<table>
<thead>
<tr>
<th>Title</th>
<th>Control of brain metastases with alectinib in anaplastic lymphoma kinase-rearranged lung cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kwok, WC; Tam, CCT; Lui, MSM; Lam, CLD; Ho, JCM</td>
</tr>
<tr>
<td>Citation</td>
<td>Respirology Case Reports, 2017, v. 5 n. 3, p. e00224</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/245129</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Control of brain metastases with alectinib in anaplastic lymphoma kinase-rearranged lung cancer

Wang Chun Kwok, Terence Chi Chun Tam, Macy Mei Sze Lui, David Chi Leung Lam & James Chung Man Ho

Department of Medicine, Queen Mary Hospital, Hong Kong, China.

Keywords
Alectinib, anaplastic lymphoma kinase, brain metastasis, lung cancer, tyrosine kinase inhibitor.

Abstract
Brain metastasis from non-small cell lung cancer remains a challenge to physicians. It occurs in 30% of patients with advanced stage adenocarcinoma of lung and is often regarded as the ominous sign of disease progression and death. Alectinib is likely to be a promising agent, even after the failure of crizotinib and ceritinib, for patients with anaplastic lymphoma kinase (ALK)-driven non-small cell lung cancer with brain metastasis, resulting in a durable response for both intracranial and extra-cranial diseases.

Introduction
We report the case of a young man who had ALK-driven adenocarcinoma of the lung with progressive brain metastases despite targeted therapy and chemotherapy. Salvage treatment with alectinib resulted in a durable response in both systemic and intracranial diseases. The rationale of therapeutic selection among various ALK tyrosine kinase inhibitors (TKI) is illustrated with this case in the era of personalized lung cancer treatment.

Case Report
A 36-year-old Chinese man was first diagnosed to have stage IIIB adenocarcinoma of the lung in 2008. He was treated with paclitaxel, carboplatin, and bevacizumab for six cycles, but the disease progressed with new intrapulmonary metastases and two right parietal cystic brain metastases. He received whole brain irradiation (WBRT) followed by pemetrexed for five cycles. The disease progressed again. At that time, the ALK gene rearrangement test was not readily available. He had an epidermal growth factor receptor wild-type tumour; nonetheless, erlotinib was started as third-line chemotherapy despite having only modest benefit. Disease progressed after 4 months. At that time, crizotinib was undergoing clinical trials in the setting of second-line treatment and beyond. His archived tumour sample tested positive for ALK by fluorescent in situ hybridization assay. Crizotinib (250 mg twice daily) was started under trial protocol. There was good partial response for 16 months until a new right high parietal metastasis developed. In view of the tiny, asymptomatic brain metastasis and still responding extra-cranial disease, crizotinib was continued for another 6 months until frank extra-cranial progression was recorded. He was recruited to another clinical trial with ceritinib (750 mg daily). He had gastrointestinal side effects and drug-induced hepatitis, which required temporary suspension of ceritinib for 3 weeks at the fifth month. The disease remained stable until 7 months later, when there was progression in the primary tumour and a new brain metastasis in the lower part of medulla oblongata. Ceritinib was continued despite progression, while CyberKnife was administered to the brainstem lesion. The disease remained stable for another 22 months. He could tolerate ceritinib with mild gastrointestinal problems. Subsequently, there was symptomatic progressive disease in the brain. Creitinib was switched to alectinib 600 mg twice daily after 31 months. There was
partial response in the medullary metastasis, with stable
disease at extra-cranial sites (Fig. 1). These responses have
been maintained for at least 8 months of alectinib treat-
ment at the time of writing. During the treatment course,
alectinib was temporarily withheld due to myositis, with
creatine kinase rising to 2673 U/L (normal: 65–355 U/L).
Upon resumption of alectinib, there was no recurrence of
myositis. Overall, he has satisfactory tolerance to alectinib,
while there is sustained disease response in both intracra-
nial and extra-cranial sites at around 8 years after
diagnosis.

Discussion

Brain metastases remain a major challenge in thoracic oncology. Stereotactic radiosurgery is reserved for a
limited number of small brain metastases. WBRT is still the
treatment of choice for multiple brain metastases despite causing significant morbidities. The benefit from
systemic therapy largely depends on its ability to cross the blood–brain barrier. Chemotherapy is considered
less effective than radiotherapy for treating brain metastasis.

Central nervous system (CNS) penetration is also a
problem for earlier TKI. Crizotinib only has modest activ-
ity against brain metastases. The reported cerebrospinal
fluid-to-plasma ratio of crizotinib was only 0.0026. In a
study involving 343 patients with ALK-positive lung can-
cer, in which 79 patients received treatment for brain metastases, crizotinib had an intracranial disease control
rate of 85% at 12 weeks, which decreased to 56% at 24 weeks [1]. The durability of intracranial disease control
is a concern as CNS relapses may result in rapid neurologi-
cal deterioration. The second generation ALK inhibitor,
ceritinib, also has activity in brain metastasis, with an
overall response rate of 54% [2]. Unfortunately, its use is
limited by its toxicities. Diarrhoea, nausea, and vomiting occurred in 86, 80, and 60% of patients, respectively.
Drug-induced hepatitis is common, occurring in up to
80% patients with 27% having grade 3–4 hepatitis. The
adverse effects remain a hurdle to successful and tolerable
treatment.

Alectinib has been shown to have important clinical
activity in brain metastases, including CNS relapse with
other ALK inhibitors. In a phase II trial with 84 patients,
the CNS disease control rate of alectinib was 83% with a
median duration of CNS response at 10 months [3]. Its
activity against brain metastases was similar regardless of
previous radiation therapy or not. Alectinib also demon-
strated improved progression-free survival relative to cri-
zotinib among patients with brain metastases in the
J-ALEX study [4]. In a case series, alectinib demonstrated

![Figure 1](image.png)

Figure 1. T2-weighted magnetic resonance imaging of the brainstem showing partial response in the medulla oblongata metastasis with alectinib
treatment. (a) Medulla oblongata metastasis while on ceritinib for 30 months and after CyberKnife treatment, measuring 10 x 13 x 18 mm.
(b) Medulla oblongata metastasis after 6 months of alectinib treatment, which showed interval reduction in size and enhancement, measur-
ing 3 x 5 mm.
significant anti-tumour activity in ALK-positive patients with leptomeningeal and brain metastases who had prior treatment with crizotinib and ceritinib [5].

Our case also reflects some of these findings from previous reports. Crizotinib has some activity against brain metastases but has limited durability. Ceritinib has significant CNS activity, but its toxicities often warrant dose reduction or transient withholding, resulting in CNS relapse. In our case, the CNS disease was under control for 16 and 7 months while on crizotinib and ceritinib, respectively. Crizotinib achieved partial response in the brain metastases, while ceritinib led to disease stabilization. On the other hand, salvage treatment with alectinib resulted in significant partial response both intracranially and extra-cranially for at least 8 months at the time of writing. This could result from both better tolerability and potentially more potent ALK inhibition of alectinib compared with crizotinib and ceritinib. Our anecdotal experience suggests that alectinib is a reasonable choice of treatment for patients with ALK-driven non-small cell lung carcinoma with brain metastasis even after the failure of existing ALK inhibitors.

Disclosure Statements

No conflict of interest declared.

References