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Abstract

The neural crest is a remarkable embryonic population generated transiently 
during early vertebrate development. Because of their multipotency and extensive 
migratory capacity, neural crest progenitors harbor stem cell characteristics with 
self-renewal capacity and contribute to a variety of differentiated cell types from 
cranio-facial skeletal tissues to peripheral nervous system in the trunk. Multiple 
molecules including signaling factors, transcription factors and components 
of migratory machinery are expressed at different stages of neural crest 
development. Gain- and loss-of -function studies in several vertebrate species 
have revealed the functional relationship of these molecules and assembled them 
into a gene regulatory network that define the process of neural crest induction, 
specification, migration and differentiation. These studies form the fundamental 
criteria for the subsequent establishment and molecular validation of neural crest 
stem cells/progenitors derived by various strategies. We present here in vivo and 
in vitro characterization of neural crest stem cells/progenitors isolated from 
embryonic, fetal and adult tissues as well as the latest experimental approaches 
for their derivation from embryonic stem cells, induced pluripotent stem cells 
and skin fibroblasts. We further provide an overview of the recent development 
in applying neural crest stem/progenitor cells for the treatment of neural crest-
associated diseases. Future work is required to explore the possibility in directing 
neural crest -derived specific lineages from fibroblasts using transcription factor-
mediated reprogramming strategy, characterize the differentiation potential of 
adult-derived neural crest stem cell from different tissue origin, and use genomic 
editing approach to correct genetic mutations in patient-derived neural crest 
stem cells/progenitors for transplantation therapy. These endeavors should 
further unravel and enhance the therapeutic potential of neural crest stem cells/
progenitors in clinical setting.
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 Introduction
The Neural crest stem cells (NCSCs) represent a transient 

stem-cell like population that emerges from the dorsal neural 
plate border during gastrulation. Inductive signaling molecules 
derived from the non- neural ectoderm and underlying mesoderm 
contribute to the specification of the border region where 
multipotent NC stem cells (NCSCs)/progenitors are formed. 
They then undergo morphological change in a process called 
epithelial -mesenchymal transition by which neuro epithelial 
NCSCs/progenitors detach from its neighboring cells through 
alteration of cell-cell adhesion and cytoarchitectural properties, 
resulting in acquisition of mesenchymal migration as they 
delaminate from the dorsal neuroepithelium (or premigratory NC 
domain). Depending on axial origin and environmental guidance 

cues, NCSCs/progenitors migrate along stereotypical routes to 
colonize various embryonic regions, where they differentiate 
into an astonishing array of cell types and tissues, such as the 
ectomesenchyme of the craniofacial elements (cartilage and 
bones), sensory neurons and enteric ganglia of the peripheral 
nervous system (PNS), melanocytes in the skin, as well as smooth 
muscle cells of the cardiac outflow tract.

A cascade of molecules involved in different steps of NC 
development are functionally linked and integrated in a gene 
regulatory network that define their developmental features 
at different stages. Because of their multipotentiality, genetic 
mutations result in dysregulation of NC development and many 
congenital human diseases including craniofacial abnormities, 
cardiovascular defects, and intestinal aganglionosis, collectively 
known as neurocristopathies [1,2]. In addition, the ability to 
identify and isolate multipotent NCSCs during embryogenesis 
and in the adult tissues as well as their derivation from embryonic 
stem cells (ESCs), induced pluripotent stem cells (iPSCs) and 
skin fibroblasts are promising cellular sources for the treatment 
of various neurocristopathies. In this review, we provide an 
overview on key regulators in NC development, the strategies 
for the isolation and characterization of NCSCs/progenitors, and 
the specific conditions required to differentiate stem cells or 
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reprogram somatic cells into NCCs, as well as their therapeutic 
potential for the treatment of neurocristopathies.

Molecular regulation of neural crest induction and EMT

NC induction process spans the period from early gastrula 
stage to neural tube closure. Tissue grafting experiments in 
amphibian and chick embryos have established that interactions 
between the neural plate and the non -neural ectoderm result 
in NC formation [3,4]. In addition, interaction between paraxial 
mesoderm and neural plate is also sufficient to induce NCSCs in 
vitro [4,5]. Gain and loss of function studies in the mouse, chick, 
frog and zebrafish have demonstrated the involvement of BMP, 
Wnt, Notch/Delta and FGF signaling molecules derived from 
these tissues for induction of NC formation within the neural 
plate border region [6-19]. Although their relative importance 
and the timing of their action varies between species, it is 
believed that combinatorial activity of these signaling molecules 
are crucial for the establishment of neural plate border region 
distinct from the neural and non-neural ectoderm. In response 
to the early inductive signals, neural plate border cells turn on 
a distinct set of transcription factors called neural plate border 
specifiers including Tfap2, Msx1, Zic1, Pax3 and Pax7 [20-26]. 
These factors once initiated maintain their expression by forming 
regulatory interactions between each other [27,28], and together 
with neural crest signaling pathways to specify NC progenitors 

within the neural plate border by activating the expression of 
NC specifiers including those encoding transcription factors of 
Snail, FoxD3 and SoxE family (mainly Sox9 and Sox10) [29-32]. 
Numerous functional studies in several species have revealed the 
importance of these molecules in defining NC identity [32-37]. 
In most cases, overexpression and knockdown of one of the NC 
specifiers affect the expression of another one, indicating that 
like neural plate border specifiers, genes involved in specification 
form inter- connected regulatory loop that is believed to be crucial 
for maintaining NC progenitors in a multipotent state [38-41]. 
In addition, the NC specifiers also serve additional function by 
conferring NC progenitors with ability to undergo an EMT through 
alteration of cell-cell adhesion properties and regulation of Rho 
GTPases, which are essential for remodeling of actin cytoskeleton 
dynamics [39,42,43]. Previous studies showed that FoxD3 
regulates the switching from N-cadherin (N -Cad) to cadherin 
7 (Cad7) expression. Sox9 cooperates with Snail2 to specify NC 
identity and promote an EMT by inducing morphological change 
and migratory behavior of NCSCs [39,44]. Therefore, combined 
expressions of NC specifier genes manifest the characteristic 
features of delaminating NCSCs. How Sox9 and Snail2 exert their 
influence on NC motility remain to be elucidated. Together, these 
studies have established a hierarchical gene regulatory network 
to orchestrate NC formation (Figure 1).

Figure 1: A gene regulatory network regulates neural crest (NC) development.

Diagram shows representative molecules in each regulatory module are functionally linked to form a gene regulatory network. Inductive signaling 
molecules secreted from the surrounding tissues of the neural plate activate expression of neural plate border specifiers in the dorsal neural 
folds, where subsequent initiation of NC specifiers expression define cells with NC identity. It is conceivable that the transcriptional outcome 
of NC specifiers bestow NCSCs with ability to undergo epithelial-mesenchymal transition through alteration of cell-cell adhesion properties and 
regulation of Rho GTPases for cyto skeletal remodeling. After delamination from the dorsal neural tube, NCSCs migrate to their target destinations, 
where they differentiate into a variety of functional cell types.

http://dx.doi.org/10.15406/jsrt.2016.01.00014
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Neural crest derivatives and their signaling regulation

After delamination, NCSCs undergo extensive migration 
following stereotypical routes and eventually settle and 
differentiate into different derivatives [1,45], which are mainly 
determined by the axial origin of the cell within the neural 
tube, as well as by complex sets of environmental cues they 
encounter during migration. Cranial NCSCs derived from the mid-
diencephalon to somite 5 contributes to the craniofacial structure 
of the head by forming majority of the cartilage and bone tissues 
of the skull, facial and pharyngeal skeletons as well as cranial 
neurons, glia, and connective tissues of the face. The trunk NCSCs, 
which arise from the neural tube caudal to the somite 5, follow 
two distinct migratory pathways. The first migratory route takes 
the trunk NCCs ventrolaterally through the anterior portion 
of sclerotome where they form the dorsal root ganglia (DRG) 
containing the sensory neurons and satellite glial. Those continue 
to migrate ventrally form the Schwann cells along the spinal 
nerves, sympathetic ganglia and endocrine cells of the adrenal 
gland. The second migratory pathway occurs dorsolaterally 
beneath the ectoderm to form pigment-producing melanocytes. A 
subpopulation of trunk NCSCs lying opposite somites 1-7 (vagal) 
and posterior to somite 28 (sacral) contributes to the formation of 
the enteric ganglia throughout the entire gut. Finally, the cardiac 
NCSCs derived from the neural tube lying adjacent to somites 1-3 
which overlaps with the anterior portion of the vagal region, give 
rise to the muscle and connective tissue wall of the large arteries 
as well as the septum of the outflow track.

It has been well established that similar set of signaling 
molecules involved in NC induction also play important roles in NC 
differentiation. For example, Wnt signaling has been implicated 
in specifying trunk sensory neuron formation. Activation and 
inhibition of canonical Wnt signaling in the NC progenitors result 
in promoting and lack of sensory neuron formation respectively 
[46,47]. In addition, BMP2 and BMP4 secreted by the dorsal aorta 
induce the differentiation of migrating NCSCs into sympathetic 
neuron [48-50]. FGF signaling plays a crucial role in determining 
skeletogenic fate of cranial NCSCs. Functional studies in mice 
and chick demonstrate that cranial NCCs expressing Fgf receptor 
1 enter the branchial arches where they respond to the FGF 
ligands secreted by the pharyngeal ectoderm and differentiate 
into cartilage tissue [51-54]. Finally, Delta/Notch signaling 
mediated lateral inhibition to determine the neuron-glial fate of 
NC progenitors in the DRG [55].

Neural crest stem cells

Studies using in vitro clonogenic assays, in vivo transplantation, 
and cell labeling revealed that premigratory NCSCs are a 
heterogeneous population of multipotent and self-renewing NC 
progenitors [56-60]. In contrast, other studies proposed that 
the NC was comprised of heterogeneous population of fate-
determined progenitor cells and the type of derivatives generated 
depend on their spatial-temporal distribution in the premigratory 
region [61,62]. Recent in vivo fate mapping studies provide 
definite evidence that most of the premigratory and postmigratory 
murine NC populations are multipotent [63]. The idea of NC stem 
cells (NCSCs) was originally proposed by Stemple & Anderson 
as demonstrated by their ability to isolate a pure rodent NC 
population expressing p75NTR with multipotency and self-
renewal capacity in vitro [64]. Subsequently, the same research 

group isolated NCSCs from post-migratory NCC populations in 
rat fetal sciatic nerve that gave rise to neurons, Schwann cells, 
and smooth muscle-like myofibroblasts in vitro [65]. In addition, 
an undifferentiated progenitor population derived from early 
migratory cranial NCSCs in mouse and chick embryos exhibit self-
renewal capacity and differentiation into cell types as diverse as 
neurons, melanocytes, osteocytes, and chondrocytes [66-68].

The existence of multipotent NCSCs is found not only in the 
early embryonic stage but also in the fetal period and adulthood 
from different vertebrate species. For example, multipotent NCC 
populations derived from the cardiac side population in the 
neonatal and adult mouse heart are able to form cardiospheres. 
Upon transplantation into chick embryos, cells derived from 
cardiospheres are able to migrate and differentiate into trunk 
NC-derived PNS neurons and peripheral nerve [69]. In addition, 
enteric progenitors derived from the fetal gut exhibit a greater 
extent of self-renewal and differentiation capacity than adult 
gut progenitor cells [70,71]. Another key finding was the 
identification and isolation of multipotent NC progenitors 
from adult rodent facial hair follicle and dermal papilla [72,73]. 
These skin precursor cells (SKPs) were able to proliferate and 
differentiate into neurons, smooth muscle cells, Schwann cells, 
and melanocytes in vitro. Furthermore, transplantation of SKP-
derived neurospheres into chick embryos showed their migratory 
capacity and colonization to NC- derived structures, such as the 
DRG and the peripheral nerve [72].

In addition to isolation of NCSCs/progenitors from the 
embryonic and adult tissues in animal models, recent efforts have 
been focusing on their derivation from human (h) embryonic 
stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to 
understand their biology and pathology of neurocristopathies as 
the availability of early gastrula human embryos for experimental 
manipulation is very limited. Nevertheless, expression of NC 
genes in different stages of human embryos and in human NCC 
lines derived from pharyngulas has been documented [74,75]. 
These studies revealed several NC genes are commonly expressed 
between human and other animal models such as neural plate 
border specifiers (Pax7, Pax3, Msx1) and NC progenitors (Sox9, 
Sox10, Snail2, Foxd3) and they have been used as markers to 
identify both mouse (m) and hESCs/iPSCs-derived NCSCs [76]. 
However, transcriptome analysis further revealed that markers 
for ESCs, such as OCT4, NANOG and SOX2 are also expressed 
by hNCSCs but not NCSCs/progenitors derived from other 
animal species, indicating that hNCSCs exhibit unique molecular 
and phenotypic features of stem cells [75]. In addition, HNK1 
(carbohydrate) epitope) has been widely used to mark migrating 
NCSCs in chick embryos [77] but it only labels a small population 
of hNCSCs. In contrast, p75 (nerve growth factor receptor) marks 
a large amount of hNCSCs and also other non- NC cell types [74]. 
Therefore, FACS using antibodies against both surface markers 
could further enrich hNCSCs from a mix population of cells.

Mizuseki & colleagues first established culture conditions 
in the presence of PA6 stromal cells that induced mouse and 
primate ESCs to differentiate into NCCs when BMP4 was added 
after 4 days of co-culture. These ESCs - derived NCCs could be 
further differentiated into sensory and autonomic lineages by low 
and high levels of BMP4, respectively [78]. Subsequent studies 
using stromal cells feeders layer also successfully differentiated 
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hESCs into hNCSCs and their PNS derivatives such as sensory 
and sympathetic neurons [79-81]. Further improvement of the 
protocol in a feeder-free culture conditions revealed the ability 
to differentiate into NCSCs/progenitors from human (h)ESCs and 
hiPSCs via neural rosette stage in a more efficient manner than 
using feeders layer [82,83]. Upon differentiation of hESCs/hiPSCs 
into neural rosettes at high density in droplets in the absence of 
feeder, NCCs emerge at the rosette border in medium containing 
inhibitors blocking TGF-β and BMP signaling and are further 
enriched and isolated by FACS using HNK -1/p75 antibodies after 
culture in medium containing inhibitors blocking TGF-β and BMP 
signaling [83]. The enriched NC precursor population plated at 
clonal density can be passaged and differentiated into peripheral 
neurons, Schwann cells, osteogenic, adipogenic, chondrogenic 
cells, and smooth muscle. In vivo transplantation assay further 
demonstrated their survival, migration and differentiation 
compatible with NC identity [82].

Since it is impossible to isolate human fetal NCSCs due to ethical 
and experimental challenges, patient-specific iPSCs-derived NCSCs 
provide a new platform for modeling human neurocristopathies to 
understand pathogenesis and also for validating candidate drugs. 
More importantly, since NCSCs are derived from the patients, they 
can be used for autologous transplantation without immuno-
rejection. Following the establishment of an efficient protocol 

for the differentiation of human iPSCs into neuroectodermal 
and NCSCs based on pharmacological inhibition of dual Smad 
pathways [84,85], a major advance was achieved by using a single 
transcription factor, Sox10, to generate multipotent induced NC 
(iNC) cells from human postnatal fibroblasts (Figure 2A) [86]. 
Sox10 broadly marks all the NCSCs during development, and is 
essential for the maintenance of their multipotency, self- renew, 
survival, and lineage-specification [87]. Therefore, lentiviral-
mediated over expression of Sox10 together with extracellular 
matrix components and epigenetic modifiers was able to direct 
reprogramming of human fibroblasts into iNC cells. Importantly, 
addition of the Wnt agonist, Chir99021, into the culture medium 
further increase the number of iNCs, which exhibited similar 
morphological and cellular features as well as gene expression 
profiles to hESC-derived NCSCs. Further in vivo and ex vivo 
transplantation assays revealed that these iNCs were able to 
migrate and integrate into NC- derivatives, such as the dorsal root 
and sympathetic ganglia and the enteric nervous system [86]. It 
should be noted that one of the major concerns for iNCs generation 
is the lentiviral integration into the host genome that may result 
in tumor formation and is not ideal for therapeutic applications. 
Nevertheless, the lineage conversion strategy to generate 
multipotent iNCs provides an accessible platform for studying 
human NC biology and the pathogenesis of neurocristopathies.

Figure 2: Strategies for human neural crest cells (hNCSCs) derivation and their applications in disease modeling.

(A) Human embryonic stem cells (ESCs)- derived fibroblasts harboring SOX10-EGFP reporter or postnatal is directly reprogrammed into NCCs 
by lentiviral- mediated over expression of SOX10 together with a combination of extracellular matrix (ECM) components (fibronectin/lamin), 
epigenetic modifiers, and Wnt agonist or BMP4. Induced NC (iNC) cells expressing SOX10-EGFP or CD34 are further enriched by flow cytometry. 
Purified iNC can differentiate into different derivatives. (B) Familial dysautonomia (FD) patient fibroblasts are reprogrammed into induced 
pluripotent stem cells (iPSCs) after transduction with four Yamanaka factors (OCT4, SOX2, KLF4 and c-MYC). The FD-iPSCs are further differentiated 
into NCSCs by using MS5 stromal coculture or NSB culture. HNK1+/AP2+ FD- NCSCs are purified by flow cytometry and expanded for 14 days. FD-
NCCs are then subject to PNS neuronal differentiation for disease mechanism study or small molecules screen for therapeutic development. (C) 
hESC (Sox10 -EGFP reporter) or EDNRB -/-hESC are induced to enteric NCSCs by using a dual SMAD inhibition (DSi) protocol with optimized level of 
BMP, TGF-β, Wnt and RA signaling. Enteric NCSCs expressing CD49D and SOX10-EGFP are enriched by flow cytometry. Purified enteric NCSCs are 
subject to enteric neuronal differentiation, in vivo transplantation and drug screen for HSCR therapeutic treatment.

http://dx.doi.org/10.15406/jsrt.2016.01.00014


Neural Crest Stem Cells/Progenitors and Their Potential Applications in Disease 
Therapies

5/8
Copyright:

©2016 Liu et al.

Citation: Liu  JS, Cheung M (2016) Neural Crest Stem Cells/Progenitors and Their Potential Applications in Disease Therapies. J Stem Cell Res Ther 
1(2): 00014. DOI: 10.15406/jsrt.2016.01.00014

Neural crest-associated diseases and stem cell therapy

Defective proliferation, migration and differentiation of NCSCs 
are associated with a number of congenital diseases due to genetic 
mutations, and many of which primarily affect pediatric patients. 
In addition to human disease modeling, patient-specific iPSCs-
derived NCCs or iNCs are viable cellular source for transplantation 
therapy and drug screening.

One of the neurodegenerative diseases in PNS is Familial 
dysautonomia (FD), which is an autosomal recessive disorder 
characterized by autonomic dysfunction including progressive 
loss of sympathetic and sensory neurons, resulting in gradually 
diminished pain and temperature sensation. This is mainly caused 
by a single point mutation in the ELP1/IKBKAP (a subunit of 
Elongator complex) gene in the germline, resulting in IFBKAP mis-
splicing and a marked reduction of IKBKAP protein expression 
[88]. In mice, conditional knockout of Ikbkap in NCSCs caused 
aberrant neuronal differentiation and early neuronal death [89]. 
To investigate the underlying causes of FD, Lee and colleagues 
generated iNCs from FD skin fibroblasts and showed that FD-
derived iNCs exhibited migration defect compared to the control-
iNCs. Consistently, gene expression profiling studies further 
revealed that down regulated genes in FD-iNCs were involved in 
alternative splicing and cell migration [86]. More importantly, one 
of the small molecules, SKF -86466, was identified to restore both 
IKBKAP protein and autonomic neuronal marker expression lost 
in FD [90] (Figure 2B).

In addition, another neurocristopathy being well studied is 
Hirschsprung’s disease (HSCR), also called aganglionic megacolon, 
which affects 1:5000 new borns [91]. It is mainly caused by the 
absence of NC-derived enteric ganglia along a variable length 
of the intestine, resulting in intestinal obstruction and massive 
dilation of the proximal bowel. HSCR can be classified into Short 
- segment HSCR (S-HSCR) and Long-segment HSCR (L-HSCR) 
due to incomplete penetrance of the disease causing mutations 
that affect variable length of the intestine [91,92]. Ten HSCR 
susceptibility genes have been identified in humans, including 
RET, SOX10, PHOX2B, EDBRB, END3, ECE1, ZFHX1B, GDNF, 
NRTN and KIAA1279 [93]. Surgical removal of defective bowel 
is the standard treatment of HSCR, however, for L-HSCR patients, 
only small portion of bowel was left that is not sufficient for 
intravenous nutritions absortion. 

Recent study from Fattahi & colleagues revealed an alternative 
therapeutic approaches for HSCR [94]. They established a 
differentiation protocol to generate enteric progenitors from 
human PSCs effectively by addition of retinoic acid (RA) and that 
could be further differentiated into functional enteric neurons. 
In vivo transplantation of hPSC-derived enteric progenitors into 
chick embryos and adult mouse further confirmed their enteric 
NC identity, as demonstrated by their ability to invade to the 
gut region. Importantly, engraftment of these iPSCs induced 
ENS progenitors increase survival rate of HSCR mouse model 
harboring mutations in Ednrb. Finally, a candidate drug, pepstatin 
A, was identified after a small-molecule screen and demonstrated 
to restore aberrant migration of enteric NCCs in Ednrb -null 
mutants (Figure 2C).

Discussion
In the past two decades, advances in molecular biology and 

functional genomics have provided a greater understanding of how 
various molecules expressed at different stages of NC development 
are functionally connected together to form a gene regulatory 
network that underlies the process of NC progenitors formation, 
migration and differentiation. These basic developmental studies 
are essential in several aspects. First, it provides insight into what 
genes are evolved leading to the emergence of NCCs essential for 
the evolution of vertebrates by modelling the function of the head 
to facilitate the shift of ancestral vertebrates from filter-feeders to 
active predators. Second, increasing evidence suggests that genes 
involved in NC development are often dysregulated in NC-derived 
tumors such as melanoma and neuroblastoma. Understanding 
the molecular mechanisms underlying NC formation, migration 
and differentiation could gain insight into the initiation and 
progression of tumors with a NC origin. Third, it informs us the 
identity of extrinsic and intrinsic molecules required for the 
expansion and maintenance of hESCs/iPSCs-derived NCCs or iNCs 
and adult-derived NCSCs as well as directing their differentiation 
into specific lineages for cell and tissue replacement strategies. 
Fourth, it provides gene signature to evaluate the identity, 
regulatory and developmental state of in vitro- derived NCSCs/
progenitors by direct differentiation from PSCs or lineage 
reprogramming from somatic cells.

Although promising results have been demonstrated for the 
developmental and therapeutic potential of NCSCs/progenitors 
in animal models, there are some key issues that need to be 
addressed. Current differentiation protocols using SOX10-EGFP 
reporter tend to generate hNC precursors with cranial/anterior 
identity. Recent studies identified a new surface marker, CD49 
to mark SOX10+ NC precursors with vagal identity following 
addition of RA into the differentiation medium [94]. Consistently, 
similar RA treatment promotes specification of trunk NCC 
progenitor sympathoadrenal (SA) lineage which could be further 
directed to SA cells in the presence of BMPs [95]. Based on the 
markers expression in this study, it is not clear the efficiency 
of trunk NCSCs generation using this differentiation regime 
and other lineages such as melanocytes and neurons were also 
present in the culture. Further optimization of the differentiation 
protocol and identification of unique surface proteins are 
crucial for the enrichment and purification of each NC-derived 
lineage respectively. Given the limited amount of data on hNC 
development, it is necessary to perform transcriptome analysis for 
the establishment of gene signature in each NC -derived lineage. 
This information should further inform the conditions required 
for the differentiation of hESCs/iPSCs into specific NC derivatives 
and their maintenance.

Although the ability to generate patient-specific hiPSC-derived 
NCs is a powerful platform for modeling of neurocristopathies to 
study its pathogenesis, these NCCs and their derivatives carry gene 
mutations and are not ideal for therapeutic applications. Genetic 
correction of mutation in hiPSCs can now be carried out using 
CRISPR/Cas9 to restore the normal function of the tissue specific 
cell type derived from hNCCs. Even though we have obtained a 
highly enriched and genetically corrected NC progenitors for a 
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specific lineage, it is important to access the extent of integration 
in the disease animal model after transplantation to ensure the 
NC-derived cells are functionally stable in long term. On the other 
hand, non-viral approach such as plasmid-driven strategy and 
small molecule compounds to mediate lineage reprogramming 
of somatic cells into iNCs is important to prevent tumorigenesis 
upon transplantation into the host. Altogether, these endeavors 
will ensure hNCCs and their derivatives are clinically safe and 
functionally integrated to the host tissue for the disease treatment.

Conclusion
Because of their broad developmental potential and 

accessibility, NCSCs/progenitors have attracted increasing 
attention in the field of developmental biology and stem cell. 
With the advent of omics technologies and availability of high 
throughput drug screening platform, it is anticipated that 
research on understanding the biology, genetic regulation of 
hNCSCs and their derivatives as well as identification of drugs to 
restore the functions of patient-specific iNCs will be immense in 
the forthcoming year.
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