<table>
<thead>
<tr>
<th>Title</th>
<th>A bioshield against influenza virus infection by commensal bacteria secreting antiviral peptide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Huang, J; Zheng, B; Yuen, KY</td>
</tr>
<tr>
<td>Citation</td>
<td>Hong Kong Medical Journal, 2016, v. 22 n. 3, suppl. 4, p. 13-15</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/246937</td>
</tr>
<tr>
<td>Rights</td>
<td>Hong Kong Medical Journal. Copyright © Hong Kong Academy of Medicine Press.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
A bioshield against influenza virus infection by commensal bacteria secreting antiviral peptide

JD Huang *, BJ Zheng, KY Yuen

Introduction
Avian influenza is caused by influenza viruses such as the influenza A virus. In 1997 in Hong Kong, the avian influenza viruses were found to cross the species barrier to infect human beings and cause respiratory illness and death. H5N1 viruses later re-emerged in Asia with human cases of infection, of which more than 50% were fatal.

We proposed to genetically engineer naturally occurring bacteria to provide protection against influenza A virus infection by secreting a peptide that interferes with viral attachment. Introduction and colonisation of these genetically modified microbes on the mucosal surface of the respiratory tract would provide a natural bioshield for uninfected individuals and protection against influenza A virus.

Methods
This study was conducted from December 2008 to May 2011. In order for the bioshield to be successful, there should be (1) continuous expression and secretion of a potent antiviral peptide at a high level; (2) colonisation of the genetically modified microbes on the mucosal surface of the respiratory tract for prolonged periods to block infection by influenza A virus; and (3) no pathology in the colonised host caused by the genetically engineered bacteria. Similar strategies have been used to protect animals against HIV,1 Candida albicans,2 and Streptococcus mutans.3 The technology and ‘bio-bricks’ necessary for building an anti-H5N1 bacterium strain are all available as follows:

(1) Bacterial strains that colonise the respiratory tract: unlike immunisation in which the bacteria need to exist only for a limited period, antiviral peptide has to be present continuously in the secretions of the upper airway when the patient is challenged by the influenza virus. This can only happen if the bacteria producing the antiviral peptide form a normal commensal bacterial strain that has a survival advantage in the pharynx. Gram-positive bacteria such as Streptococcus and Lactobacilli have a distinct advantage. Streptococcus gordonii has the best track record. S gordonii is a commensal bacterium commonly found on healthy human oral mucosa, the upper respiratory tract, and in dental plaque with a high colonising ability. Although associated with dental caries, it is less virulent than Streptococcus mutans but does not lose the ability to colonise the oropharynx continuously. It forms commensal microflora in humans without causing any pathology.

(2) Peptide with anti-influenza virus function: a 20-amino-acid peptide derived from the signal sequence of fibroblast growth factor 4 has exhibited broad-spectrum antiviral activity against influenza viruses including the highly pathogenic H5N1 subtype.5 This peptide prevents viral infection by binding to the viral haemagglutinin protein to block attachment of the virus to the cellular receptor in vivo and in vitro. A 100% survival was observed when BALB/c mice were infected with H5N1 A/Hong Kong/156/97 strain pre-treated with 2 mM of this peptide. In addition to the preventive effect, this peptide showed promising therapeutic value. When BALB/c mice were first infected with A/Hong Kong/156/97 and then given 2 mM of the peptide intranasally, there was 100% survival at 7 dpi, compared with 0% survival without treatment. Importantly, mice that received this peptide alone exhibited no toxicity.5

In this project, the pLEX secreting expression system was first tested with green fluorescent protein (GFP). Then an antiviral peptide gene was cloned into the pLEX vector, transforming the resulting plasmid into S gordonii. The expression and secretion of antiviral peptide in the culture supernatant was examined by western blot and dot blot. The protective function of the peptide
was evaluated in vitro by the haemagglutination inhibition (HI) assay. To verify the protection in vivo, mice were challenged with lethal influenza virus in the presence or absence of the engineered bacteria.

Results

The efficiency of pLEX expression system in *S. gordonii* GP204 strain was verified by GFP reporter protein (Figs 1 and 2). Nevertheless, the expression and secretion of the target antiviral peptide (EB) could not be detected in the supernatant of *S. gordonii* GP204 culture by western blot or dot blot. Therefore, a series of pLEX-xEB clones was constructed to optimise expression. With the optimised EB expression system, secreted EB still could not be detected by western blot in the supernatant. The protective effect of EB expression was evaluated in vitro using HI assay. EB peptides had been secreted into the culture supernatant. The secreted EB blocked influenza virus and inhibited binding of the influenza virus to turkey red blood cells (Fig 3).

The protective effect of EB-expressing *S. gordonii* against influenza virus in mice was evaluated. First, the colonisation of *S. gordonii* in mice was evaluated. Four weeks after inoculation, 75% of mice were still colonised with *S. gordonii*. To evaluate the protective effect, mice colonised with *S. gordonii* were challenged with lethal influenza virus. There was no significant difference in survival rate between the group colonised with *S. gordonii* harbouring pLEX-4EB and the control group. Further optimisation strategies of the expression system for increasing EB expression in vivo are necessary.

Discussion

S. gordonii GP204 has been extensively studied and used to surface display or secrete various functional proteins.6 We successfully verified the efficiency of the pLEX expression system in *S. gordonii* GP204 stain by GFP reporter protein. Nevertheless, when detecting EB expression in *S. gordonii* GP204, there were unexpected difficulties. Unlike GFP protein, in the supernatant and cells of recombinant bacteria, EB expression could not be detected by western blot or dot blot. This might have been because: (1) EB expression was too low to be detected. It is possible that the promoter activity of *gtfG* in pLEX may be insufficient to secrete detectable amounts of small peptide. (2) Detection method was inappropriate. The dot-blot or western blot assay may not be sensitive enough to detect such a small peptide (~2 kDa). (3) It is possible that only relatively large proteins can be secreted in this system; it is
not known if small peptides (ie 20 aa) can also be secreted by this strategy.

Therefore, our optimisation strategy was to multiply the sequence of EB. We constructed a series of pLEX-xEB-his clones to optimise the secreting expression. Likewise, western blot results detected no EB-his expression in culture supernatant. We then decided to detect the presence of EB by its protective function. This was performed in vitro by HI assay. The HI assay result indicated that EB peptides were likely secreted into the culture supernatant, as only the bacteria harbouring EB expressing plasmids can block influenza virus and inhibited influenza virus from binding to turkey red blood cells. The bacteria that contained the empty vector failed to block viral binding. Hence, we further evaluated the protection against influenza virus in mice. There was no significant difference in survival rate between the pLEX-4EB group and GP204 control group. We suspect that the expression of antiviral peptide was insufficient, or that the efficiency of the pLEX system in vivo was not as high as necessary. Another possible reason was that EB peptides might have been broken down by S gordonii. A minimal and optimal sequence of EB peptide has been reported to improve the antiviral efficacy and decrease the synthesis costs. It is possible that the amount of inoculated bacteria that could secrete antiviral peptide was insufficient, or that the efficiency of the pLEX system in vivo was not as high as necessary. Another possible reason was that EB peptides might have been broken down by S gordonii. A minimal and optimal sequence of EB peptide has been reported to improve the antiviral efficacy and decrease the synthesis costs. Nonetheless, it is unknown whether this minimal epitope will be better expressed in S gordonii. It is also very difficult to detect and evaluate the secreting expression of small epitopes in the supernatant. Although EB is not toxic to either HeLa or Vero cells at 100 μM, toxicity of the peptide to S gordonii cannot be excluded. In future, we will commercially synthesise EB peptide and evaluate its toxicity at various concentrations with S gordonii.

Overall, we successfully verified the efficiency of pLEX expression system in S gordonii GP204 stain by GFP reporter protein and constructed a series of engineered commensal bacteria strains. Nonetheless, to build an effective anti-influenza bioshield, there remain a few hurdles to be overcome: (1) It is difficult to obtain high level secreting expression of EB peptide both in vivo and in vitro thus resulting in no effective protection. (2) The plasmid containing the EB peptide sequence is unstable and can be easily lost in vivo and may contribute to low peptide expression. (3) S gordonii colonisation in mice is not stable and needs multiple inoculations supplied with appropriate antibiotics.

Although the challenge experiments did not provide efficient protection, the supernatant of the engineered bacteria did show evidence of viral inhibition. This offers hope that the strategy may work by improving the expression and colonisation efficiency. If successful, the novel bioshield can be inoculated by simple combination with nutritious foods or encapsulated. This will be more convenient and acceptable to use, and easier to administer. The bioshield can be self-administered and eliminates the use of a hypodermic needle. A bioshield against avian influenza viruses is easy to manufacture.

Acknowledgement

This study was supported by the Research Fund for the Control of Infectious Diseases, Food and Health Bureau, Hong Kong SAR Government (#08070592).

References