20E250A 742.5 190.0 1.94 256.4 41.0 34.9 8.6 1533.0 1216.6 0.79 

S20E210B 743.0 190.0 1.94 256.4 112.7 95.8 6.5 2683.0 2644.4 0.99 

S10E250A 743.5 190.0 0.86 210.7 41.0 34.9 7.4 1219.0 1009.9 0.83 

S12E110B 743.5 190.0 1.13 185.7 112.7 95.8 17.1 1925.0 2073.6 1.08 

S16E150B 743.5 190.0 1.52 306.1 48.3 41.1 15.5 1260.0 1217.6 0.97 

S20E280B 744.0 190.0 1.94 256.4 74.7 63.5 10.0 2203.0 1806.1 0.82 

S10E150A 744.5 190.0 0.86 210.7 41.0 34.9 13.9 1017.0 923.2 0.91 

S20E180B 744.5 190.0 1.94 256.4 74.7 63.5 20.8 1730.0 1542.6 0.89 

S12E250A 745.0 190.0 1.13 185.7 41.0 34.9 8.5 1229.0 1009.8 0.82 

S16E180A 745.0 190.0 1.52 306.1 80.2 68.2 14.3 1925.0 1789.1 0.93 

S12E150A 745.5 190.0 1.13 185.7 41.0 34.9 18.9 1023.0 878.6 0.86 

S20E150A 745.5 190.0 1.94 256.4 41.0 34.9 16.2 1284.0 1099.3 0.86 

S20E110B 746.0 190.0 1.94 256.4 112.7 95.8 17.0 2386.0 2259.6 0.95 

S10E180B 746.5 190.0 0.86 210.7 74.7 63.5 17.9 1532.0 1456.7 0.95 

S10E280B 747.0 190.0 0.86 210.7 74.7 63.5 8.6 1910.0 1663.2 0.87 

Mean (group) 0.93 

Standard deviation (group) 0.079 

[47] 

ZC-16 2000 160.3 5.10 271.0 101.0 85.9 8.0 1697.0 1567.7 0.92 

ZC-17 2000 160.1 4.97 281.0 102.0 86.7 16.0 1394.0 1363.8 0.98 

ZC-18 2000 159.8 5.02 280.0 101.0 85.9 24.0 1212.0 1190.8 0.98 

ZC-19 2000 159.7 5.02 276.0 100.0 85.0 32.0 1091.0 1040.5 0.95 

ZC-20 4000 159.7 4.96 275.0 101.0 85.9 8.0 963.0 947.0 0.98 

ZC-21 4000 159.8 4.96 275.0 100.0 85.0 16.0 848.0 793.8 0.94 

ZC-22 4000 159.8 5.10 281.0 102.0 86.7 24.0 727.0 707.8 0.97 

ZC-23 4000 160.1 5.12 281.0 101.0 85.9 32.0 666.0 638.2 0.96 

Mean (group) 0.96 

Standard deviation (group) 0.021 
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Table 2(b). Data of the eccentrically loaded circular-sectioned CFST specimens (Part II). 

Ref. Specimen ID 
L 

(mm) 

D 

(mm) 

ts 

(mm) 

fy 

(MPa) 

fc 

(MPa) 

fc,d 

(MPa) 

de 

(mm) 

Ptest 

(kN) 

PFE 

(kN) 

PFE

Ptest

 

[48] 

NVC-80-1 1310 139.6 4.0 374.0 62.0 52.7 25.0 756.9 844.4 1.12 

NVC-80-2 1230 139.6 4.0 374.0 62.0 52.7 25.0 874.7 862.3 0.99 

NVC-200-1 2125 139.6 4.0 374.0 62.0 52.7 25.0 608.2 678.9 1.12 

NVC-200-2 2135 139.6 4.0 374.0 62.0 52.7 25.0 605.7 678.9 1.12 

NVC-300-1 3270 139.6 4.0 374.0 62.0 52.7 25.0 555.9 499.9 0.90 

NVC-300-2 3270 139.6 4.0 374.0 62.0 52.7 25.0 484.1 499.9 1.03 

NVC-440-1 4670 139.6 4.0 374.0 62.0 52.7 25.0 336.2 330.7 0.98 

NVC-440-2 4670 139.6 4.0 374.0 62.0 52.7 25.0 333.0 330.7 0.99 

Mean (group) 1.03 

Standard deviation (group) 0.075 

[49] 

C100-3-2-30-20-1 2135 100.0 3.0 322.0 32.7 27.8 20.0 181.6 215.7 1.19 

C100-3-2-30-50-1 2135 100.0 3.0 322.0 34.5 29.3 50.0 117.5 139.8 1.19 

C100-3-2-70-20-1 2135 100.0 3.0 322.0 65.8 55.9 20.0 248.6 261.3 1.05 

C100-3-2-70-50-1 2135 100.0 3.0 322.0 71.6 60.9 50.0 151.6 161.8 1.07 

C100-3-2-90-20-1 2135 100.0 3.0 322.0 95.6 81.3 20.0 271.0 292.2 1.08 

C100-3-2-90-50-1 2135 100.0 3.0 322.0 93.0 79.1 50.0 154.2 169.5 1.10 

C100-3-3-30-20-1 3135 100.0 3.0 322.0 39.4 33.5 20.0 140.3 162.3 1.16 

C100-3-3-30-50-1 3135 100.0 3.0 322.0 36.7 31.2 50.0 93.8 108.4 1.16 

C100-3-3-70-20-1 3135 100.0 3.0 322.0 71.7 60.9 20.0 159.6 180.7 1.13 

C100-3-3-70-50-1 3135 100.0 3.0 322.0 79.6 67.7 50.0 102.8 121.1 1.18 

C100-3-3-90-20-1 3135 100.0 3.0 322.0 94.6 80.4 20.0 160.3 189.3 1.18 

C100-3-3-90-50-1 3135 100.0 3.0 322.0 90.4 76.8 50.0 106.8 122.6 1.15 

C100-5-2-30-20-1 2135 100.0 5.0 322.0 35.4 30.1 20.0 270.0 302.7 1.12 

C100-5-2-30-50-1 2135 100.0 5.0 322.0 30.5 25.9 50.0 161.3 192.0 1.19 

C100-5-2-70-20-1 2135 100.0 5.0 322.0 70.2 59.7 20.0 313.6 345.2 1.10 

C100-5-2-70-50-1 2135 100.0 5.0 322.0 61.0 51.9 50.0 183.8 214.9 1.17 

C100-5-2-90-20-1 2135 101.6 5.0 320.0 95.4 81.1 20.0 330.4 385.0 1.17 

C100-5-2-90-50-1 2135 101.6 5.0 320.0 81.7 69.4 50.0 213.5 234.6 1.10 

C100-5-3-30-20-1 3135 101.6 5.0 320.0 38.7 32.9 20.0 212.5 233.9 1.10 

C100-5-3-30-50-1 3135 101.6 5.0 320.0 39.6 33.7 50.0 144.8 160.4 1.11 

C100-5-3-70-20-1 3135 101.6 5.0 320.0 71.9 61.1 20.0 231.4 254.1 1.10 

C100-5-3-70-50-1 3135 101.6 5.0 320.0 72.5 61.6 50.0 153.2 173.4 1.13 

C100-5-3-90-20-1 3135 101.6 5.0 320.0 86.4 73.4 20.0 246.8 260.3 1.05 

C100-5-3-90-50-1 3135 101.6 5.0 320.0 96.7 82.2 50.0 165.0 179.3 1.09 

C125-5-3-90-20-1 3135 125.0 5.0 322.0 88.0 74.8 20.0 474.2 477.9 1.01 

C125-5-3-90-50-1 3135 125.0 5.0 322.0 97.0 82.5 50.0 317.9 324.5 1.02 

C125-5-3-90-20-2 3135 125.0 5.0 322.0 107.3 91.2 20.0 489.5 497.2 1.02 

C125-5-3-90-50-2 3135 125.0 5.0 322.0 97.9 83.2 50.0 323.0 324.9 1.01 

C160-6-3-90-20-1 3135 160.1 5.7 322.0 87.4 74.3 20.0 1012.5 1010.5 1.00 

C160-6-3-70-50-1 3135 160.1 5.7 322.0 74.8 63.6 50.0 642.2 657.6 1.02 

C160-6-3-90-20-2 3135 160.1 5.7 322.0 83.1 70.6 20.0 1011.5 995.3 0.98 

C160-6-3-90-50-1 3135 160.1 5.7 322.0 98.5 83.7 50.0 686.2 706.2 1.03 

Mean (group) 1.10 

Standard deviation (group) 0.063 

[50] 

N3-0-E 820 219.0 3.0 313.0 51.8 44.0 50.0 1457.0 1417.0 0.97 

N4-0-E 820 219.0 4.0 313.0 51.8 44.0 50.0 1634.0 1589.7 0.97 

N5-0-E 820 219.0 5.0 313.0 51.8 44.0 50.0 1874.0 1740.6 0.93 

Mean (group) 0.96 

Standard deviation (group) 0.021 
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Table 3. Convergence study on FE analysis of ZC-16 

Nominal 

element size 

(mm) 

Number of 

elements 

Predicted 

max. load 

(kN) 

Error in 

predicted 

max. load (%) 

Computer 

time up to 500 

displacement 

steps (s) 

5 355 1606.2  3.3% 213 

4 523 1597.0  2.7% 327 

3 835 1585.1  1.9% 540 

2 1843 1567.7  0.8% 1352 

1.5 3130 1558.5  0.2% 2412 

1 6883 1554.9  - 6847 

Basic configuration of computer used for analysis: 

CPU: Intel Core i7-4790K CPU @ 4.00 GHz; RAM: 16 GB of DDR3-1600. 

 

 

 

 

 

 

 

 

 


