<table>
<thead>
<tr>
<th>Title</th>
<th>Private Matchings and Allocations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hsu, J; Huang, Z; Roth, A; Roughgarden, T; Wu, ZS</td>
</tr>
<tr>
<td>Citation</td>
<td>SIAM Journal on Computing, 2016, v. 45, p. 1953-1984</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/246195</td>
</tr>
<tr>
<td>Rights</td>
<td>SIAM Journal on Computing. Copyright © Society for Industrial and Applied Mathematics.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
PRIVATE MATCHINGS AND ALLOCATIONS

JUSTIN HSU†, ZHIYI HUANG‡, AARON ROTH†, TIM ROUGHGARDEN§, AND ZHIWEI STEVEN WU†

Abstract. We consider a private variant of the classical allocation problem: given \(k \) goods and \(n \) agents with private valuation functions over bundles of goods, how can we allocate goods to agents to maximize social welfare? An important special case is when agents desire at most one good, and specify their (private) value for each good: in this case, the problem is exactly the maximum-weight matching problem in a bipartite graph. Private matching and allocation problems have not been considered in the differential privacy literature for a good reason: they are plainly impossible to solve under differential privacy. Informally, the allocation must match agents to their preferred goods in order to maximize social welfare, but this preference is exactly what agents wish to hide! Therefore, we consider the problem under the relaxed constraint of joint differential privacy: for any agent \(i \), no coalition of agents excluding \(i \) should be able to learn about the valuation function of agent \(i \). In this setting, the full allocation is no longer published—instead, each agent is told what good to receive. We first show that if there are several identical copies of each good, it is possible to efficiently and accurately solve the matching problem while guaranteeing joint differential privacy. We then consider the more general allocation problem where bidder valuations satisfy the gross substitutes condition. Finally, we prove that the allocation problem cannot be solved to nontrivial accuracy under joint differential privacy without requiring multiple copies of each type of good.

Key words. differential privacy, matching, ascending auction, gross substitutes

AMS subject classification. 91A35

DOI. 10.1137/15100271X

1. Introduction. In the classic maximum-weight matching problem in bipartite graphs, there are \(k \) goods \(j \in \{1, \ldots, k\} \) and \(n \) buyers \(i \in \{1, \ldots, n\} \). Each buyer \(i \) has a value \(v_{ij} \in [0, 1] \) for each good \(j \), and the goal is to find a matching \(\mu \) between goods and buyers which maximizes the social welfare \(\text{SW} = \sum_{i=1}^{n} v_{i,\mu(i)} \). When the buyers’ values are sensitive information,\(^1\) it is natural to ask for a matching that hides the reported values of each of the players.

It is not hard to see that this goal is impossible under the standard notion of differential privacy, which requires that the allocation must be insensitive to the reported valuations of each player. We formalize this observation in Section 5, but the intuition is simple. Consider the case with two types of goods with \(n \) identical copies each, and suppose that each buyer has a private preference for one of the two

\(^1\)For instance, the goods might be related to the treatment of disease, or might be indicative of a particular business strategy, or might be embarrassing in nature.

1953
types: value 1 for the good that he likes, and value 0 for the other good. There is no contention since the supply of each good is larger than the total number of buyers, so any allocation achieving social welfare $\text{OPT} - \alpha n$ can be used to reconstruct a $(1 - \alpha)$ fraction of the preferences; this is plainly impossible for nontrivial values of α under differential privacy.

In light of this obstacle, is there any hope for privately solving maximum-weight matching problems? In this paper, we show that the answer is yes: it is possible to solve matching problems (and more general allocation problems) to high accuracy assuming a small number of identical copies of each good, while still satisfying an extremely strong variant of differential privacy. We observe that the matching problem has the following two features:

1. Both the input and solution are naturally partitioned amongst the same n people: each buyer i receives the item $\mu(i)$ they are matched to in the solution.
2. The problem is not solvable privately because the item given to each buyer must reflect their own private data.

By utilizing these two features, we show that the matching problem can be accurately solved under the constraint of joint differential privacy (Kearns et al., 2014). Informally speaking, this requires that for every buyer i, the joint distribution on items $\mu(j)$ for $j \neq i$ must be differentially private in the reported valuation of buyer i. As a consequence, buyer i's privacy is protected even if all other buyers collude, potentially sharing the identities of the items they receive. As long as buyer i does not reveal their own item, their privacy is protected.

We then show that our techniques generalize beyond the max-matching problem to the more general allocation problem. Here, each buyer i has a valuation function defined over subsets of goods $v_i : 2^{|K|} \rightarrow [0, 1]$ from some class of valuations, and the goal is to find a partition of the goods S_1, \ldots, S_n maximizing social welfare; note that the maximum-weight matching problem is the special case when agents are unit demand, i.e., only want bundles of size 1. More specifically, we consider buyers with gross substitutes valuations. This is an economically meaningful class of valuation functions that is a strict subclass of submodular functions and is the most general class of valuations for which our techniques apply.

1.1. Our techniques and results. Our approach makes a novel connection between market clearing prices and differential privacy. Prices have long been considered as a low-information way to coordinate markets; our paper formalizes this intuition in the context of differentially private allocation. Specifically, we will use Walrasian equilibrium prices: prices under which each buyer is simultaneously able to buy a most-preferred bundle of goods, and no good is overdemanded. Although the allocation itself cannot be computed under standard differential privacy, we show how to differentially privately compute the Walrasian equilibrium prices while coordinating a high welfare allocation under joint differential privacy.

We start from the classic analysis of Kelso and Crawford (1982), who show how to use ascending price auctions to compute Walrasian equilibrium prices. In the classical ascending price auction, each good begins with a price of 0 and each agent is initially unmatched to any good. Unmatched agents i take turns bidding on the good j^* that maximizes their utility at the current prices, i.e., $j^* \in \arg\max(v_{ij} - p_j)$. When a bidder bids on a good j^*, they become the new high bidder and the price of j^* is incremented. Bidders are tentatively matched to a good as long as they are the high bidder. The auction continues until there are no unmatched bidders who prefer to be matched at the current prices. The algorithm converges because each bid increases
the prices, which are bounded by some finite value.\footnote{Bidders do not bid on goods for which they have negative utility; in our case, \(v_{ij} \in [0, 1] \).} Moreover, every bidder ends up matched to their most-preferred good given the prices. Finally, by the first welfare theorem of Walrasian equilibria, any matching that corresponds to equilibrium prices maximizes social welfare. We emphasize that this final implication is key: “prices” play no role in our problem description, nor do we ever actually charge prices to the agents—the prices are purely a device to coordinate the matching.

We give an approximate, private version of Kelso and Crawford’s algorithm based on several observations. First, in order to implement this algorithm, it is sufficient to maintain the sequence of prices of the goods privately: given a record of the price trajectory, each agent can figure out what good they are matched to. Second, in order to privately maintain the prices, it suffices to maintain a private count of the number of bids each good has received over the course of the auction; we can accomplish this task using private counters due to Dwork et al. (2010a), Chan, Shi, and Song (2011). Finally, it is possible to halt the algorithm early without significantly harming the quality of the final matching. By doing so, we reduce the number of bids from each bidder, enabling us to bound the sensitivity of the bid counters, reducing the amount of noise needed for privacy. The result is an algorithm that converges to a matching together with prices that form an approximate Walrasian equilibrium. We complete our analysis by proving an approximate version of the first welfare theorem, which shows that the matching has high weight.

The algorithm of Kelso and Crawford (1982) extends to the general allocation problem when players have gross substitute preferences, and our private algorithm does as well. We note that this class of preferences is the natural limit of our approach, which makes crucial use of equilibrium prices as a coordinating device: in general, when agents have valuations over bundles of goods that do not satisfy the gross substitutes condition, Walrasian equilibrium prices may not exist.

We first state our main result informally in the special case of max-matchings, which we prove in Section 3. We prove our more general theorem for allocation problems with gross substitutes preferences in Section 4. Here, privacy is protected with respect to a single agent \(i \) changing their valuations \(v_{ij} \) for possibly all goods \(j \).

Theorem 1 (informal). Suppose there are \(n \) agents and \(k \) types of goods, each with \(s \) identical copies. There is a computationally efficient \(\varepsilon \)-joint differentially private algorithm which computes a matching of weight \(\text{OPT} - \alpha n \) as long as

\[
s \geq O \left(\frac{1}{\alpha^3 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha} \right) \right).
\]

For certain parameter ranges, the welfare guarantee can be improved to \((1 - \alpha) \text{OPT}\).

Our algorithms actually work in a privacy model that is stronger than joint differential privacy, called the billboard model. We can view the algorithm as a mechanism that posts the prices publicly on a billboard as a differentially private signal such that every player can deduce what object they should be matched to just from their own private information and the contents of the billboard. As we show, algorithms in the billboard model automatically satisfy joint differential privacy.

Furthermore, we view implementations in the billboard model as preferable to arbitrary jointly differentially private implementations. Algorithms in the billboard model only need the ability to publish sanitized messages to all players, and do not need a secure channel to communicate the mechanisms’ output to each player (though,
of course, there still needs to be a secure channel from the player to the mechanism). The previous work by McSherry and Mironov (2009) and some of the results by Gupta et al. (2010) can be viewed as existing examples of algorithms in the billboard model.

In Section 5, we complement our positive results with lower bounds showing that our results are qualitatively tight. Not only is the problem impossible to solve under the standard differential privacy, assuming multiple copies of each good is also necessary to get any nontrivial solution even under joint differential privacy.

Theorem 2 (informal). No joint differentially private algorithm can compute matchings of weight greater than $\text{OPT} - \alpha n$ on instances in which there are n agents and s copies of each good, when

$$s \leq O\left(\frac{1}{\sqrt{\alpha}}\right).$$

In particular, no algorithm can compute matchings of weight $\text{OPT} - o(n)$ on instances for which the supply $s = O(1)$. In addition, we show that when goods have supply only $s = O(1)$, it is not even possible to compute the equilibrium prices privately under standard differential privacy. Our lower bounds are all reductions to database reconstruction attacks. Our technique for proving this lower bound may be of general interest, as the construction may be useful for other lower bounds for joint differential privacy.

1.2. Related work. Differential privacy, first defined by Dwork et al. (2006), has become a standard privacy solution concept in the theoretical computer science literature. There is far too much work to survey comprehensively; for a textbook introduction, see Dwork and Roth (2014).

The privacy of our algorithms relies on work by Dwork et al. (2010a) and Chan, Shi, and Song (2011), who show how to release a running count of a stream of bits under continual observation—i.e., report the count as the stream is revealed, provide high accuracy at every point in time, and keep the transcript differentially private.

Beginning with Dinur and Nissim (2003), much work in differential privacy has focused on answering numeric valued queries on a private dataset (e.g., Dwork et al. (2006), Blum, Ligett, and Roth (2013), Hardt and Rothblum (2010), among many others). In contrast, work on private combinatorial optimization problems has been sporadic (e.g., Nissim, Raskhodnikova, and Smith (2007), Gupta et al. (2010)). Part of the challenge is that many combinatorial optimization problems, including the allocation problems we consider in this paper, are impossible to solve under differential privacy. To sidestep this problem, we employ the solution concept of joint differential privacy. First formalized by Kearns et al. (2014), similar ideas are present in the vertex and set-cover algorithms of Gupta et al. (2010), the private recommendation system of McSherry and Mironov (2009), and the analyst private data analysis algorithms of Dwork, Naor, and Vadhan (2012), Hsu, Roth, and Ullman (2013).

Our algorithm is inspired by Kelso and Crawford (1982), who study the problem of matching firms to workers when the firms have preferences that satisfy the gross substitutes condition. They give an algorithm based on simulating simultaneous ascending auctions that converge to Walrasian equilibrium prices and a corresponding matching. In some respect, this approach does not generalize to more general valuations: Gul and Stacchetti (1999) show that gross substitutes preferences are precisely the set of preferences for which Walrasian equilibrium prices are guaranteed to exist.

While our algorithm achieves a good approximation to the optimal welfare at the expense of certain incentive properties, our work is closely related to recent work on
privately computing various kinds of equilibrium in games (e.g., correlated equilibrium (Kearns et al., 2014), Nash equilibrium (Rogers and Roth, 2014), and minmax equilibrium (Hsu, Roth, and Ullman, 2013)). These works belong to a growing literature studying the interface of game theory and differential privacy; Pai and Roth (2013) provide a recent survey.

2. Preliminaries.

2.1. The allocation problem. We consider allocation problems defined by a set of goods G and a set of n agents $[n]$. Each agent $i \in [n]$ has a valuation function $v_i : 2^G \to [0,1]$ mapping bundles of goods to values. A feasible allocation is a collection of sets $S_1, \ldots, S_n \subseteq G$ such that $S_i \cap S_j = \emptyset$ for each $i \neq j$, i.e., a partition of goods among the agents. The social welfare of an allocation S_1, \ldots, S_n is $\sum_{i=1}^n v_i(S_i)$, the sum of the agent’s valuations for the allocation; we are interested in finding allocations which maximize this quantity. Given an instance of an allocation problem, we write $OPT = \max_{S_1, \ldots, S_n} \sum_{i=1}^n v_i(S_i)$ to denote the social welfare of the optimal feasible allocation.

A particularly simple valuation function is a unit demand valuation, where bidders demand at most one item. Such valuation functions take the form $v_i(S) = \max_{j \in S} v_i(\{j\})$ and can be specified by numbers $v_{i,j} = v_i(\{j\}) \in [0,1]$, which represent the value that bidder i places on good j. When bidders have unit demand valuations, the allocation problem corresponds to computing a maximum weight matching in a bipartite graph.

Our results will also hold for gross substitute valuations, which include unit demand valuations as a special case. Informally, for gross substitute valuations, any set of goods S' that are in a most-demanded bundle at some set of prices p remain in a most-demanded bundle if the prices of other goods are raised, keeping the prices of goods in S' fixed. Gross substitute valuations are a standard class of valuation functions: they are a strict subclass of submodular functions, and they are precisely the valuation functions with Walrasian equilibria in markets with indivisible goods (Gul and Stacchetti, 1999). Two other simple examples of gross substitute valuations are (1) additive functions, which takes the form $v(S) = \sum_{j \in S} v(j)$ and (2) symmetric submodular functions, such that $v(S) = f(|S|)$ for some monotone concave function $f : \mathbb{R}_+ \to \mathbb{R}_+$.

To give the formal definition, we will need some notation. Given a vector of prices $\{p_g\}_{g \in G}$, the (quasi-linear) utility that player i has for a bundle of goods S_i is defined to be $u_i(S_i,p) = v_i(S_i) - \sum_{j \in S_i} p_j$.

3 Given a vector of prices p, for each agent i we can define the set of most demanded bundles: $\omega(p) = \arg \max_{S \subseteq G} u_i(S,p)$. Given two price vectors p, p', we write $p \preceq p'$ if $p_g \leq p'_g$ for all g.

DEFINITION 3. A valuation function $v_i : 2^G \to [0,1]$ satisfies the gross substitutes condition if for every two price vectors $p \preceq p'$ and for every bundle $S \in \omega(p)$, if $S' \subseteq S$ satisfies $p'_g = p_g$ for every $g \in S'$, then there is a bundle $S^* \in \omega(p')$ with $S' \subseteq S^*$.

Finally, we will typically consider markets with multiple copies of each type of good. Two goods $g_1, g_2 \in G$ are identical if for every bidder i and for every bundle $S \subseteq G$, $v_i(S \cup \{g_1\}) = v_i(S \cup \{g_2\})$, i.e., the two goods are indistinguishable according to every valuation function. Formally, we say that a set of goods G consists of k types.

3This is a natural definition of utility if agents must pay for the bundles they buy at the given prices. In this paper we are concerned with the purely algorithmic allocation problem, so our algorithm will not actually charge prices. However, prices will be a convenient abstraction throughout our work.
of goods with \(s \) supply if there are \(k \) representative goods \(g_1, \ldots, g_k \in G \) such that every good \(g' \in G \) is identical to one of \(g_1, \ldots, g_k \), and for each representative good \(g_i \), there are \(s \) goods identical to \(g_i \) in \(G \). For simplicity of presentation we will assume that the supply of each good is the same, but this is not necessary; all of our results continue to hold when the supply \(s \) denotes the minimum supply of any type of good.

2.2. Differential privacy preliminaries

Although it is impossible to solve the allocation problem under standard differential privacy (see Section 5), standard differential privacy plays an essential role in our analysis. We will introduce this concept before seeing its generalization, joint differential privacy.

Suppose agents have valuation functions \(v_i \) from a class of functions \(C \). A database \(D \in C^n \) is a vector of valuation functions, one for each of the \(n \) bidders. Two databases \(D, D' \) are \(i \)-neighbors if they differ in only their \(i \)th index, that is, if \(D_j = D'_j \) for all \(j \neq i \). If two databases \(D, D' \) are \(i \)-neighbors for some \(i \), we say that they are neighboring databases. We will be interested in randomized algorithms that take a database as input, and output an element from some range \(R \). Our final mechanisms will output sets of \(n \) bundles (so \(R = (2^G)^n \)), but intermediate components of our algorithms will have different ranges.

Definition 4 (Dwork et al. (2006)). An algorithm \(\mathcal{M} : C^n \to R \) is \((\varepsilon, \delta)\)-differentially private if for every pair of neighboring databases \(D, D' \in C^n \) and for every set of subset of outputs \(S \subseteq R \),

\[
\Pr[\mathcal{M}(D) \in S] \leq e^{\varepsilon} \Pr[\mathcal{M}(D') \in S] + \delta.
\]

If \(\delta = 0 \), we say that \(\mathcal{M} \) is \(\varepsilon \)-differentially private.

When the range of a mechanism is also a vector with \(n \) components (e.g., \(R = (2^G)^n \)), we can define joint differential privacy: this requires that simultaneously for all \(i \), the joint distribution on outputs given to players \(j \neq i \) is differentially private in the input of agent \(i \). Given a vector \(x = (x_1, \ldots, x_n) \), we write \(x_{−i} = (x_1, \ldots, x_{i−1}, x_{i+1}, \ldots, x_n) \) to denote the vector of length \(n − 1 \) which contains all coordinates of \(x \) except the \(i \)th coordinate.

Definition 5 (Kearns et al. (2014)). An algorithm \(\mathcal{M} : C^n \to (2^G)^n \) is \((\varepsilon, \delta)\)-joint differentially private if for every \(i \), for every pair of \(i \)-neighbors \(D, D' \in C^n \), and for every subset of outputs \(S \subseteq (2^G)^{n−1} \),

\[
\Pr[\mathcal{M}(D)_{−i} \in S] \leq e^{\varepsilon} \Pr[\mathcal{M}(D')_{−i} \in S] + \delta.
\]

If \(\delta = 0 \), we say that \(\mathcal{M} \) is \(\varepsilon \)-joint differentially private.

Note that this is still an extremely strong definition that protects \(i \) from arbitrary coalitions of adversaries—it weakens the constraint of differential privacy only in that the output given specifically to agent \(i \) may be sensitive in the input of agent \(i \).

2.3. Differentially private counters

The central tool in our algorithm is the private streaming counter proposed by Chan, Shi, and Song (2011) and Dwork et al. (2010a). Given a bit stream \(\sigma = (\sigma_1, \ldots, \sigma_T) \in \{0, 1\}^T \), a streaming counter \(\mathcal{M}(\sigma) \) releases an approximation to \(c_\sigma(t) = \sum_{i=1}^t \sigma_i \) at every time step \(t \). The counters release accurate approximations to the running count at every time step.

Definition 6. A streaming counter \(\mathcal{M} \) is \((\alpha, \beta)\)-useful if with probability at least \(1 − \beta \) for each time \(t \in [T] \),

\[
|\mathcal{M}(\sigma)(t) − c_\sigma(t)| \leq \alpha.
\]
For the rest of this paper, let Counter(ε, T) denote the binary mechanism of Chan, Shi, and Song (2011), instantiated with parameters ε and T. The mechanism produces a monotonically increasing count, and satisfies the following accuracy guarantee. Further details may be found in Appendix A.

Theorem 7 (Chan, Shi, and Song (2011)). For β > 0, Counter(ε, T) is ε-differentially private with respect to a single bit change in the stream, and (α, β)-useful for

\[\alpha = \frac{2\sqrt{2}}{\varepsilon} \ln \left(\frac{2}{\beta} \right) \log(T)^{5/2}. \]

3. **Private max-weight matching.** In this section, we study the special case of unit demand valuations. Though our later algorithm for gross substitutes valuations generalizes this case, we first present our algorithm in this simpler setting to highlight the key features of our approach.

Consider a matching market with n bidders and k different types of goods, where each good has supply s and bidder i has valuation \(v_{ij} \in [0, 1] \) for good j. Some agents may not end up being matched to a good: to simplify notation, we will say that unmatched agents are matched to a special dummy good \(\bot \).

To reach a maximum weight matching, we first aim to privately compute prices \(p \in [0, 1]^k \) and an allocation of the goods \(\mu: [n] \to [k] \cup \{ \bot \} \) such that most bidders are matched with their approximately favorite goods given the prices and each overdemanded good almost clears, where a good is overdemanded if its price is strictly positive. We will show that if we can achieve this intermediate goal, then, in fact, we have computed an approximate maximum weight matching.

Definition 8. A price vector \(p \in [0, 1]^k \) and an assignment \(\mu: [n] \to [k] \cup \{ \bot \} \) of bidders to goods is an \((\alpha, \beta, \rho)\)-approximate matching equilibrium if

1. all but a \(\rho \) fraction of bidders i are matched to an \(\alpha \)-approximate favorite good, i.e., \(v_{i\mu(i)} - p_{\mu(i)} \geq v_{ij} - p_j - \alpha \) for every good j for at least \((1 - \rho)n \) bidders i (we call these bidders satisfied);
2. the number of bidders assigned to any type of good is below its supply; and
3. each overdemanded good clears except for at most \(\beta \) supply.

3.1. **Overview of the algorithm.** Our algorithm takes the valuations as input, and outputs a trajectory of prices that can be used by the agents to figure out what they are matched to. For the presentation, we will sometimes speak as if the bidders are performing some action, but this actually means that our algorithm simulates the actions of the bidders internally—the actual agents do not interact with our algorithm.

Algorithm 1 (PMatch) is a variant of a deferred acceptance algorithm first proposed and analyzed by Kelso and Crawford (1982), which runs \(k \) simultaneous ascending price auctions, one for each type of good. At any given moment each type of good has a proposal price \(p_j \). In a sequence of rounds where the algorithm passes through each bidder once in some fixed, publicly known order, unsatisfied bidders bid on a good that maximizes their utility at the current prices, that is, a good \(j \) that maximizes \(v_{ij} - p_j \). (This is the Propose function.)

The \(s \) most recent bidders for a type of good are tentatively matched to that type of good; these are the current high bidders. A bidder tentatively matched to a good with supply \(s \) becomes unmatched once the good receives \(s \) subsequent bids; we say this bidder has been outbid. Every \(s \) bids on a good increases its price by a

\[4 \text{This is the notion of approximate Walrasian equilibrium we will use.} \]
Algorithm 1 PMatch($\alpha, \rho, \varepsilon$).

Input: Bidders’ valuations ($\{v_{ij}\}_{j=1}^{k}, \ldots, \{v_{nj}\}_{j=1}^{k}$)
Initialize: for bidder i and good j,

\[T = \frac{8}{\alpha \rho}, \quad \varepsilon' = \frac{\varepsilon}{2T}, \quad E = \frac{2\sqrt{2}}{\varepsilon'} (\log nT)^{5/2} \log \left(\frac{4k}{\gamma} \right), \quad m = 2E + 1, \]

\[\text{counter}_j = \text{Counter}(\varepsilon', nT) \quad p_j = c_j = 0, \]

\[\mu(i) = \emptyset, \quad d_i = 0, \quad \text{counter}_0 = \text{Counter}(\varepsilon', nT) \]

Propose T times; Output: prices p and allocation μ.

Propose:
for all bidders i do
 if $\mu(i) = \emptyset$ then
 Let $\mu(i) \in \arg\max_j v_{ij} - p_j$, breaking ties arbitrarily
 if $v_{i\mu(i)} - p_{\mu(i)} \leq 0$ then
 Let $\mu(i) := \bot$ and Bid(0).
 else Save $d_i := c_{\mu(i)}$ and Bid($e_{\mu(i)}$).
 else Bid(0)

CountUnsatisfied
Bid: On input bid vector b
for all goods j do
 Feed b_j to counter$_j$.
 Update count $c_j := \text{counter}_j$.
 if $c_j \geq (p_j / \alpha + 1)(s - m)$ then
 Update $p_j := p_j + \alpha$.

CountUnsatisfied:
for all bidders i do
 if $\mu(i) \neq \bot$ and $c_{\mu(i)} - d_i \geq s - m$ then
 Feed 1 to counter$_0$.
 Let $\mu(i) := \bot$.
 else Feed 0 to counter$_0$.
 if counter$_0$ increases by less than $\rho n - 2E$ then
 Halt and output μ.

fixed increment α. Bidders keep track of which good they are matched to, if any, and determine whether they are currently matched or unmatched by looking at a count of the number of bids received by the last good they bid on.

To implement this algorithm privately, we count the number of bids each good has received using private counters. Unsatisfied bidders can infer the prices of all goods based on the number of bids each has received, and from this information, they determine their favorite good at the given prices. Their bid is recorded by sending the bit 1 to the appropriate counter. (This is the Bid function.) Matched bidders store the reading of the bid counter on the good they are matched to at the time that they last bid (in the variable d_i); when the counter ticks s bids past this initial count, bidders conclude that they have been outbid and become unmatched. The
final matching is communicated implicitly: the real agents observe the full published price trajectory and simulate what good they would have been matched to had they bid according to the published prices.

Since the private counters are noisy, more than s bidders may be matched to a good. To maintain feasibility, the algorithm reserves some supply m, i.e., it treats the supply of each good as $s - m$, rather than s. The reserved supply m is used to satisfy the demand of excess bidders who believe themselves to be matched to a good; the number of such bidders is at most s, with high probability.

Our algorithm stops as soon as fewer than ρn bidders place bids in a round. We show that this early stopping condition does not significantly harm the welfare guarantee of the matching, while it substantially reduces the sensitivity of the counters; no bidder ever bids more than $O(1/(\alpha \rho))$ times in total. Crucially, this bound is independent of both the number of types of goods k and the number of bidders n. By stopping early, we greatly improve the accuracy of the prices since the amount we must perturb the bid counts to protect privacy increases with the sensitivity of the counters.

To privately implement the stopping condition, the algorithm maintains a separate counter (counter_0) which counts the number of unsatisfied bidders throughout the run of the algorithm. At the end of each round, bidders who are unsatisfied will send the bit 1 to this counter, while bidders who are matched will send the bit 0. If this counter increases by less than roughly ρn in any round, the algorithm halts. (This is the CountUnsatisfied function.)

3.2. Privacy analysis. In this section, we show that the allocation output by our algorithm satisfies joint differential privacy with respect to any single bidder changing all of their valuations. We will use a basic but useful lemma: to show joint differential privacy, it is sufficient to show that the output sent to each agent i is an arbitrary function of (i) some global signal that is computed under the standard constraint of differential privacy, and (ii) agent i’s private data. We call this model the billboard model: agents can compute their output by combining a common signal—as if posted on a public billboard—with their own private data. In our case, the price history over the course of the auction is the differentially private message posted on the billboard. Combined with their personal private valuation, each agent can compute their personal allocation.

Lemma 9 (billboard lemma). Suppose $M : D \rightarrow R$ is (ε, δ)-differentially private. Consider any set of functions $f_i : \mathcal{D}_i \times R \rightarrow \mathcal{R}'$, where \mathcal{D}_i is the portion of the database containing i’s data. The composition $\{ f_i(\Pi_i D, M(D)) \}$ is (ε, δ)-joint differentially private, where $\Pi_i : D \rightarrow \mathcal{D}_i$ is the projection to i’s data.

Proof. We need to show that for any agent i, the view of the other agents is (ε, δ)-differentially private when i’s private data are changed. Suppose databases D, D' are i-neighbors, so $\Pi_j D = \Pi_j D'$ for $j \neq i$. Let \mathcal{R}_{-i} be a set of possible outputs to the bidders besides i. Let $\mathcal{R}^\ast = \{ r \in \mathcal{R} | \{ f_j(\Pi_j D, r) \}_{-i} \in \mathcal{R}_{-i} \}$. Then, we need

$$
\Pr[\{ f_j(\Pi_j D, M(D)) \}_{-i} \in \mathcal{R}_{-i}] \leq e^\varepsilon \Pr[\{ f_j(\Pi_j D', M(D')) \}_{-i} \in \mathcal{R}_{-i}] + \delta
$$

$$
= e^\varepsilon \Pr[\{ f_j(\Pi_j D, M(D')) \}_{-i} \in \mathcal{R}_{-i}] + \delta,
$$

so

$$
\Pr[M(D) \in \mathcal{R}^\ast] \leq e^\varepsilon \Pr[M(D') \in \mathcal{R}^\ast] + \delta,
$$

but this is true since M is (ε, δ)-differentially private. □

Theorem 10. The sequence of prices and counts of unsatisfied bidders released by $PMatch(\alpha, \rho, \varepsilon)$ satisfies ε-differential privacy.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Proof (sketch). We give a rough intuition here, and defer the full proof to Appendix A. Note that the prices can be computed from the noisy counts, so it suffices to show that the counts are private. Since no bidder bids more than $T \approx 1/(\alpha \rho)$ times in total, the total sensitivity of the k price streams to a single bidder’s valuations is only $O(1/(\alpha \rho))$ (independent of k) even though a single bidder could in principle bid $\Omega(1/\alpha)$ times on each of the k streams. Hence the analysis of these k simultaneously running counters is akin to the analysis of answering histogram queries, multiple queries whose joint sensitivity is substantially smaller than the sum of their individual sensitivities.

By setting the counter for each good with privacy parameter $\varepsilon' = \varepsilon/2T$, the prices are $\varepsilon/2$ differentially private. By the same reasoning, setting the unsatisfied bidders counter with privacy parameter $\varepsilon' = \varepsilon/2T$ also makes the unsatisfied bidders count $\varepsilon/2$ private. Thus, these outputs together satisfy ε-differential privacy.

While this intuition is roughly correct, there are some technical details. Namely, Chan, Shi, and Song (2011) show privacy for a single counter with sensitivity 1 on a nonadaptively chosen stream. Since intermediate outputs (i.e., prices) from our counters will affect the future streams (i.e., future bids) for other counters, this is not sufficient. In fact, it is possible to prove privacy for multiple counters running on adaptively chosen streams, where the privacy parameter depends only on the joint sensitivity of the streams and not on the number of streams. We show this result using largely routine arguments; details can be found in Appendix A.

Theorem 11. PMatch($\alpha, \rho, \varepsilon$) is ε-joint differentially private.

Proof (sketch). Note that given the sequence of prices, counts of unsatisfied bidders, and the private valuation of any bidder i, the final allocation to that bidder can be computed by simulating the sequence of bids made by bidder i, since the bids are determined by the price when bidder i is slotted to bid and by whether the auction has halted or not. Bidder i’s final allocation is simply the final item that i bids on. The prices and halting condition are computed as a deterministic function of the noisy counts, which are ε-differentially private by Theorem 7. So, Lemma 9 shows that PMatch is ε-joint differentially private.

3.3. Utility analysis. In this section, we compare the weight of the matching produced by PMatch with OPT. As an intermediate step, we first show that the resulting matching paired with the prices computed by the algorithm forms an approximate matching equilibrium. We next show that any such matching must be an approximately max-weight matching.

The so-called first welfare theorem from general equilibrium theory guarantees that an exact (i.e., a $(0, 0, 0)$-) matching equilibrium gives an exact maximum weight matching. Compared to this ideal, PMatch loses welfare in three ways. First, a ρ fraction of bidders may end up unsatisfied. Second, the matched bidders are not necessarily matched to goods that maximize their utility given the prices, but only to goods that do so approximately (up to additive α). Finally, the auction sets aside part of the supply to handle overallocation from the noisy counters. This reserved supply may end up unused, say, if the counters are accurate or actually underallocate. In other words, we compute an equilibrium of a market with reduced supply, so our welfare guarantee holds if the supply s is significantly larger than the necessary reserved supply m.

The key performance metric is how much supply is needed to achieve a given welfare approximation in the final matching. On the one hand, we will show later
that the problem is impossible to solve privately if \(s = O(1) \) (section 5). On the
other hand, the problem is trivial if \(s \geq n \): agents can be simultaneously matched to
their favorite good with no coordination; this allocation is trivially both optimal and
private. Our algorithm will achieve positive results in the intermediate supply range,
when \(s \geq \text{polylog}(n) \).

Theorem 12. Let \(\alpha > 0 \), and \(\mu \) be the matching computed by \(\text{PMatch}(\alpha/3, \alpha/3, \epsilon) \).
Let \(\text{OPT} \) denote the weight of the optimal matching. Then, if the supply satisfies
\[
\frac{16E' + 4}{\alpha} = O \left(\frac{1}{n^3 \epsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha}, \frac{1}{\gamma} \right) \right),
\]
and \(n > s \), the matching \(\mu \) has social welfare at least \(\text{OPT} - \alpha n \) with probability
\(\geq 1 - \gamma \), where
\[
E' = \frac{288 \sqrt{2}}{\alpha^2 \epsilon} \left(\log \left(\frac{72n}{\alpha^2} \right) \right)^{5/2} \log \left(\frac{4k}{\gamma} \right).
\]

Remark 13. Our approximation guarantee here is *additive*. Later in this section,
we show that if we are in the *unweighted* case—\(v_{ij} \in \{0, 1\} \)—we can find a matching
\(\mu \) with welfare at least \((1 - \alpha) \text{OPT} \). This *multiplicative* guarantee is unusual for a
differentially private algorithm.

The proof follows from the following lemmas.

Lemma 14. We call a bidder who wants to continue bidding unsatisfied; otherwise, bidder \(i \) is satisfied. At termination of \(\text{PMatch}(\alpha, \rho, \epsilon) \), all satisfied bidders \(i \) are matched to a good \(\mu(i) \) such that
\[
v_{i,\mu(i)} - p_{\mu(i)} \geq \max_j (v_{i,j} - p_j) - \alpha.
\]

Proof. Fix any satisfied bidder \(i \) matched to \(j^* = \mu(i) \). At the time that bidder \(i \)
last bid on \(j^* \), by construction, \(v_{ij^*} - p_{j^*} \geq \max_j (v_{ij} - p_j) \). Since \(i \) remained matched
to \(j^* \), its price could only have increased by at most \(\alpha \), and the prices of other goods
\(j \neq j^* \) could only have increased. Hence, at completion of the algorithm,
\[
v_{i,\mu(i)} - p_{\mu(i)} \geq \max_j (v_{ij} - p_j) - \alpha
\]
for all matched bidders \(i \).

Lemma 15. Assume all counters have error at most \(E \) throughout the run of
\(\text{PMatch}(\alpha, \rho, \epsilon) \). Then the number of bidders assigned to any good is at most \(s \) and
each overdemanded good clears except for at most \(\beta \) supply, where
\[
\beta = 4E + 1 = O \left(\frac{1}{\alpha \rho \epsilon} \cdot \text{polylog} \left(\frac{1}{\alpha}, \frac{1}{\rho}, \frac{1}{\gamma}, k, n \right) \right).
\]

Proof. Since the counter for each underdemanded good never exceeds \(s - m \), we
know that each underdemanded good is matched to no more than \(s - m + E < s \)
bidders. Consider any counter \(c \) for an overdemanded good. Let \(t \) be a time step such that
\[
c(nT) - c(t + 1) \leq s - m < c(nT) - c(t),
\]
where \(c(t) \) denotes the output of the counter at time \(t \). Note that the bidders who bid
after time \(t \) are the only bidders matched to this good at time \(nT \). Let \(\sigma \) be the true
bid stream for this good and let the sum of bids in \(\sigma \) up to time \(t \) be \(h(\sigma, t) \). Then,
the total number of bidders allocated to this good at time nT is

$$h(\sigma, nT) - h(\sigma, t) \leq h(\sigma, nT) - h(\sigma, t + 1) + 1$$

$$\leq (c(nT) + E) - (c(t + 1) - E) + 1$$

$$\leq s - m + 2E + 1 = s.$$

Similarly, we can lower bound the number of bidders allocated to this good:

$$h(\sigma, nT) - h(\sigma, t) = (h(\sigma, nT) - c(nT)) + (c(nT) - c(t)) + (c(t) - h(\sigma, t))$$

$$> s - m - 2E > s - 4E - 1.$$

Therefore, every overdemanded good clears except for at most $\beta = 4E + 1$ supply, which gives

$$\beta = \frac{16\sqrt{2}}{\alpha \rho \epsilon} \left(\log \left(\frac{6n}{\alpha \rho} \right) \right)^{5/2} \log \left(\frac{4k}{\gamma} \right) + 1$$

$$= O \left(\frac{1}{\alpha \rho \epsilon} \cdot \text{polylog} \left(\frac{1}{\alpha}, \frac{1}{\rho}, \frac{1}{\gamma}, k, n \right) \right).$$

Lemma 16. Assume all counters have error at most E throughout the run of $P\text{Match}(\alpha, \rho, \epsilon)$. Then at termination all but a ρ fraction of bidders are satisfied, so long as $s \geq 8E + 1$ and $n \geq 8E/\rho$.

Proof. First, we show that the total number of bids made over the course of the algorithm is bounded by $3n/\alpha$. We account separately for the underdemanded goods (those with price 0 at the end of the auction) and the overdemanded goods (those with positive price). For the underdemanded goods, since their prices remain 0 throughout the algorithm, their corresponding noisy counters never exceeded $(s - m)$. Since no bidder is ever unmatched after having been matched to an underdemanded good, the set of underdemanded goods can receive at most one bid from each agent; together the underdemanded goods can receive at most n bids.

Next, we account for the overdemanded goods. Note that the bidders matched to these goods are precisely the bidders who bid within $s - m$ ticks of the final counter reading. Since the counter has error bounded by E at each time step, this means at least $s - m - 2E$ bidders end up matched to each overdemanded good. Since no agent can be matched to more than one good there can be at most $n/(s - m - 2E)$ overdemanded goods in total.

Likewise, we can account for the number of price increases per overdemanded good. Prices never rise above 1 (because any bidder would prefer to be unmatched than to be matched to a good with price higher than 1). Therefore, since prices are raised in increments of α, the price of every overdemanded good increases at most $1/\alpha$ times. Since there can be at most $(s - m + 2E)$ bids between each price update (again, corresponding to $s - m$ ticks of the counter), the total number of bids received by all of the overdemanded goods in total is at most

$$\frac{n}{s - m - 2E} \cdot \frac{1}{\alpha} \cdot (s - m + 2E).$$

Since each bid is either on an under- or over-demanded good, we can upper bound the total number of bids B by

$$B \leq n + \frac{n}{\alpha} \left(\frac{s - m + 2E}{s - m - 2E} \right) = \frac{n}{\alpha} \left(\frac{\alpha}{s - m - 2E} \right).$$

The algorithm sets the reserved supply to be $m = 2E + 1$ and by assumption, we have
s \geq 8E + 1. Since we are only interested in cases where \(\alpha < 1 \), we conclude

\begin{equation}
B \leq n + \frac{n}{\alpha} \left(\frac{s - m + \alpha}{s - m - \alpha} \right) \leq \frac{3n}{\alpha}.
\end{equation}

Now, consider the halting condition. Either the algorithm halts early, or it does not. We claim that at termination, at most \(\rho n \) bidders are unsatisfied. The algorithm halts early if at any round of CountUnsatisfied, counter_0 (which counts the number of unsatisfied bidders) increases by less than \(\rho n - 2E \), when there are at most \(\rho n - 2E + 2E = \rho n \) unsatisfied bidders.

Otherwise, suppose the algorithm does not halt early. At the start of each round there must be at least \(\rho n - 4E \) unsatisfied bidders. Not all of these bidders must bid during the Propose round since price increases while they are waiting to bid might cause them to no longer demand any item, but this only happens if bidders prefer to be unmatched at the new prices. Since prices only increase, these bidders remain satisfied for the rest of the algorithm. If the algorithm runs for \(R \) rounds and there are \(B \) true bids,

\[B \geq R(\rho n - 4E) - n. \]

Combined with our upper bound on the number of bids (1) and our assumption \(\rho n \geq 8E \), we can upper bound the number of rounds \(R \):

\[R \leq \left(\frac{3n}{\alpha} + n \right) \cdot \left(\frac{1}{\rho n - 2E} \right) \leq \left(\frac{4n}{\alpha} \right) \cdot \left(\frac{2}{\rho n} \right) = \frac{8}{\alpha \rho} := T. \]

Thus, running the algorithm for \(T \) rounds leads to all but \(\rho n \) bidders satisfied. \(\square \)

Lemma 17. With probability at least \(1 - \gamma \), PMatch\((\alpha, \rho, \varepsilon)\) computes an \((\alpha, \beta, \rho)\)-matching equilibrium, where

\[\beta = 4E + 1 = O \left(\frac{1}{\alpha \rho \varepsilon} \cdot \text{polylog} \left(\frac{1}{\alpha}, \frac{1}{\rho}, \frac{1}{\gamma}, k, n \right) \right) \]

so long as \(s \geq 8E + 1 \) and \(n \geq 8E / \rho \).

Proof. By Theorem 7, counter_0 is \((\lambda_1, \gamma / 2)\)-useful, and each of the \(k \) good counters is \((\lambda_2, \gamma / 2)\)-useful, where

\[\lambda_1 = \frac{2\sqrt{2}}{\varepsilon^2} \log \left(\log nT \right)^{5/2} \log \left(\frac{4}{\gamma} \right) \quad \text{and} \quad \lambda_2 = \frac{2\sqrt{2}}{\varepsilon^2} \log \left(\frac{1}{\alpha}, \frac{1}{\rho}, \frac{1}{\gamma}, k, n \right). \]

Since we set \(E = \lambda_2 > \lambda_1 \), all counters are \((E, \gamma / 2)\)-useful, and thus with probability at least \(1 - \gamma \), all counters have error at most \(E \). The theorem then follows by Lemmas 14 to 16. \(\square \)

With these lemmas in place, it is straightforward to prove the welfare theorem (Theorem 12).

Proof of Theorem 12. By Lemma 17, PMatch\((\alpha / 3, \alpha / 3, \varepsilon)\) calculates a matching \(\mu \) that is an \((\alpha / 3, \beta, \alpha / 3)\)-approximate matching equilibrium with probability at least \(1 - \gamma \), where \(\beta = 4E' + 1 \). Let \(p \) be the prices at the end of the algorithm, and \(S \) be the set of satisfied bidders. Let \(\mu^* \) be the optimal matching achieving welfare \(\sum_{i=1}^n v_{i, \mu^*(i)} = \text{OPT} \). We know that \(|S| \geq (1 - \alpha / 3)n \) and

\[\sum_{i \in S} (v_{i, \mu^*(i)} - p_{\mu^*(i)}) \geq \sum_{i \in S} (v_{i, \mu(i)} - p_{\mu(i)}) - \alpha |S| / 3. \]

Let \(N_j^* \) and \(N_j \) be the number of goods of type \(j \) matched in \(\mu^* \) and \(\mu \), respectively, and let \(G \) be the set of overdemanded goods at prices \(p \).
Since each overdemanded good clears except for at most β supply, and since each of the n agents can be matched to at most one good, we know that $|G| \leq n/(s - \beta)$. Since the true supply in OPT is at most s, we also know that $N^*_j - N_j \leq \beta$ for each overdemanded good j. Finally, by definition, underdemanded goods j have price $p_j = 0$. So,

$$\sum_{i \in S} v_iu^*_i - \sum_{i \in S} v_iu_i \leq \sum_{i \in S} p_iu^*_i - \sum_{i \in S} p_iu_i + \alpha|S|/3 = \sum_{j \in G} p_j(N^*_j - N_j) + \alpha|S|/3 \leq \sum_{j \in G} \beta + \alpha|S|/3 \leq \frac{n\beta}{s - \beta} + \alpha|S|/3.$$

If $s \geq 4\beta/\alpha$, the first term is at most $\alpha n/3$. Finally, since all but $\alpha n/3$ of the bidders are matched with goods in S, and their valuations are upper bounded by 1, then

$$\sum_{i} v_iu^*_i - \sum_{i} v_iu_i \leq \alpha n/3 + \alpha|S|/3 + \alpha n/3 \leq \alpha n.$$

Unpacking β from Lemma 17, we get the stated bound on supply.

3.4. Multiplicative approximation to welfare. In certain situations, a slight variant of PMatch (Algorithm 1) can give a multiplicative welfare guarantee. In this section, we will assume that the value of the maximum weight matching OPT is known; it is often possible to privately estimate this quantity to high accuracy. Our algorithm is PMatch with a different halting condition: rather than count the number of unmatched bidders each round, count the number of bids per round. Once this count drops below a certain threshold, halt the algorithm.

More precisely, we use a function CountBids (Algorithm 2) in place of CountUnsatisfied in Algorithm 1.

Algorithm 2 Modified Halting Condition CountBids.

CountBids:

for all bidders i
do
if $\mu(i) \neq \perp$ and $c_{\mu(i)} - d_i \geq s - m$ then
Let $\mu(i) := \emptyset$
if i bid this round then
Feed 1 to counter$_0$.
else Feed 0 to counter$_0$.
if counter$_0$ increases by less than $\frac{\alpha OPT}{4\lambda} - 2E$ then
Halt: For each i with $\mu(i) = \emptyset$, let $\mu(i) = \perp$

Theorem 18. Suppose bidders have valuations $\{v_{ij}\}$ over goods such that

$$\min_{v_{ij} > 0} v_{ij} \geq \lambda.$$

Then Algorithm 1 with

$$T = \frac{24}{\alpha^2}$$
rounds, using stopping condition CountBids (Algorithm 2) in place of CountUnsatisfied and stopped once the total bid counter increases by less than
\[\frac{\alpha \text{OPT}}{2\lambda} - 2E \]
bids in a round, satisfies \(\varepsilon \)-joint differential privacy and outputs a matching that has welfare at least \(O((1 - \alpha/\lambda) \text{OPT}) \), so long as
\[s = \Omega \left(\frac{1}{\alpha^3 \varepsilon} \cdot \text{polylog} \left(\frac{n, k, \frac{1}{\alpha}, \frac{1}{\gamma} \right) \right) \quad \text{and} \quad \text{OPT} = \Omega \left(\frac{\lambda}{\alpha^3 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha}, \frac{1}{\gamma} \right) \right). \]

Proof. Privacy follows exactly like Theorem 11. We first show that at termination, all but \(\alpha \text{OPT}/\lambda \) bidders are matched to an \(\alpha \)-approximate favorite item. The analysis is very similar to Lemma 17. Note that every matched bidder is matched to an \(\alpha \)-approximate favorite good, since it was an exactly favorite good at the time of matching, and the price increases by at most \(\alpha \). Thus, it remains to bound the number of unsatisfied bidders at termination.

Condition on all counters having error bounded by \(E \) at all time steps; by Theorem 7 and a union bound over counters, this happens with probability at least \(1 - \gamma \).

Like above, we write \(s' = s - m \) for the effective supply of each good. Let us first consider the case where the algorithm stops early. If the total bid counter changes by less than \(\frac{\alpha \text{OPT}}{2\lambda} - 2E \), the true number of bids that round is at most
\[Q = \frac{\alpha \text{OPT}}{2\lambda} \]
We will upper bound the number of unsatisfied bidders at the end of the round. Note that the number of unsatisfied bidders at the end of the round is the number of bidders who have been rejected in the current round. Suppose there are \(N \) goods that reject bidders during this round. The total count on these goods must be at least
\[(s' - 2E) \cdot N - Q \]
at the start of the round, since each counter will increase by at most \(2E \) due to error, and there were at most \(Q \) bids this round. By our conditioning, there were at least \(Q \) bids this round. By our conditioning, there were at least
\[(s' - 2E) \cdot N - Q - 2EN \]
bidders matched at the beginning of the round. Since bidders are only matched when their valuation is at least \(\lambda \), and the optimal weight matching is \(\text{OPT} \), at most \(\frac{\text{OPT}}{\lambda} \) bidders can be matched at any time. Hence,
\[N \leq \left(\frac{\text{OPT}}{\lambda} + Q \right) \cdot \frac{1}{s' - 4E}. \]
Then, the total number of bidders rejected this round is at most \(2EN + Q \). Simplifying,
\[2EN + Q \leq \frac{2E}{s' - 4E} \left(\frac{\text{OPT}}{\lambda} + Q \right) + Q \]
\[\leq \left(\frac{6E}{s' - 4E} \right) \left(\frac{\text{OPT}}{\lambda} \right) + \frac{\alpha \text{OPT}}{2\lambda}. \]
To make the first term at most \(\frac{\frac{\alpha}{2}}{\lambda} \), it suffices to take
\[
\frac{6E}{s' - 4E} \leq \frac{\alpha}{2},
\]
\[
s' \geq \frac{12E}{\alpha} + 4E,
\]
\[
s \geq \frac{12E}{\alpha} + 6E + 1,
\]
or \(s \geq 18E/\alpha \). In this case, the algorithm terminates with at most \(\frac{\alpha}{\lambda} \) unsatisfied bidders, as desired.

On the other hand, suppose the algorithm does not terminate early, the bid count increasing by at least \(Q - 2E \) every round. By our conditioning, this means there are at least \(Q - 4E \) bids each round; let us bound the number of possible bids.

Since bidders only bid if they have valuation greater than \(\lambda \) for a good, and since the maximum weight matching has total valuation \(\text{OPT} \), at most \(\text{OPT} / \lambda \) bidders can be matched. Like before, we say goods are underdemanded or overdemanded: they either have final price 0, or positive final price.

There are at most \(\text{OPT} / \lambda \) true bids on the goods of the first type; this is because bidders are never rejected from these goods. Like before, write \(s' = s - m \). Each counter of an overdemanded good shows \(s' \) people matched, so at least \(s' - 2E \) bidders end up matched. Thus, there are at most
\[
\frac{\text{OPT}}{\lambda(s' - 2E)}
\]
overdemanded goods. Each such good takes at most \(s' + 2E \) bids at each of \(1/\alpha \) price levels. Putting these two estimates together, the total number of bids \(B \) is upper bounded by
\[
B \leq \frac{\text{OPT}}{\lambda} \cdot \left(1 + \frac{s' + 2E}{s' - 2E}\right) \leq \frac{6 \text{OPT}}{\lambda \alpha}
\]
if \(s' \geq 4E \), which holds since we are already assuming \(s' \geq 4E + \frac{12E}{\alpha} \). Hence, we know the number of bids is at most
\[
T \cdot (Q - 4E) \leq B \leq \frac{6 \text{OPT}}{\lambda \alpha},
\]
\[
T \leq \frac{6 \text{OPT}}{\lambda} \cdot \left(\frac{2\lambda}{\alpha \text{OPT} - 8\lambda E}\right).
\]
Assuming \(\alpha \text{OPT} \geq 16\lambda E \), we find \(T \leq 24/\alpha^2 \).

With this choice of \(T \), the supply requirement is
\[
s \geq \frac{18E}{\alpha} = \Omega \left(\frac{1}{\alpha^3 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha}, \frac{1}{\gamma} \right)\right).
\]
Likewise, the requirement on \(\text{OPT} \) is
\[
\text{OPT} \geq \frac{16\lambda E}{\alpha} = \Omega \left(\frac{\lambda}{\alpha^3 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha}, \frac{1}{\gamma} \right)\right).
\]

Now, we can follow the analysis from Theorem 12 to bound the welfare. Suppose the algorithm produces a matching \(\mu \), and consider any other matching \(\mu^* \). For each bidder who is matched to an \(\alpha \)-approximate favorite good,
\[
v_{\mu(i)} - p_{\mu(i)} \geq v_{\mu^*(i)} - p_{\mu^*(i)} - \alpha.
\]
Each such bidder is matched to a good with value at least \(\lambda \), so there are at most \(\frac{\text{OPT}}{\lambda} \) such bidders. Summing over these bidders (call them \(S \)),

\[
\sum_{i \in S} v_{i\mu(i)} - p_{\mu(i)} \geq \sum_{i \in S} v_{i\mu^*(i)} - p_{\mu^*(i)} - \frac{\alpha \text{OPT}}{\lambda}.
\]

Letting \(N_j, N_j^* \) be the number of goods of type \(j \) matched in \(\mu, \mu^* \) and rearranging,

\[
\sum_{i \in S} v_{i\mu^*(i)} - v_{i\mu(i)} \leq \sum_{j \in S} p_j(N_j^* - N_j) + \frac{\alpha \text{OPT}}{\lambda}.
\]

Exactly the same as in Theorem 12, each overdemanded good \((p_j > 0) \) clears except for at most \(\beta = 4E + 1 \) supply. Since at most \(\frac{\text{OPT}}{\lambda} \) bidders can be matched, the number of goods with \(p_j > 0 \) is at most

\[
\frac{\text{OPT}}{\lambda(s - \beta)}.
\]

Like before, \(N_j^* - N_j \leq \beta \). Since there are at most \(\frac{\alpha \text{OPT}}{\lambda} \) bidders not in \(S \) and each has valuation in \([0, 1]\), when summing over all bidders,

\[
\sum_{i} v_{i\mu^*(i)} - v_{i\mu(i)} \leq \frac{\text{OPT} \beta}{\lambda(s - \beta)} + \frac{\alpha \text{OPT}}{\lambda} + \frac{\alpha \text{OPT}}{\lambda}.
\]

The first term is at most \(\frac{\alpha \text{OPT}}{\lambda} \) for \(s \geq \beta(1 + 1/\alpha) \), when the algorithm calculates a matching with weight \(O((1 - \alpha/\lambda) \text{OPT}) \). Since \(\beta = 4E + 1 \), this reduces to the supply constraint equation (2).

Remark 19. For a comparison with Theorem 12 and PMatch, consider the “unweighted” case where bidders have valuations in \([0, 1]\) (i.e., \(\lambda = 1 \)). Note that both PMatch and the multiplicative version require the same lower bound on supply. Ignoring log factors, PMatch requires \(n = \tilde{\Omega}(1/\alpha^3\varepsilon) \) for an additive \(\varepsilon \) approximation, while Theorem 18 shows \(\text{OPT} = \tilde{\Omega}(1/\alpha^3\varepsilon) \) is necessary for a multiplicative \(\alpha \), hence additive \(\alpha \text{OPT} \), approximation. Hence, Theorem 18 gives a stronger guarantee if \(\text{OPT} = \tilde{\omega}(n) \) in the unweighted case, ignoring log factors.

4. Extension to gross substitute valuations. While Kelso and Crawford’s algorithm is simplest in the unit demand setting, it can also compute allocations when bidders have gross substitutes valuations. Before we discuss our analogous extension, we will first introduce some notation for gross substitutes valuations. Unlike unit demand valuations, bidders with gross substitute valuations may demand more than one good. Let \(\Omega = 2^G \) denote the space of bundles (i.e., subsets of goods). Like previous sections, let \(k \) be number of types of goods, and let \(s \) be the supply of each type of good. Let \(d \) denote the market size—the total number of goods, including identical goods, so \(d = ks \).

We assume that each bidder has a valuation function on bundles, \(v_i : \Omega \to [0, 1] \), and that this valuation satisfies the gross substitutes condition (Definition 3).

Like before, we simulate \(k \) ascending price auctions in rounds. Bidders now maintain a bundle of goods that they are currently allocated to, and bid on one new good

\[5\text{In general, goods may have different supplies, if } s \text{ denotes the minimum supply of any good. Hence, } d \text{ is not necessarily dependent on } s.\]
each round. For each good in a bidder’s bundle, the bidder keeps track of the count of bids on that good when it was added to the bundle. When the current count ticks past the supply, the bidder knows that they have been outbid.

The main subtlety is in how bidders decide which goods to bid on. Namely, each bidder treats goods in their bundle as fixed in price (i.e., bidders ignore the price increment of at most α that might have occurred after winning the item). Goods outside of their bundle (even if identical to goods in their bundle) are evaluated at the true price. We call these prices the bidder’s effective prices, so each bidder bids on an arbitrary good in his most-preferred bundle at the effective prices. The full algorithm is given in Algorithm 3.

Privacy is very similar to the case for matchings.

Theorem 20. $P\text{Alloc}(\alpha, \rho, \varepsilon)$ satisfies ε-joint differential privacy.

Proof. Essentially the same proof as Theorem 11. \hfill \square

Theorem 21. Let $0 < \alpha < n/d$, and g be the allocation computed by $P\text{Alloc}(\alpha/3, \alpha/3, \varepsilon)$, and let OPT be the optimum max welfare. Then, if $d \geq n$ and

$$s \geq \frac{12E' + 3}{\alpha} = O \left(\frac{1}{\alpha^3 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha}, \frac{1}{\gamma} \right) \right),$$

the allocation g has social welfare at least

$$\sum_{i=1}^{n} v_i(g(i)) \geq \text{OPT} - \alpha d$$

with probability at least $1 - \gamma$, where

$$E' = \frac{360 \sqrt{2}}{\alpha^2 \varepsilon} \left(\frac{90n}{\alpha^2} \right)^{5/2} \left(\frac{4k}{\gamma} \right) + 1.$$

Remark 22. In comparison with Theorem 12, Theorem 21 requires a similar constraint on supply but promises welfare $\text{OPT} - \alpha d$ rather than $\text{OPT} - \alpha n$. Since $\text{OPT} \leq n$ this guarantee is only nontrivial for $\alpha \leq n/d$, so the supply has a polynomial dependence on the total size of the market d. In contrast, Theorem 12 guarantees good welfare when the supply has a logarithmic dependence on the total number of goods in the market.

We note that if bidders demand bundles of size at most b, then we can improve the above welfare bound to $\text{OPT} - \alpha nb$. Note that this is independent of the market size d and smoothly generalizes the matching case where $b = 1$.

Similar to Definition 8, we define an approximate allocation equilibrium as a prerequisite for showing our welfare guarantee.

Definition 23. A price vector $p \in [0,1]^k$ and an assignment $g: [n] \rightarrow \Omega$ of bidders to goods is an (α, β, ρ)-approximate allocation equilibrium if

1. for all but ρd bidders, $v_i(g(i)) - p(g(i)) \geq \max_{\omega \in \Omega} v_i(\omega) - p(\omega) - \alpha |g(i)|$;
2. the number of bidders assigned to any good is at most s; and
3. each overdemanded good clears except for at most β supply.

The following lemmas show that our algorithm finds an approximate allocation equilibrium. We prove the last two requirements first.
Algorithm 3 \text{PAlloc}(\alpha, \rho, \varepsilon)$ (with Gross Substitute Valuations).

\textbf{Input:} Bidders’ gross substitute valuations on the bundles $\{v_i : \Omega \to [0, 1]\}$

\textbf{Initialize:} for bidder i and good j,

$$T = \frac{10}{\alpha \rho}, \quad \varepsilon' = \frac{\varepsilon}{2T}, \quad E = \frac{2\sqrt{2}}{\varepsilon'}(\log nT)^{5/2} \log \left(\frac{4k}{\gamma}\right) + 1, \quad m = 2E + 1,$$

$$\text{counter}_0 = \text{Counter}(\varepsilon', nT), \quad \text{counter}_j = \text{Counter}(\varepsilon', nT), \quad p_j = c_j = 0,$$

$$d_g = 0, \quad g(i) = \{\emptyset\} \text{ for every bidder } i$$

Propose T times; \textbf{Output:} prices p and allocation g.

Propose:

\begin{algorithmic}
\For {all bidders i}
\For {all goods $g \in g(i)$}
\If {$c_{\text{type}}(g) - d_g \geq s - m$}
\State Remove $g(i) := g(i) \setminus g$
\EndIf
\EndFor
\EndFor
\EndFor
\EndFor
\State \text{Let p_0 be the original cost of $g(i)$}.
\State \text{Let $\omega^* \in \arg\max_{\omega \supseteq g(i)} v_i(\omega) - p(\omega \setminus g(i)) - p_0$ arbitrary.}
\State \text{if $v_i(\omega^*) - p(\omega \setminus g(i)) - p_0 \geq v_i(g(i)) - p_0$}
\State \text{let $j \in \omega^* \setminus g(i)$ arbitrary.}
\State \text{Save $d_j := c_{\text{type}}(j)$}
\State \text{Add $g(i) := g(i) \cup j$ and Bid(e_j)}
\State \text{else Bid(0)}
\EndFor
\State COUNT\text{Unsatisfied}
\For {all bidders i}
\If {i wants continue bidding}
\State Feed 1 to counter$_0$.
\Else Feed 0 to counter$_0$.
\EndIf
\EndFor
\State \text{if counter$_0$ increases by less than $\rho d - 2E$ then}
\State \text{Halt and output μ.}
\EndFor
\end{algorithmic}

\textbf{Lemma 24.} Assume all counters have error at most E throughout the run of \text{PAlloc}(\alpha, \rho, \varepsilon)$. Then, the number of bidders assigned to any good is at most s and each overdemanded good clears except for at most β supply, where

$$\beta = 4E + 1 = O \left(\frac{1}{\alpha \rho \varepsilon} \cdot \text{polylog} \left(\frac{n, k, 1}{\alpha, \rho, \varepsilon}\right)\right).$$

\textbf{Proof.} Consider any good j. If it is underdemanded, the counter corresponding to j never rise above $s - m$. Hence by our conditioning, at most $s - m + E < s$ bidders are
assigned to \(j \). If \(j \) is overdemanded, the same reasoning as in Lemma 17 shows that
the number of bidders matched to \(j \) lies in the range \([s - m - 2E, s - m + 2E + 1]\). By the
choice of \(m \), the upper bound is at most \(s \). Likewise, at least \(s - m + E = s - (4E + 1) \)
bidders are assigned to \(j \). Setting \(\beta = 4E + 1 \) gives the desired bound.

Lemma 25. We call a bidder who wants to bid more unsatisfied; otherwise, a bidder is satisfied. At termination of \(\text{PAlloc}(\alpha, \rho, \varepsilon) \), all satisfied bidders are matched
to a bundle \(g(i) \) that is an \(\alpha \cdot |g(i)| \)-most-preferred bundle.

Proof. We first show that a bidder’s bundle \(g(i) \) remains a subset of their most-preferred bundle at the effective prices, i.e., with prices of goods in \(g(i) \) set to their price at time of assignment, and all other goods taking current prices.

This claim follows by induction on the number of time steps (ranging from 1 to \(nT \)). The base case is clear. Now, assume that the claim holds up to time \(t \). There are three possible cases:

1. If the price of a good outside \(g(i) \) is increased, \(g(i) \) remains part of a most-preferred bundle by the gross substitutes condition.
2. If the price of a good in \(g(i) \) is increased, some goods may be removed from the bundle leading to a new bundle \(g'(i) \). The only goods that experience an effective price increase lie outside of \(g'(i) \), so \(g'(i) \) remains a subset of a most-preferred bundle at the effective prices.
3. If a bidder adds to their bundle, \(g(i) \) is a subset of the most-preferred bundle by definition.

Hence, a bidder becomes satisfied precisely when \(g(i) \) is equal to the most-preferred bundle at the effective prices. The true price is at most \(\alpha \) more than the effective price, so the bidder must have an \(\alpha |g(i)| \)-most-preferred bundle at the true prices.

Lemma 26. Suppose all counters have error at most \(E \) throughout the run of \(\text{PAlloc}(\alpha, \rho, \varepsilon) \). Then at termination, all but \(\rho d \) bidders are satisfied if

\[
 n \leq d \quad \text{and} \quad d \geq \frac{8E}{\rho} = \Omega \left(\frac{1}{\alpha \rho^2 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha}, \frac{1}{\rho}, \frac{1}{\gamma} \right) \right).
\]

Proof. Note that as long as the algorithm does not halt, at least \(\rho d - 4E \) bidders are unsatisfied at the beginning of the round. They may not actually bid when their turn comes, because the prices may have changed. Let the number of bids among all bidders be \(B \), and suppose we run for \(R \) rounds. We expect at least \(\rho d - 4E \) bids per round, so \(R(\rho d - 4E) - B \) is a lower bound on the number of times a bidder is unsatisfied but fails to bid.

In the matching case, if a bidder is unsatisfied at the beginning of the round but fails to bid during their turn, this must be because the prices have risen too high. Since prices are monotonic increasing, such a bidder will never be unsatisfied again.

In contrast, the gross substitutes case is slightly more subtle. Bidders who are unsatisfied at the beginning of a round and don’t bid on their turn may later become unsatisfied again. Clearly, this happens only when the bidder loses at least one good after they decline to bid: if they don’t lose any goods, then the prices can only increase after they decline to bid. Thus, they will have no inclination to bid in the future.

There are at most \(n \) cases of the bidder dropping out entirely. Thus, the number of times bidders report wanting to reenter the bidding is at least \(R(\rho d - 4E) - n - B \). Since a bidder loses at least one good each time they reenter, the number of reentries is at most the number of bids \(B \). Hence, the number of bids in \(R \) rounds is at least

\[
 B \geq \frac{R(\rho d - 4E) - n}{2}.
\]
Now, let \(s' = s - m = s - (2E + 1) \) be the effective supply and consider how many bids are possible. Each of the \(k \) types of goods will accept at most \(s' + 2E = s + 1 \) bids at each of \(1/\alpha \) price levels, so there are at most \(k(s + 1)/\alpha = (d + k)/\alpha \) possible bids. Setting the left side of (3) equal to \((d + k)/\alpha\), we find

\[
R \leq \frac{1}{\alpha} \left(\frac{2(d + k) + \alpha n}{\rho d - 4E} \right) := T_0,
\]

so taking \(T \geq T_0 \) suffices to ensure that the algorithm halts with no more than \(\rho d \) bidders unsatisfied. Assuming \(\rho d \geq 8E \) and \(d \geq n \),

\[
T_0 \leq \frac{10d}{\alpha \rho d} = \frac{10}{\alpha \rho} = T.
\]

The requirement on \(n \) and \(d \) is then

\[
d \geq \frac{8E}{\rho} = \Omega \left(\frac{1}{\alpha \rho^2 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha \rho}, \frac{1}{\gamma} \right) \right) \quad \text{and} \quad n \leq d,
\]

as desired.

Lemma 27. With probability at least \(1 - \gamma \), \(\text{PAloc}(\alpha, \rho, \varepsilon) \) computes an \((\alpha, \beta, \rho)\)-approximate allocation equilibrium where

\[
\beta = O \left(\frac{1}{\alpha \rho \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha \rho}, \frac{1}{\gamma} \right) \right),
\]

so long as

\[
d \geq \frac{8E}{\rho} = \Omega \left(\frac{1}{\alpha \rho^2 \varepsilon} \cdot \text{polylog} \left(n, k, \frac{1}{\alpha \rho}, \frac{1}{\gamma} \right) \right) \quad \text{and} \quad n \leq d.
\]

Proof. Condition on the error for each counter being at most \(E \) throughout the run of the algorithm. By Theorem 7, this holds for any single counter with probability at least \(1 - \gamma/2k \). By a union bound, this holds for all counters with probability at least \(1 - \gamma \). The theorem follows by Lemmas 24 to 26. \(\square \)

Now, it is straightforward to prove the welfare theorem (Theorem 21).

Proof. The proof follows the matching case (Theorem 12) closely. By Lemma 27, \((g, p)\) is an \((\alpha/3, \beta, \alpha/3)\)-approximate allocation equilibrium, where \(\beta = 4E' + 1 \). Then all but \(\alpha d/3 \) bidders are satisfied and get a bundle \(g(i) \) that is \(\alpha|g(i)| \) optimal; let this set of bidders be \(B \). Note that \(\sum_{i \in B} |g(i)| \leq d. \) Let \(g^* \) be any other allocation. Then,

\[
\sum_{i \in B} v_i(g(i)) - p(g(i)) \geq \sum_{i \in B} v_i(g^*(i)) - p(g^*(i)) - \frac{\alpha}{3} |g(i)|,
\]

\[
\sum_{i \in B} v_i(g^*(i)) - v_i(g(i)) \leq \sum_{i \in B} p(g^*(i)) - p(g(i)) + \alpha d/3 = \sum_{j \in G} p_j(N^*_j - N_j) + \alpha d/3,
\]

where \(N_j \) is the number of good \(j \) sold in \(g \) and \(N^*_j \) is the number of good \(j \) sold in \(g^* \). If \(p_j > 0 \), we know \(N_j \geq s - \beta \), hence \(N^*_j - N_j \leq \beta \leq \alpha s/3 \). Since \(p_j \leq 1 \) for each good \(j \), we have

\[
\sum_{j \in G} p_j(N^*_j - N_j) \leq \sum_j p_j(N^*_j - N_j) \leq \alpha \sum_j s = \alpha d/3.
\]
Furthermore, at most $\alpha d/3$ bidders are left unsatisfied in the end; these bidders contribute at most $\alpha d/3$ welfare to the optimal matching since valuations are bounded by 1. Putting it all together,

$$\sum_i v_i(g^*(i)) - v_i(g(i)) \leq \alpha d/3 + \alpha d/3 + \alpha d/3 = \alpha d.$$

The stated supply bound follows directly from Lemma 27.

5.Lower bounds.

Our lower bounds all reduce to a basic database reconstruction lower bound for differential privacy.

Theorem 28. Let mechanism $M: \{0,1\}^n \rightarrow \{0,1\}^n$ be (ε,δ)-differentially private, and suppose that for all databases D, with probability at least $1-\beta$, $\|M(D) - D\|_1 \leq \alpha n$. Then,

$$\alpha \geq 1 - \frac{e^\varepsilon + \delta}{(1 + e^\varepsilon)(1 - \beta)} := \theta(\varepsilon,\delta,\beta).$$

In other words, no (ε,δ)-private mechanism can reconstruct more than a fixed constant fraction of its input database. For ε,δ,β small, $\theta(\varepsilon,\delta,\beta) \sim 1/2$. Informally, this theorem states that a private reconstruction mechanism can’t do much better than guessing a random database. Note that this holds even if the adversary doesn’t know which fraction was correctly reconstructed. This theorem is folklore; a proof can be found in Appendix B.

Our lower bounds will all be proved using the following pattern.

- First, we describe how to convert a database $D \in \{0,1\}^n$ to a market, by specifying the bidders, the goods, and the valuations $v_{ij} \in [0,1]$ on goods.
- Next, we analyze how these valuations change when a single bit in D is changed. This will control how private the matching algorithm is with respect to the original database, when applied to this market.
- Finally, we show how to output a database guess \hat{D} from the matching produced by the private matching algorithm.

This composition of three steps will be a private function from $\{0,1\}^n \rightarrow \{0,1\}^n$, so we can apply Theorem 28 to lower bound the error, implying a lower bound on the error of the matching algorithm.

5.1. Standard differential privacy. Note that Algorithm 1 produces market clearing prices under standard differential privacy. We will first show that this is not possible if each good has unit supply. Recall that prices correspond to an (α,β,ρ)-approximate matching equilibrium if all but ρ bidders can be allocated to a good such that their utility is within α of their favorite good (Definition 8). We will ignore the β parameter, which controls how many goods are left unsold.

Theorem 29. Let n bidders have valuations $v_{ij} \in [0,1]$ for n goods. Suppose that mechanism M is (ε,δ)-differentially private, and calculates prices corresponding to an (α,β,ρ)-approximate matching equilibrium for $\alpha < 1/2$ and some β with probability $1 - \gamma$. Then,

$$\rho \geq \frac{1}{2}\theta(2\varepsilon, \delta(1 + e^\varepsilon), \gamma).$$

Note that this is independent of α.

Proof. Let $D \in \{0,1\}^{n/2}$ be a private database and construct the following market. For each bit i we construct the following gadget, consisting of two goods $0_i, 1_i$
and two bidders, $b_i, \overline{b_i}$. Both bidders have valuation D_i for good 1_i, $1 - D_i$ for good 0_i, and valuation 0 for the other goods. Evidently, there are n bidders and n goods.

Note that changing a bit i in D changes the valuation of exactly two bidders in the market: b_i and $\overline{b_i}$. Therefore, mechanism M is $(2\varepsilon, \delta(1+e^\varepsilon))$-differentially private with respect to D. Let the prices be p_{0i}, p_{1i}. To guess the database \hat{D}, we let $\hat{D}_i = 1$ if $p_{1i} > 1/2$, otherwise $\hat{D}_i = 0$.

By assumption, M produces prices corresponding to an (α, β, ρ)-approximate matching equilibrium with probability $1 - \gamma$. We do not have access to the matching, but we know the prices must correspond to some matching μ. Then, for all but ρn gadgets, μ matches both bidders to their α-approximate favorite good and both goods are matched to bidders who receive α-approximate favorite goods.

Consider such a gadget i. We will show that exactly one of p_{0i} or p_{1i} is greater than $1/2$, and this expensive good corresponds to bit D_i. Consider one of the bidders in this gadget, and suppose she prefers good g_+ with price p_+, while she received good g_- with price p_-. Since she receives an α-approximate favorite good,

$$(1 - p_+) - (0 - p_-) < \alpha, \quad \text{so} \quad p_+ - p_- > 1 - \alpha > 1/2.$$

So $p_+ > 1/2$ and $p_- < 1/2$. Note that good g_+ is in the gadget, while good g_- may not be. So, one of the goods in the gadget has price strictly greater than $1/2$.

The other good in the gadget is an α-approximate favorite good for some bidder. All bidders have valuation 0 for the good, hence its price must be strictly less than $1/2$.

Thus, the reconstruction procedure will correctly produce a bit for each such gadget, and so will miss at most ρn bits with probability at least $1 - \gamma$. The combined reconstruction algorithm is a map from $\{0,1\}^{n/2} \rightarrow \{0,1\}^{n/2}$, and $(2\varepsilon, \delta(1+e^\varepsilon))$-differentially private. By Theorem 28,

$$2\rho \geq \theta(2\varepsilon, \delta(1+e^\varepsilon), \gamma).$$

5.2. Separation between standard and joint differential privacy

While we can compute an approximate maximum-weight matching under joint privacy when the supply of each good is large (Lemma 17), this is not possible under standard differential privacy even with infinite supply.

Theorem 30. Let n bidders have valuations $v_{ij} \in \{0,1\}$ for 2 goods with infinite supply. Suppose that mechanism M is (ε, δ)-differentially private, and computes a matching with weight at least $\text{OPT} - \alpha n$ with probability $1 - \gamma$. Then,

$$\alpha \geq \theta(\varepsilon, \delta, \gamma).$$

Proof. Let $D \in \{0,1\}^n$. We assume two goods, 0 and 1. We have one bidder b_i for each bit $i \in [n]$, who has valuation D_i for 1, and valuation $1 - D_i$ for 0. Since changing a bit changes a single bidder’s valuation, applying M to this market is (ε, δ)-private with respect to D. To guess the database \hat{D}, we let \hat{D}_i be 0 if b_i is matched to 0, 1 if b_i is matched to 1, and arbitrary otherwise.

Note that the maximum welfare matching assigns each b_i the good corresponding to D_i, and achieves social welfare $\text{OPT} = n$. If M computes a matching with welfare $\text{OPT} - \alpha n$, it must give all but an α fraction of bidders b_i the good corresponding to D_i. So, the reconstructed database will miss at most αn bits with probability $1 - \gamma$, and by Theorem 28,

$$\alpha \geq \theta(\varepsilon, \delta, \gamma).$$
Note that this gives a separation: under joint differential privacy, Algorithm 1 can release a matching with welfare $\text{OPT} - \alpha n$ for any α, provided supply s is large enough (by Theorem 12), while this is not possible under standard differential privacy even with infinite supply.

5.3. Joint differential privacy. Finally, we show that a large supply assumption is necessary in order to compute an additive α maximum welfare matching under joint differential privacy.

Theorem 31. Let n bidders have valuations $v_{ij} \in [0, 1]$ for k types of goods with supply s each. Suppose mechanism \mathcal{M} is (ε, δ)-joint differentially private for $\varepsilon, \delta < 0.1$, and calculates a matching with welfare at least $\text{OPT} - \alpha n$ with probability $1 - \gamma$ for $\gamma < 0.01$, and all n, k, s. Then, $s = \Omega(\sqrt{1/\alpha})$.

Proof. Let $k = n/(s + 1)$. Given a private database $D \in \{0, 1\}^k$, construct the following market. For each bit i, we construct a gadget with two goods $0_i, 1_i$, each with supply s. Each gadget has a distinguished bidder b_i and s identical bidders, all labeled h_i. Let bidder b_i, who we call the real bidder, have valuation D_i for 1_i, and $1 - D_i$ for 0_i. Bidders h_i, which we call the spy bidders, all have the same valuation: $\eta = \frac{1}{2s}$ for 0_i, or 1_i drawn at random, and 0 for all other goods (in and out of the gadget). We say a bidder prefers a good if they have positive valuation for the good.

Note that changing a bit in D changes a single bidder’s valuation. Also note that the spy bidders’ valuations do not depend on D. Hence, by joint differential privacy of \mathcal{M}, the function that maps the above market through \mathcal{M} to the allocation of just the spy bidders is (ε, δ)-differentially private with respect to an entry change in D.

We will describe how to guess \hat{D} based on just the spy bidders’ joint view, i.e., the goods they are assigned. This reconstruction procedure will then be (ε, δ)-differentially private, and we can apply Theorem 28 to lower bound the error of \hat{D}.

For every bit $i \in [k]$, let \hat{D}_i be 1 if the spy bidders in gadget i are all assigned to 0_i, 0 if the spy bidders in gadget i are all assigned to 1_i, and uniformly random otherwise.

We’ll say that a gadget agrees if the spy bidders and real bidder prefer the same good. Gadgets that don’t agree, disagree. Let w be the number of gadgets that agree. By construction, gadgets agree independently with probability $1/2$ each. Hence, Hoeffding’s inequality gives

$$\Pr \left[\left| w - \frac{k}{2} \right| \leq \lambda k \right] \geq 1 - 2 \exp(-2\lambda^2 k)$$

for some λ to be specified later; condition on this event. With probability at least $1 - \gamma$, mechanism \mathcal{M} computes a matching with welfare at least $\text{OPT} - \alpha n$; condition on this event as well. Note that the optimum welfare is $1 + (s - 1)\eta$ for gadgets that agree, and $1 + s\eta$ for gadgets that disagree, hence, $\text{OPT} = w(1 + (s - 1)\eta) + (k - w)(1 + s\eta)$ in total.

For each gadget, there are several possible allocations. Intuitively, an assignment gives social welfare, but may also lead to a bit being reconstructed. Let $RB(\mu) = \| D - \hat{D} \|_1$ be the error of the reconstruction when the matching is μ. We’ll argue that any matching μ with nearly optimal social welfare must result in large expected reconstruction $\mathbb{E}[RB(\mu)]$. By linearity,

$$\mathbb{E}[RB(\mu)] = \sum_{i \in [k]} \Pr \left[D_i = \hat{D}_i \right],$$

so it suffices to focus on one gadget at a time.
First, suppose the gadget i agrees. The matching μ can give the preferred good to the bidder, the spies, or neither. If the preferred good goes to the bidder, this gives at most $1 + (s - 1)\eta$ social welfare. Not all the spies get the same good, so
\[\Pr \left[D_i = \hat{D}_i \right] = \frac{1}{2}. \]
If the preferred good goes to the spies, then this contributes $s\eta$ to social welfare, and
\[\Pr \left[D_i = \hat{D}_i \right] = 0. \]
Note that it doesn’t matter whether the bidder is assigned in μ, since the social welfare is unchanged and the reconstruction algorithm doesn’t have access to the bidder’s allocation. There are other possible allocations, but they are dominated by these two choices since they get less social welfare for higher reconstruction probability.

Now, suppose gadget i disagrees. There are several possible allocations. First, both the bidder and the spies may get their favorite good. This gives $1 + s\eta$ welfare, and
\[\Pr \left[D_i = \hat{D}_i \right] = 1. \]
Second, the bidder may be assigned their favorite good, and at most $s - 1$ spies may be assigned their favorite good. This leads to $1 + (s - 1)\eta$ welfare, with
\[\Pr \left[D_i = \hat{D}_i \right] = \frac{1}{2}. \]
Again, there are other possible allocations, but they lead to less social welfare or higher reconstruction probability. We say the four allocations above are optimal.

Let a_1, a_2 be the fractions of agreeing gadgets with the two optimal agreeing allocations, and d_1, d_2 be the fractions of disagreeing gadgets with the two optimal disagreeing allocations. Let t be the fraction of agreeing pairs. The following linear program minimizes $(1/k)\mathbb{E}[RB(\mu)]$ over all matchings μ achieving an α-approximate maximum welfare matching for supply s:

\[
LP_s := \text{minimize: } \frac{1}{2} a_1 + d_1 + \frac{1}{2} d_2 \\
\text{such that: } a_1 + a_2 \leq t, \\
\frac{1}{2} - \lambda \leq t \leq \frac{1}{2} + \lambda, \\
(1 + (s - 1)\eta)a_1 + s\eta a_2 + (1 + s\eta)d_1 + (1 + (s - 1)\eta)d_2 \\
\geq t(1 + (s - 1)\eta) + (1 - t)(1 + s\eta) - \frac{\alpha n}{k}.
\]

The last constraint is the welfare requirement, the second to last constraint is from conditioning on the number of agreeing gadgets, and the objective is $(1/k)\mathbb{E}[RB(\mu)]$.

Plugging in $\eta = \frac{1}{4s}, \lambda = 1/128, \alpha = \frac{k}{160ns}$, and solving, we find
\[(a_1, a_2, d_1, d_2, t) = \left(\frac{65}{128}, 0, \frac{31}{128}, \frac{1}{4}, \frac{65}{128} \right) \]
is a feasible solution for all s with objective $\alpha' = 159/256$. To show that this is...
optimal, consider the dual problem

\[\text{DUAL}_s := \text{maximize:} \quad -\rho_2 + \left(\frac{1}{2} - \lambda \right) \rho_3 - \left(\frac{1}{2} + \lambda \right) \rho_4 + \left(1 + s\eta - \frac{\alpha n}{k} \right) \rho_5 \]

such that:

\[-\rho_1 + (1 + (s - 1)\eta)\rho_5 \leq \frac{1}{2}, \]

\[-\rho_1 + s\eta\rho_5 \leq 0, \]

\[-\rho_2 + (1 + s\eta)\rho_5 \leq 1, \]

\[-\rho_2 + (1 + (s - 1)\eta)\rho_5 \leq \frac{1}{2}, \]

\[\rho_1 - \rho_2 + \rho_3 - \rho_4 + \eta\rho_5 \leq 0. \]

We can directly verify that

\[(\rho_1, \rho_2, \rho_3, \rho_4, \rho_5) = \left(\frac{5}{2}s - 1, \frac{5}{2}s - 1, 0, \frac{1}{2}, 2s \right) \]

is a dual feasible solution with objective \(\alpha' = 159/256 \).

We know that \(M \) calculates an additive \(\alpha \)-approximate maximum welfare matching. While the allocations to each gadget may not be an optimal allocation, suboptimal allocations all have less social welfare and larger \(RB \). So, we know the objective of \(LP_m \) is a lower bound for \(RB(M) \).

Thus, \(\mathbb{E}[RB(M)] \geq k\alpha' \) for any supply \(s \). Since \(RB \) is the sum of \(k \) independent, 0/1 random variables, another Hoeffding bound yields

\[\Pr\left[\frac{RB(M)}{k} \geq \alpha' - \lambda' \right] \geq 1 - 2 \exp(-2\lambda'^2 k). \]

Set \(\lambda' = 1/256 \), and condition on this event. All together, any matching mechanism \(M \) which finds a matching with weight at least \(\text{OPT} - \alpha n \) failing with at most \(\gamma \) probability gives an \((\varepsilon, \delta)\)-private mechanism mapping \(D \) to \(\hat{D} \) such that

\[\frac{1}{k} \cdot \|D - \hat{D}\|_1 \geq \alpha' - \lambda' = 79/128 \]

with probability at least \(1 - \gamma - 2 \exp(-2\lambda'^2 k) - 2 \exp(-2\lambda'^2 k) \).

For \(\varepsilon, \delta < 0.1 \) and \(\gamma < 0.01 \), this contradicts Theorem 28 for large \(k \). Note that the failure probability and accuracy do not depend directly on \(s \) since \(\lambda, \lambda', \alpha' \) are constants. Hence

\[\alpha \gg \frac{k}{16ns} = \frac{1}{16s(s + 1)} \]

uniformly for all \(s \), and \(s = \Omega(\sqrt{1/\alpha}) \) as desired.

6. Conclusion and open problems. In this paper we gave algorithms to accurately solve the private allocation problem when bidders have gross substitute valuations, achieving joint differential privacy when the supply of each good is growing at least logarithmically in the number of agents. Our results are qualitatively tight: it is not possible to strengthen our approach to standard differential privacy (from joint differential privacy), nor is it possible to solve even max-matching problems to nontrivial accuracy under joint differential privacy with constant supply. Moreover, it is not clear how to extend our approach to more general valuations: our algorithm fundamentally relies on computing Walrasian equilibrium prices for the underlying
market, and such prices are not guaranteed to exist for valuation functions beyond
the gross substitutes class. This does not mean that the allocation problem cannot
be solved for more general valuation functions—rather, new ideas seem to be needed.

Along with Kearns et al. (2014) and other works in the joint privacy model, our
work adds compelling evidence that substantially more is possible under the relaxation
of joint differential privacy compared to the standard notion of differential privacy.
For both the allocation problem studied here, and the equilibrium computation prob-
lem studied in Kearns et al. (2014), nontrivial results are impossible under differential
privacy while strong results can be derived under joint differential privacy. Character-
izing the power of joint differential privacy, compared to standard differential privacy,
is a fascinating direction for future work.

More specifically, in this paper we achieved joint differential privacy via the bill-
board lemma: we showed that the allocation given to each player can be derived as a
deterministic function only of (1) a differentially private message revealed to all play-
ers, and (2) their own private data. However, this isn’t necessarily the only way to
achieve joint differential privacy. How much further does the power of joint differential
privacy extend beyond the billboard model?

Appendix A. Privacy analysis for counters. Chan, Shi, and Song (2011) show that Counter(ε, T) is ε-differentially private with respect to single changes in
the input stream, when the stream is generated nonadaptively. For our application
we require privacy to hold for a large number of streams whose joint sensitivity can
nevertheless be bounded, and whose entries can be chosen adaptively. To show that
Counter is also private in this setting (when ε is set appropriately), we first introduce
some differential privacy notions.

We will make use of a basic differentially private mechanism originally due to
Dwork et al. (2006).

Theorem 32 (Dwork et al. (2006)). For a function $f : \mathcal{D} \to \mathbb{R}$, let
$$
\Delta_1 = \max_{D, D' \in \mathcal{D}} \frac{|f(D) - f(D')|}{|\{i : D_i \neq D'_i\}|}
$$
denote the ℓ_1 sensitivity of f. Then the Laplace mechanism which on input D
outputs $f(D) + \text{Lap}(\Delta_1/\varepsilon)$ is ε-differentially private. Here, \text{Lap}(b)
denotes a random variable drawn from the Laplace distribution with parameter b.

A.1. Composition. An important property of differential privacy is that it de-
grades gracefully when private mechanisms are composed together, even adaptively.
We recall the definition of an adaptive composition experiment (Dwork, Rothblum,
and Vadhan, 2010b).

Definition 33 (adaptive composition experiment).
- Fix a bit $b \in \{0, 1\}$ and a class of mechanisms \mathcal{M}.
- For $t = 1 \ldots T$:
 - The adversary selects databases $D^{t,0}, D^{t,1}$ and a mechanism $\mathcal{M}_t \in \mathcal{M}$.
 - The adversary receives $y_t = \mathcal{M}_t(D^{t,b})$

The output of an adaptive composition experiment is the view of the adversary over
the course of the experiment. The experiment is said to be ε-differentially private if
$$
\max_{S \subseteq \mathbb{R}} \frac{\Pr[V^0 \in S]}{\Pr[V^1 \in S]} \leq \exp(\varepsilon),
$$
where V^0 is the view of the adversary with $b = 0$, V^1 is the view of the adversary with $b = 1$, and R is the range of outputs.

Any algorithm that can be described as an instance of this adaptive composition experiment for some adversary is said to be an instance of the class of mechanisms \mathcal{M} under *adaptive T-fold composition*. We now state a straightforward consequence of a composition theorem by Dwork, Rothblum, and Vadhan (2010b).

Lemma 34 (Dwork, Rothblum, and Vadhan (2010b)). Let $\Delta_1 \geq 0$. The class of ε_{Δ_1}-private mechanisms satisfies ε-differential privacy under adaptive composition if the adversary always selects databases satisfying

$$\sum_{t=1}^{T} |D^{t,0} - D^{t,1}| \leq \Delta_1.$$

In other words, the privacy parameter of each mechanism should be calibrated for the total distance between the databases over the whole composition (the ℓ_1 sensitivity).

A.2. Binary mechanism. We reproduce the binary mechanism here in order to refer to its internal workings in our privacy proof. First, it is worth explaining the intuition of the Counter. Given a bit stream $\sigma: [T] \rightarrow \{0, 1\}$, the algorithm releases the counts $\sum_{i=1}^{t} \sigma(i)$ for each t by maintaining a set of partial sums $\sum[i,j] := \sum_{t=1}^{j} \sigma(t)$. More precisely, each partial sum has the form $\sum[2^i + 1, 2^i + 2^{i-1}]$, corresponding to powers of 2.

In this way, we can calculate the count $\sum_{i=1}^{t} \sigma(i)$ by summing at most $\log t$ partial sums: let $i_1 < i_2 \cdots < i_m$ be the indices of nonzero bits in the binary representation of t, so that

$$\sum_{i=1}^{t} \sigma(i) = \sum[1, 2^{i_m}] + \sum[2^{i_m} + 1, 2^{i_m} + 2^{i_{m-1}}] + \cdots + \sum[t - 2^{i_1} + 1, t].$$

Therefore, we can view the algorithm as releasing partial sums of different ranges at each time step t and computing the counts is simply a postprocessing of the partial sums. The core algorithm is presented in Algorithm 4.

Algorithm 4 Counter(ε, T).

- **Input:** A stream $\sigma \in \{0, 1\}^T$
- **Output:** $B(t)$ as estimate for $\sum_{i=1}^{t} \sigma(i)$ for each time $t \in [T]$

 for all $t \in [T]$ do

 Express $t = \sum_{j=0}^{\log t} 2^{\text{Bin}_j(t)}$.

 Let $i \leftarrow \min_j \{\text{Bin}_j(t) \neq 0\}$

 $a_i \leftarrow \sum_{j<i} \text{Bin}_j(t) + \sigma(t)$, ($a_i = \sum[t - 2^i + 1, t]$)

 for $0 \leq j \leq i - 1$ do

 Let $a_j \leftarrow 0$ and $\hat{a}_j \leftarrow 0$

 Let $\hat{a}_j = a_j + \text{Lap}(\log(T)/\varepsilon)$

 Let $B(t) = \sum_{i: \text{Bin}_i(t) \neq 0} \hat{a}_i$
A.3. Counter privacy under adaptive composition. We can now show that the prices released by our mechanism satisfy ε-differential privacy.

Theorem 10. The sequence of prices and counts of unsatisfied bidders released by $\text{PMatch}(\alpha, \rho, \varepsilon)$ satisfies ε-differential privacy.

Proof. Chan, Shi, and Song (2011) show this for a single sensitivity 1 counter for a nonadaptively chosen stream. We here show the generalization to multiple counters running on adaptively chosen streams with bounded ℓ_1 sensitivity, and bound the ℓ_1 sensitivity of the set of streams produced by our algorithm. We will actually show that the sequence of noisy partial sums released by Counter satisfy ε-differential privacy. This is only stronger: the running counts are computed as a function of these noisy partial sums.

To do so, we first define an adversary for the adaptive composition experiment (Definition 33) and then show that the view of this adversary is precisely the sequence of noisy partial sums. The composition theorem (Lemma 34) will then show that the sequence of noisy partial sums released by Counter satisfy ε-differential privacy. This is only stronger: the running counts are computed as a function of these noisy partial sums.

Let the two runs $b = 0, 1$ correspond to any two neighboring valuations $(v_i, v_{i - 1})$ and $(v_i', v_{i - 1})$ that differ only in bidder i’s valuation. We first analyze the view on all of the counter (j) for $j = 1, \ldots, k$.

The adversary will operate in phases. There are two kinds of phases, which we label P_t and P_t': one phase per step of the good counters, and one phase per step of the halting condition counter. Both counters run from time 1 to nT, so there are $2nT$ phases in total.

At each point in time, the adversary maintains histories $\{b_t\}$, $\{b'_t\}$ of all the bids prior to the current phase and histories $\{e_t\}$, $\{e'_t\}$ of all prior reports to the halting counter 0, when bidder i has valuation v_i, v'_i, respectively.

Let us consider the first kind of phase. One bidder bids per step of the counter, so one bidder bids in each of these phases. Each step of the experiment the adversary will observe a partial sum. Suppose the adversary is in phase P_t. Having observed the previous partial sums, the adversary can simulate the action of the current bidder q from the histories of previous bids by first computing the prices indicated by the previous partial sums. The adversary will compute q’s bid when the valuations are $(v_i, v_{i - 1})$, and when the valuations are $(v'_i, v_{i - 1})$. Call these two bids b_i, b'_i (which may be \bot if q is already matched in one or both of the histories).

Note that for bidders $q \neq i$, it is always the case that $b_i = b'_i$. This holds by induction: it is clearly true when no one has bid, and bidder q’s decision depends only on her past bids, the prices, and her valuation. Since these are all independent of bidder i’s valuation, bidder q behaves identically.

After the adversary calculates b_i, b'_i, the adversary simulates update and release of the counters. More precisely, the adversary spends phase P_t requesting a set of partial sums

$$\Sigma = \{\sigma_j^I \mid j \in [k], I \in S_t\},$$

where $S_t \subseteq [1, nT]$ is a set of intervals ending at t, corresponding to partial sums that Counter releases at step t.

For each $\sigma^I_j \in \Sigma$, $D^0_t, D^1_t \in \{0, 1\}^I$ are defined by

$$D^0_k = \begin{cases} 1 & \text{if } b_k = j, \\ 0 & \text{otherwise} \end{cases}$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
and similarly for D^1, with bid history $\{b'_i\}$. Informally, a database D for σ^j_i encodes whether a bidder bid on good j at every time step in I. The adversary will define \mathcal{M} to sum the bits in the database and add noise $\text{Lap}(1/\epsilon_0)$, an ϵ_0-differentially private operation. Once the partial sums for P_I are released, the adversary advances to the next phase.

Now, suppose the adversary is in the second kind of phase, say P'_I. This corresponds to a step of the halting condition counter. We use exactly the same construction as above: the adversary will request the partial sums corresponding to each time step. The adversary will simulate each bidder’s action by examining the history of bids and prices. Now suppose the two runs differ in bidder i’s valuation. Following the same analysis, the reports to this halting condition counter differ only in bidder i’s reports.

We apply Lemma 34 by bounding the distance between the databases for counter(1) to counter(k). Note that the sequence of databases $\{D^0\}, \{D^1\}$ chosen correspond to streams of bids that differ only in bidder i’s bid, or streams of reports to counter(0) that differ only in bidder i’s report. This is because the bid histories $\{b_i\}, \{b'_i\}$ and report histories $\{r_i\}, \{r'_i\}$ differ only on time steps where i acts. Thus, it suffices to focus on bidder i when bounding the distance between these databases.

Consider a single good j, and suppose c_j of i’s bids on good j differ between the histories. Each of bidder i’s bids on good j show up in $\log(nT)$ databases, so
\[
\sum |D^0_j - D^1_j| \leq c_j \log nT,
\]
where the sum is taken over all databases corresponding to good j. The same is true for the halting condition counter: if there are ϵ_0 reports that differ between the histories, then
\[
\sum |D^0_0 - D^1_0| \leq \epsilon_0 \log nT.
\]

Since we know that a bidder can bid at most T times over T proposing rounds, and will report at most T times, we have ℓ_1 sensitivity bounded by
\[
\Delta_1 \leq \epsilon_0 \log nT + \sum_j c_j \log nT \leq 2T \log nT.
\]

By Lemma 34, setting
\[
\epsilon_0 = \frac{\epsilon}{2T \log nT}
\]
suffices for ϵ-differential privacy, and this is precisely running each Counter with privacy level $\epsilon' = \frac{\epsilon}{2T}$.

Appendix B. Reconstruction lower bound. Here, we detail a basic lower bound about differential privacy. Intuitively, it is impossible for an adversary to recover a database better than random guessing from observing the output of a private mechanism. The theorem is folklore.

Theorem 28. Let mechanism $\mathcal{M} : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be (ϵ, δ)-differentially private, and suppose that for all databases D, with probability at least $1 - \beta$, $\|\mathcal{M}(D) - D\|_1 \leq \alpha n$. Then,
\[
\alpha \geq 1 - \frac{e^\epsilon + \delta}{(1 + e^\epsilon)(1 - \beta)} := \theta(\epsilon, \delta, \beta).
\]
Proof. Fix a database $D \in \{0,1\}^n$ and sample an index i uniformly at random from $[n]$. Let D' be a neighboring database of D that differs at the ith bit. By assumption, we have that with probability at least $1 - \beta$

$$\|M(D) - D\|_1 \leq \alpha n, \quad \|M(D') - D'\|_1 \leq \alpha n.$$

Since i is chosen uniformly, we then have

$$\Pr[M(D)_i = D_i] \geq (1 - \alpha)(1 - \beta), \quad \Pr[M(D')_i = D'_i] \geq (1 - \alpha)(1 - \beta).$$

It follows that $\Pr[M(D')_i = D_i] \leq 1 - (1 - \alpha)(1 - \beta)$ because $D_i \neq D'_i$. By definition of (ϵ, δ)-differential privacy, we get

$$(1 - \alpha)(1 - \beta) \leq \Pr[M(D)_i = D_i] \leq e^\epsilon \Pr[M(D')_i = D_i] + \delta \leq e^\epsilon(1 - (1 - \alpha)(1 - \beta)) + \delta.$$

Then we have

$$1 - \alpha \leq \frac{e^\epsilon + \delta}{(1 + e^\epsilon)(1 - \beta)}$$

as desired.

Acknowledgments. The authors would like to thank Cynthia Dwork, Sudipto Guha, Moritz Hardt, Sanjeev Khanna, Scott Kominers, Mallesh Pai, David Parkes, Adam Smith, and Kunal Talwar for helpful discussions. In particular, we would like to thank Scott Kominers for suggesting the connection to Kelso and Crawford, and Adam Smith for discussions on the “billboard model” of privacy. Finally, we thank the anonymous reviewers.

REFERENCES

A. Blum, K. Ligett, and A. Roth, A learning theory approach to noninteractive database privacy, J. ACM, 60 (2013), 12.

