<table>
<thead>
<tr>
<th>Title</th>
<th>MERS-CoV in Arabian camels in Africa and Central Asia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chu, KW; Chan, MS; Perera, RAPM; Miguel, E; Roger, F; Chevalier, V; Poon, LML; Peiris, JSM</td>
</tr>
<tr>
<td>Citation</td>
<td>Virus Evolution, 2017, v. 3 n. Suppl 1, p. vew036.045</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/247084</td>
</tr>
</tbody>
</table>
| Rights | Pre-print:
Journal Title ©: [year] [owner as specified on the article]
Published by Oxford University Press [on behalf of xxxxxx]. All rights reserved.

Pre-print (Once an article is published, preprint notice should be amended to):
This is an electronic version of an article published in [include the complete citation information for the final version of the Article as published in the print edition of the Journal.]

Post-print:
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in [insert journal title] following peer review. The definitive publisher-authenticated version [insert complete citation information here] is available online at: xxxxxx [insert URL that the author will receive upon publication here]. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. |
Modeling the ecology and evolution of H13 and H16 avian influenza A subtypes in black-headed gulls to understand influenza disease dynamics

M.J. Poen,1 J.H. Verhagen,1 F.A. Majoor,2 N.S. Lewis,3 T. Kuiken,1 M.C.M. De Jong,1 R.A.M. Fouchier,1,3

1Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands, 2Department Centre for Field Ornithology, Sovon, Nijmegen, The Netherlands, 3Department of Zoology, University of Cambridge, Cambridge, UK and 4Department Quantitative Veterinary Epidemiology, Wageningen University, The Netherlands

Modeling the ecology and evolution of H13 and H16 avian influenza A subtypes in black-headed gulls (Chroicocephalus ridibundus) as a model system. Black-headed gulls are an ideal model species to increase this understanding owing to the fact that they are fairly easy to study year-round, are only infected routinely with two subtypes (H13 and H16), and are affected by annual epidemics in breeding colonies. Since 2006, black-headed gulls have been intensively sampled for influenza A viruses during the breeding period in four breeding colonies in the Netherlands (Griend, Blauwe Stad, De Kreupel, Veluwemeer; >5,000 samples) and year-round out with the breeding colonies (>8,000 samples). This has provided evidence of annual peak prevalence spikes of H13 and H16 virus infections in first-year birds (mostly fledglings) on the breeding colonies but low prevalence outside of the breeding period in fledged birds and in adults. To date, of a total of 258 H13 and 129 H16 virus isolates, we have sequenced 125 viruses using next generation sequencing methods. We anticipate that the sequence data, ecological data, and additional metadata, along with state-of-the-art phylogenetic analyses will lead to the development of the first quantitative epidemiological models for AIV in gulls—a first step towards modeling influenza viruses in other wild bird species such as ducks.

Determination of highly conserved sites by deep sequencing in avian influenza A virus H5N1

Liang Wang,2,4 Baiying Jiao,1,2 Jia Lu,1 Jinmin Ma,1 Jiazheng Xie,3 Tao Jin,3 Shan Gao,4 Hui Wang,3 Ming Liao,2,4

1Guangdong Provincial Center for Disease Control and Prevention, No. 160, Qunxian Road, Panyu District, Guangzhou, China, 2Guangdong Provincial Institution of Public Health Guangdong Provincial Center for Disease Control and Prevention, No. 160, Qunxian Road, Panyu District, Guangzhou, China and 3Centre for Environment and Population Health, Nathan campus Griffith University, 170 Kessels Road, Nathan Brisbane, Queensland 4111, Australia

Since its first identification, the epizootic avian influenza A H7N9 has persisted in China. Two waves were observed during this outbreak. No cases were reported from Guangdong province during the first wave but this province became one of the prime outbreak sites during the second wave. In order to identify the transmission potential of this continuously evolving infectious virus, our research group monitored all clusters of H7N9 infections during the second wave of the epidemic in Guangdong province. Epidemiologic, clinical, and virologic data on these patients were collected and analyzed. Three family clusters including six cases of H7N9 infection were recorded. The virus caused severe disease in two adult patients but only mild symptoms for all the four pediatric patients. All cases reported direct poultry or poultry market exposure history. Relevant environmental samples collected according to their reported exposures tested H7N9 positive. Virus isolates from patients in the same cluster shared high sequence similarities. In conclusion, although continually evolving the currently circulating H7N9 viruses in Guangdong province have not yet demonstrated the capacity for efficient and sustained person-to-person transmission.

MERS-CoV in Arabian camels in Africa and Central Asia

Daniel K.W. Chu,1 Samuel M.S. Chan,1 Ranawaka A.P.M. Perera,1 Eve Miguel,2 F. Roger,2 V. Chevalier,3 Leo L.M. Poon,2 Malik Peiris,1

1School of Public Health, The University of Hong Kong, HKSAR, China and 2CIRAD, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, AGIR Montpellier, France
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causing infections in humans is genetically indistinguishable from the virus found in Arabian camels (dromedaries) in the Middle East. Although no primary human case of MERS was reported outside the Arabian Peninsula, camel populations in Africa are known to have high prevalence of antibodies against MERS-CoV. We carried out surveillance for MERS-CoV in dromedaries in Africa and Central Asia. By MERS-CoV spike pseudoparticle neutralization assay we confirmed that camel serum samples from African countries have high prevalence of MERS-CoV antibodies. Using RT-qPCR we detected MERS-CoV positives in camel nasal swabs from all different African countries from which samples were collected. However, dromedary serum and swab samples from Kazakhstan in Central Asia were negative for MERS-CoV by these assays. Phylogenetic analysis of the spike gene revealed that MERS-CoVs from Africa formed a cluster closely related to but distinct from the viruses from the Arabian Peninsula. Results from this study suggest that MERS-CoV is actively circulating in dromedary populations in Africa and the virus in Africa is phylogenetically distinct from that in the Middle East.

A47 Origin and possible genetic recombination of the middle east respiratory syndrome coronavirus from the first imported case in china: phylogenetics and coalescence analysis

Yanqun Wang,1 Di Liu,2,3 WeiFeng Shi,4 Roujian Liu,1 Wenling Wang,5 Yanjie Zhao,6 Yao Deng,2 Weimin Zhou,1 Hongguang Ren,5 Jun Wu,7 Yu Wang,7 Guizhen Wu,1 George F. Gao,1,2,5 Wenjie Tan,1

1Key Laboratory of Medical Virology Ministry of Health, National Institute for Viral Disease Control and Prevention Chinese Center for Disease Control and Prevention, Beijing, China, 2CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences, Beijing, China, 3Network Information Center Institute of Microbiology Chinese Academy of Sciences, Beijing, China, 4Institute of Pathogen Biology Taishan Medical College, Taian, China, 5State Key Laboratory of Pathogen and Biosafety, Beijing, China and 6Office of Director-General Chinese Center for Disease Control and Prevention, Beijing, China

The Middle East respiratory syndrome coronavirus (MERS-CoV) causes a severe acute respiratory tract infection with a high fatality rate in humans. Coronavirus are capable of infecting multiple species and can evolve rapidly through recombination events. Here, we report the complete genomic sequence analysis of a MERS-CoV strain imported to China from South Korea. The imported virus, provisionally named ChinaGD01, belongs to group 3 in clade B in the whole-genome phylogenetic tree and also has a similar tree topology structure in the open reading frame 1a and -b (ORF1ab) gene segment but clusters with group 5 of clade B in the tree constructed using the 5 gene. Genetic recombination analysis and lineage-specific single-nucleotide polymorphism (SNP) comparison suggest that the imported virus is a recombinant comprising group 3 and group 5 elements. The time-resolved phylogenetic estimation indicates that the recombination event likely occurred in the second half of 2014. Genetic recombination events between group 3 and group 5 of clade B may have implications for the transmissibility of the virus.

A48 Inference of biological functionality in individual genomic secondary structural elements found within capulavirus genomes

P. Hartnady,1,* D. Martin,1 B. Muhire,3 P. Roumagnac,2

1UCT Faculty Of Health Sciences, Institute of Infectious Disease and Molecular Medicine, Cape Town and 2Cirad, France

The seeming simplicity of the iconic DNA double helix is deceptive. The genomes of single-stranded DNA and RNA viruses often contain numerous nucleic acid secondary structures. Whilst a number of these secondary structural elements have been found to play crucial roles during the life cycles of these viruses, the majority have neither any identified function nor known impact on viral fitness and evolution. Secondary structures can be predicted using nearest neighbour free-energy parameters that quantify the stability of a given secondary structure. Using an array of bioinformatic techniques we investigated the influence of inferred secondary structures on the sequence evolution of capulaviruses, a diverse genera of single stranded DNA viruses. We detected a significant association between structured regions of the genome and selective constraints on synonymous substitutions in coding regions. This is suggestive of either natural selection acting to preserve these structures or a predisposition toward lower mutation rates in base-paired regions of the genome. In addition, coevolution analyses revealed a significant tendency for nucleotides that are base-paired in predicted structures to coevolve in a complementary manner. Combined, these results highlight the pervasiveness of conserved genomic secondary structures within capulavirus genomes and support the notion that natural selection is favouring the maintenance of these structures, providing compelling evidence of their likely biological relevance. This structure-first strategy for comparative analysis of genome-wide secondary structures can be broadly applied to understand the contributions of higher-order genome structures to viral replication and pathogenicity.