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Abstract

Lupus nephritis is a potentially reversible cause of severe acute kidney injury
and is an important cause of end-stage renal failure in Asians and patients of
African or Hispanic descent. It is characterized by aberrant exaggerated innate
and adaptive immune responses, autoantibody production and their deposition
in the kidney parenchyma, triggering complement activation, activation and
proliferation of resident renal cells, and expression of pro-inflammatory and
chemotactic molecules leading to the influx of inflammatory cells, all of which
culminate in destruction of normal nephrons and their replacement by fibrous
tissue. Anti-double-stranded DNA (anti-dsDNA) antibody level correlates with
disease activity in most patients. There is evidence that apart from mediating
pathogenic processes through the formation of immune complexes, pathogenic
anti-dsDNA antibodies can bind to resident renal cells and induce downstream
pro-apoptotic, pro-inflammatory, or pro-fibrotic processes or a combination of
these. Recent data also highlight the critical role of macrophages in acute and
chronic kidney injury. Though clinically effective, current treatments for lupus
nephritis encompass non-specific immunosuppression and the
anti-inflammatory action of high-dose corticosteroids. The clinical and
histological impact of novel biologics targeting pro-inflammatory molecules
remains to be investigated. Insight into the underlying mechanisms that induce
inflammatory and fibrotic processes in the kidney of lupus nephritis could
present opportunities for more specific novel treatment options to improve
clinical outcomes while minimizing off-target untoward effects. This review
discusses recent advances in the understanding of pathogenic mechanisms
leading to inflammation and fibrosis of the kidney in lupus nephritis in the
context of established standard-of-care and emerging therapies.
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Introduction

Lupus nephritis (LN) is a severe manifestation of systemic lupus
erythematosus (SLE) and is associated with a sixfold increase in
mortality compared with the general population'. Up to 60% of
patients with SLE will develop LN at some stage during the course
of disease, the percentage depending on race, ethnicity, and health-
care availability'~. LN is characterized by loss of self-tolerance,
production of autoantibodies to nuclear autoantigens, immune
complex deposition, and immune-mediated injury to the kidney
parenchyma. Clinically, LN is characterized by periods of remis-
sion interspersed with episodes of disease activity or flares. If these
inflammatory processes are not effectively and rapidly control-
led, glomerulosclerosis, interstitial fibrosis, tubular atrophy, and
progressive kidney failure will follow, leading to end-stage renal
failure requiring renal replacement therapy. Treatment of LN has
evolved considerably over the past few decades from reliance on
corticosteroids alone to different combination immunosuppres-
sive regimens, and the optimal choice is informed by the type
and severity of nephritis, the phase in the natural history of dis-
ease, and patient characteristics®. It has been reported that approxi-
mately 30% of patients eventually will progress to end-stage renal
failure’. Identifying key elements in the pathogenesis of inflam-
mation and fibrosis or important checkpoints leading to kidney
damage could present opportunities for novel means of therapeutic
intervention to further improve clinical outcomes.

Overview of lupus nephritis pathogenesis

LN is initiated by the deposition of anti-double-stranded DNA
(anti-dsDNA) antibody-containing immune complexes in the
kidney parenchyma resulting in complement activation, infiltra-
tion of immune cells, increased activation and proliferation of
resident renal cells, and immune-mediated kidney injury. The pre-
cise location of immune complexes in the glomerulus and tubulo-
interstitium, their size, ability to activate complement, and the
effectiveness of complex-clearing mechanisms dictate the sever-
ity of proliferative and inflammatory responses in the kidney.
The glomerulus is the predominant site for immune complex
deposition. Deposition within the mesangium is accompanied by
mesangial hypercellularity and increased matrix synthesis, whereas
their deposition in the subendothelium induces endothelial cell
injury, endocapillary proliferation and infiltration of circulating
myeloid cells into the kidney®. Injury to endothelial cells induces
the release of apoptotic microparticles that drive dendritic cell
activation and prime neutrophils for NETosis, which further
exacerbates inflammatory processes’. Subepithelial deposits pro-
mote podocyte injury with restricted immune cell infiltration
unless the glomerular basement membrane (GBM) ruptures®. The
most severe forms of LN (classes III and IV) are characterized by
inflammatory and proliferative glomerular lesions resulting in
fibrosis and loss of renal function’. Immune deposits have also
been detected in the tubular basement membrane in up to 70% of
patients with LN, especially those with class III or IV LN, and
the quantity of immune complex deposition correlates with the
severity of tubulo-interstitial inflammation'*'".
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Anti-dsDNA antibody production is a cardinal feature of LN,
and serum levels often correlate with disease activity'*'". There
is evidence that in addition to contributing to immune complex
formation, pathogenic anti-dsDNA antibodies can bind to resi-
dent renal cells and induce downstream apoptotic, inflammatory,
and fibrotic processes'*'>'*?". There is increasing evidence to sug-
gest that the pathogenic potential of anti-dsDNA antibodies is not
dependent on its interaction with dsDNA per se since dsDNA is
poorly immunogenic’' but is instead reliant on its poly-reactive
nature and ability to bind to cross-reactive antigens on the sur-
face of resident renal cells or constituents of their extracellular
matrix”~*. Many of the studies relating to anti-dsDNA antibodies
binding to resident renal cells have focused on mesangial cells and
currently there are limited data on the interaction of anti-dsDNA
antibodies with glomerular endothelial cells, podocytes, and
proximal tubular epithelial cells (PTECs). Anti-dsDNA antibodies
have also been reported to bind to nucleosomes that are released
into the circulation from either circulating or intra-glomerular apop-
totic cells, which are then entrapped within the GBM. Recently,
Olin et al. demonstrated that laminin 1, an extracellular matrix
component induced in resident renal cells by transforming growth
factor-beta 1 (TGF-B1) during tissue fibrosis, entrapped nucleo-
somes in electron-dense deposits in the GBM which could serve
as antigens for anti-dsDNA antibodies”. Although there has been
much debate on the mechanisms that mediate anti-dsDNA anti-
body binding to the kidney parenchyma, distinct mechanisms may
operate in different renal compartments and possibly at different
phases of disease.

The pathogenic mechanisms of anti-dsDNA antibodies remain
controversial. Non-dsDNA-binding antibodies may also contrib-
ute to kidney injury. Dissociation between anti-dsDNA antibody
deposition and LN has also been reported in experimental models
of LN. In NZM2328.Lc4 mice, intra-glomerular immune complex
deposition and fatal LN occurred in the absence of anti-dsDNA
antibodies”. Furthermore, lupus-prone mice deficient in Stat4, a
transcription factor that drives Thl responses, displayed acceler-
ated nephritis compared with their wild-type littermates in the
absence of anti-dsDNA antibodies’’. The mode of kidney inflam-
mation could be more important than anti-dsDNA antibodies
per se in the initiation and progression of LN*". Biopsy-proven
LN can occur in patients without anti-dsDNA antibodies in the
circulation’”®. Discordance between circulating anti-dsDNA
antibody titres and activity of LN may also be attributed to the
different dSDNA substrates used in immunoassays”.

Recent knowledge on renal inflammation in lupus
nephritis

(a) Role of resident kidney cells

The mesangium is the site for anti-dsDNA antibody-containing
immune complex deposition in the glomerulus in less severe
forms of LN, and mesangial immune deposits are always present
in severe nephritis. We”” and others***’ have reported that anti-
dsDNA antibodies can bind directly to mesangial cells through
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cell surface annexin II or o-actinin. The functional consequence of
anti-dsDNA antibody binding to o-actinin on mesangial cells has
not been defined. Binding of anti-dsDNA antibodies to mesangial
annexin II resulted in the activation of mitogen-activated protein
kinase (MAPK) and AKT/phosphoinositide 3-kinase (AKT/PI3K)
signaling pathways and increased IL-6 secretion and annexin II
expression. That anti-dsDNA antibodies can augment increased
annexin II expression in mesangial cells suggests potential ampli-
fication of immune-mediated inflammation in the glomerulus®.
At the ultrastructural level, annexin II localized to the surface
of mesangial cells and in the mesangial matrix and also with
electron-dense immune deposits along the GBM®'. Annexin II
can co-localize with immunoglobulin G (IgG) and complement 3
(C3) deposition in human and murine LN, thus underscoring the
pathogenic role of annexin II and its interaction with anti-dsDNA
antibodies in LN”’. Anti-dsDNA antibodies can induce gene
or protein expression (or both) of pro-inflammatory mediators
such as interleukin-1 beta (IL-1B), tumor necrosis factor-
alpha (TNF-o)), hyaluronan, lipocalin-2, monocyte chemoat-
tractant protein-1 (MCP-1), (C-X-C motif) ligand 1 (CXCL1)/
KC, CX3CL, and inducible nitric oxide synthase in cultured
human or murine mesangial cells'>'"*>%*, The induction of these
pro-inflammatory mediators is facilitated through the binding of
high-mobility group box 1 protein, engagement of Toll-like recep-
tor 2 (TLR-2) and receptor for advanced glycation end-products
(RAGE), activation of the MAPK, protein kinase C (PKC), inhibi-
tor of kappa-light chain-enhancer of activated B cells (IkB) and
nuclear factor kappa B (NF-xB) signaling pathways, and endo-
plasmic reticulum stress®*>*>. Correlation between serum levels
of IL-1B, IL-6, TNF-o, hyaluronan, and lipocalin and disease
activity in patients with SLE further highlights the importance of
these inflammatory markers in the pathogenesis of LN'7%.

The severity of tubulo-interstitial inflammation and injury
strongly correlates with poor renal prognosis®’. We reported that
anti-dsDNA antibodies isolated from patients with LN during
nephritic flare can induce secretion of pro-inflammatory mediators
such as IL-6, IL-8, TNF-o,, and MCP-1 through distinct MAPK
pathways in cultured PTECs'*“* and contribute to the establishment
of chemotactic gradients that permit infiltration of immune cells
into the tubulo-interstitium. Bi-directional communication occurs
between mesangial cells and PTECs, and inflammatory responses
occurring in either kidney compartment induced by anti-dsDNA
antibodies can provoke a response in the other compartment'.
Anti-dsDNA antibodies isolated from LN patients in remission can
also induce IL-6 secretion in PTECs'’, a pro-inflammatory cytokine
that promotes B-cell differentiation and autoantibody production.
Increased IL-6 expression is observed in the kidneys of patients and
mice with LN, and infiltrating monocytes/macrophages, mesangial
cells, and PTECs are thought to be the predominant source. The
findings suggest the possibility of subclinical inflammation, which
has important implications on the choice and dose of maintenance
immunosuppressive therapy. Current methods for monitoring
disease activity do not reliably assess kidney inflammation and
fibrosis, and the search for biomarkers which could serve such
purposes is ongoing*'*.
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Of the multitude of pro-inflammatory mediators synthesized by
immune and resident renal cells in LN, interferon (IFN) has been
implicated in both systemic and end-organ inflammation*’. Patients
with lupus exhibit increased expression of type I IFN response
genes”. The importance of type I IFN in the development of LN
stems from experimental and clinical studies that show reduced
autoimmunity in type I IFN receptor-deficient lupus-prone mice*,
exacerbation of disease following administration of adenovirus
encoding IFN-o to lupus-prone mice”, and the production of
lupus-related antibodies in a significant percentage of patients
whose hepatitis C was treated with IFN-a°. Whether plasma-
cytoid dendritic cells are the main source of type I IFN remains
controversial. In a murine model of anti-GBM nephritis, resident
renal cells rather than infiltrating leukocytes were shown to be the
dominant source of type I IFN in the kidney which augmented
immune-mediated injury*’, possibly through TLR-3 activation®.
Although the investigators did not identify which cells synthe-
sized type I IFN, it is possible that mesangial cells contribute®.
Regulation of type I IFN in mesangial cells is mediated at least
in part by microRNA (miR)-130b, and miR-130b expression is
decreased in renal specimens from patients and mice with LN"’.

(b) Role of infiltrating cells

Both innate and adaptive immune systems play critical roles in
systemic and intra-renal inflammatory response in LN. Intra-
renal deposition of IgG-containing immune complexes alone is
insufficient to initiate pathogenesis and must be accompanied
by secretion of pro-inflammatory mediators and recruitment of
immune cells. Multiple effector mechanisms have been identi-
fied in lupus-prone mice and these include but are not limited to
Fc receptors (FcRs), type I IFN receptors, IL-6, and MCP-1°"-%,
Engagement of IgG-containing immune complexes with FcRs is a
critical step in the development of LN. Although FcRs are present
on mesangial cells, FcR activation on circulating hematopoi-
etic cells rather than resident renal cells initiates pathogenesis in
lupus-prone mice’’. Also, the accumulation of apoptotic debris
in hematopoietic cells has been reported to promote FcyRI-
mediated PI3K signal transduction and disease development
in lupus-prone mice, whereas mice deficient in FcyRI were
protected™. Monocytes isolated from patients with LN express
increased FcyRI and exhibit increased MCP-1 secretion and
chemotactic potential compared with monocytes from healthy
subjects™.

Increased serum type I IFN level and induction of IFN-induced
gene transcript and protein signature have been observed in
peripheral blood mononuclear cells (PBMCs) and renal tissue in
patients with LN*. Serum IFN-o in pediatric patients with lupus
can induce monocyte maturation into highly active antigen-
presenting dendritic cells”’. These myeloid cells activate naive
T cells and stimulate B-cell expansion and differentiation through
B cell-activating factor (BAFF) and exacerbate autoantibody
production and autoimmunity. Exogenous viruses have been sug-
gested as a possible trigger of SLE since double-stranded RNA
(dsRNA) viruses can induce IFN-o secretion in dendritic cells,
but with the possible exception of Epstein-Barr virus, there are
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limited data to implicate viruses in SLE. Rather, self nucleic acid-
containing immune complexes can activate TLRs, which mediate
downstream induction of type I IFN synthesis in PBMCs. Expres-
sion of long interspersed nuclear element 1, a virus-derived nucleic
acid present as a transposable element in the human genome, has
recently been reported to induce type I IFN in PBMCs and may
contribute to the initiation and amplification of SLE**. Oxidative
stress, mitochondrial dysfunction, and opsonization of apop-
totic cells by complement and IgM have also been implicated in
increased type I IFN production and NF-kB activation in periph-
eral blood lymphocytes in patients with SLE™. Assessment of
IFN-inducible gene expression signature rather than IFN secre-
tion may be a more sensitive method to determine IFN activation
in patients with lupus and this is due to blocking antibodies that
may be present in serum®. The roles of IL-6 and MCP-1 in the
pathogenesis of LN are well established and have been reviewed
elsewhere®" %,

Chemokine production by infiltrating and resident renal cells
mediates the recruitment of monocytes from the circulation
and their differentiation into macrophages as they migrate to
the site of injury. Macrophages can be divided into two subsets,
namely M1 and M2 macrophages®. M1 macrophages are classic
phagocytic, inflammatory macrophages and are activated in
response to IFN-y or TNF-o to secrete large quantities of pro-
inflammatory cytokines that include IL-1, IL-6, IL-12, and IL-
23. M1 macrophages recruit neutrophils to the site of injury and
also induce Thl and Thl7 differentiation®. M2 macrophages
are activated by IL-4 and can be subdivided into three groups
comprising M2a macrophages that contribute to the reparative
process and secretion of anti-inflammatory cytokines, M2b mac-
rophages that are induced by immune complexes or TLR ligation,
and M2c macrophages that possess anti-inflammatory and pro-
fibrotic properties and play a key role in the elimination of apop-
totic cells***. Owing to their plasticity and presence of pro- or
anti-inflammatory cytokine levels within their microenviron-
ment, macrophages can switch from an M1 to an M2 phenotype®.
Macrophages are key cellular determinants in the pathogen-
esis of LN and are an important source of key pro-inflammatory
cytokines that drive autoimmunity®. Their detection in renal
biopsies from patients with LN is associated with crescent for-
mation and poor renal prognosis® ‘. It has been reported that
M1 macrophages were more abundant in class IV LN com-
pared with class II and V LN and were detected predominately
in the glomerulus®. Macrophages present in tubulo-interstitium
belonged to the M2c subgroup, and their number correlated
with tubulo-interstitial injury score, anti-dsDNA antibody level,
and severity of renal impairment, suggesting a putative role of
these cells in tubulo-interstitial injury or fibrosis®. The clinical
relevance of M2c macrophages is also substantiated by elevated
plasma levels of sCD163 (released from M2c macrophages) during
active SLE®. Depletion of macrophages using a specific inhibitor
to the colony-stimulating factor-1 (CSF-1) receptor in an inducible
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murine model of LN protected mice from renal inflammation
and development of nephritis’’. Lupus-prone mice deficient in
MCP-1 exhibited reduced numbers of interstitial macrophages,
decreased proteinuria, and improvement in renal histology™.
The role of macrophages in experimental models of LN is
dependent on the mouse model used and disease status. In the
human setting, CD169* inflammatory macrophages are present
in the glomeruli of patients with LN, but not healthy subjects,
and their number correlated with the severity of proteinuria.
Glomerular CD169* macrophages decreased in number after
corticosteroid treatment’'.

B cells are central to LN pathogenesis since they are precursors
for autoantibody-producing plasma cells, present antigens to
T cells, and contribute to cytokine secretion. Vimentin expressed
by infiltrating inflammatory cells has been reported to serve
as an autoantigen that induced in situ B-cell selection during
tubulo-interstitial inflammation in LN". Activated macrophages
secrete vimentin in response to pro-inflammatory signaling’
and may be a source of vimentin in the tubulo-interstitium.
Alternatively, PTECs undergoing epithelial-to-mesenchymal tran-
sition (EMT) and apoptosis may also contribute to the vimentin
repertoire in the kidney since vimentin is an intermediate filament
synthesized by mesenchymal cells and is also expressed on the
cell surface of apoptotic cells’*”. Post-translational modification
of vimentin may increase its antigenicity and exacerbate autoim-
munity’®. Elevated anti-vimentin antibody levels are observed in
patients with LN, and the level of these antibodies correlated with
tubulo-interstitial inflammation”. Yet how these autoantibodies
contribute to tubulo-interstitial injury remains to be investigated.
Anti-vimentin antibodies have also been detected in a proportion
of recipients with renal or cardiac allograft, and mycopheno-
late (MPA) treatment was associated with lower anti-vimentin
antibody levels compared with azathioprine in cardiac allograft
recipients’”’*.

Recent knowledge on renal fibrosis in lupus
nephritis

Renal fibrosis is a common feature of chronic inflammatory
disorders where wound-healing processes persist and become
excessive, with prolonged production of growth factors, fibrogenic
cytokines and proteolytic enzymes and their inhibitors, leading to
increased synthesis and decreased degradation of the extracellular
matrix. Both resident renal cells and immune cells contribute to
kidney fibrosis.

(a) Role of resident kidney cells

Appropriate regulation of inflammation is essential to prevent
progressive kidney fibrosis in LN. Fibronectin is the predomi-
nant matrix protein present in glomerulosclerotic lesions and is
one of the first matrix components to be deposited during tubulo-
interstitial fibrosis’*’. Intra-glomerular fibronectin expression is
increased in patients and mice with active LN'>'® and co-localizes
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with IgG deposition, suggesting an association between autoanti-
body deposition and matrix protein accumulation'®. We reported
that anti-dsDNA antibodies can induce both soluble and fibril-
lar fibronectin synthesis in mesangial cells and PTECs through
increased PKC and MAPK signaling and TGF-B1, MCP-1,
IL-6, 1L-8, and TNF-o secretion'*'°. Our observation that pro-
inflammatory mediators can also contribute to increased fibrogen-
esis highlights their multi-faceted functions during pathogenesis.
The role of TGF-B1 as a key mediator of kidney fibrosis is well
established”'*’, but it is noteworthy that TGF-B1 also plays an
important role in immune regulation and can suppress B-cell
auto-reactivity during the early phase of disease but can exert
pro-fibrotic actions when LN is established®*. Fibrogenic cells
are characterized by their ability to synthesize fibrillar collagen.
We demonstrated that soluble fibronectin can induce TGF-B1 and
collagen synthesis in PTECs, thereby amplifying the fibrogenic
response of anti-dsDNA antibodies in the tubulo-interstitium'*.
Increased fibronectin has been reported to induce EMT in lung
alveolar epithelial cells*. It is possible that anti-dsDNA anti-
body induction of fibronectin induces EMT in PTECs, although
further studies are warranted to confirm this. In this regard, we
have demonstrated that anti-dsDNA antibodies derived from
patients with LN during active disease and remission can induce
phenotypic changes in PTECs with the acquisition of an elon-
gated, fibroblastic appearance'’. Myofibroblasts are the primary
source of matrix proteins in renal fibrosis, and these cells may
originate from PTECs undergoing EMT, interstitial fibroblasts,
or pericytes®™*°. There is emerging evidence that epigenetics may
contribute to the progression of renal fibrosis, and miR-150 has
been implicated in tubulo-interstitial fibrosis in patients with LN
through its ability to repress suppressor of cytokine signaling 1*’.
In a murine model of chronic kidney disease, reduced fatty acid
oxidation in renal tubular epithelial cells appeared to contribute
to kidney fibrosis, possibly through mitochondrial dysfunction®.
The role of fatty acid oxidation in tubular epithelial cells and
tubulo-interstitial fibrosis in LN is not known.

(b) Role of infiltrating cells

Monocyte-derived macrophages play an important role in tissue
fibrosis through direct effects on matrix remodeling or indirectly
through the activation of myofibroblasts. Unlike pro-inflammatory
M1 macrophages, M2 macrophages exert anti-inflammatory
responses and contribute to reparative processes following tis-
sue injury. In immune-mediated injury where the inciting factors
persist, M2 macrophages drives fibrogenesis through increased
synthesis of growth factors, polyamine and proline*” and the
generation of a provisional matrix that promotes recruitment
and activation of fibroblasts. In animal studies, depletion of
macrophages has been shown to reduce the severity of crescen-
tic glomerulonephritis and tubulo-interstitial fibrosis”~”. Bone
marrow-derived M2 macrophages can undergo myofibroblastic
transition and contribute to collagen and o-smooth muscle actin
expression in areas of kidney fibrosis in patients with IgA neph-
ropathy or rapidly progressive glomerulonephritis”™. It is possible
that M2 macrophages also contribute to kidney fibrosis through a
similar mechanism in LN. Although o-smooth muscle actin is
often associated with myofibroblasts, there is evidence that it
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is also expressed in the kidney of healthy subjects and neonatal
pericytes and thus is not a reliable marker for myofibroblasts™.
Instead, fibrillar collagen has been suggested to be a more appro-
priate marker”. Of note, renal myofibroblasts lacking o-smooth
muscle actin expression are associated with increased cell
proliferation and collagen production and have been reported to
contribute to renal fibrosis”™.

Current and emerging treatments for lupus nephritis
and their effects on inflammatory and fibrotic
processes

Preservation of nephrons is critical in ensuring long-term renal
and patient survival'. The current standard-of-care induction
treatments for severe LN are corticosteroids combined with either
cyclophosphamide (CYC) or MPA™. We have reported that
MPA can exert a beneficial role on inflammatory and fibrotic
processes induced by anti-dsDNA antibodies in human mesangial
cells and PTECs and that this role is independent of its immuno-
suppressive actions''**. We have also demonstrated that MPA
together with methylprednisolone (MP) was more effective than
CYC and MP in preserving renal histology with reduced severity
of renal fibrosis in New Zealand black and white first-generation
(NZB/W F1) mice, possibly through the ability of MPA to
decrease PKC-a activation and TGF-f1 expression”. Long-term
follow-up studies have reported a relatively high incidence of
chronic kidney failure in patients with LN previously treated with
CYC, especially in subjects with a greater propensity for renal
fibrosis, such as African-Americans'”~'>. In a murine model
of progressive renal interstitial fibrosis, CYC treatment alone
was shown to induce interstitial fibrosis, which was associated
with the depletion of macrophages, although the subtype was not
determined'””. Whether exposure to CYC in susceptible indi-
viduals tips the balance in favor of fibrosis instead of repair is an
intriguing possibility with significant clinical implications. In
patients with neoplastic diseases, CYC treatment was associated
with urinary bladder inflammation and fibrosis, and the sever-
ity of fibrosis was associated with the dose and duration of CYC
treatment'". It was unclear whether the bladder fibrosis was con-
sequent solely to CYC-induced uroepithelial inflammation or
was aggravated by a separate pro-fibrotic effect of CYC. In addi-
tion to MMF and CYC, azathioprine and calcineurin inhibitors
are used in the treatment of lupus. Whether these pharmacologic
agents, in addition to their immunosuppressive actions, can exert
a direct effect on kidney inflammation has not been investigated.
In contrast, the chronic nephrotoxicity of calcineurin inhibitors
has been investigated in organ transplant recipients and is charac-
terized by renal parenchymal fibrosis, vascular hyalinization and
prominent induction of TGF-B'”. Angiotensin-converting enzyme
(ACE) inhibitors and angiotensin II receptor blockers have been
shown to reduce proteinuria and the rate of renal function deteri-
oration in patients with chronic glomerular diseases such as dia-
betic nephropathy or IgA nephropathy. In patients with quiescent
LN and persistent proteinuria, treatment with ACE inhibitors or
angiotensin II receptor blockers resulted in sustained improve-
ments in proteinuria and serum albumin level'®®. Treatment of
lupus-prone mice with ACE inhibitors delayed the onset of pro-
teinuria, reduced disease progression and chronic kidney lesions,
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and was associated with decreased intra-glomerular expression of
TGF-B1 and TGF-B2 and splenic production of type 2 cytokines
such as IL-4 and TL-10'". Tt is conceivable that treatment of lupus
patients who have chronic renal damage with blockade of the
renin-angiotensin pathway should exert a similar beneficial effect
on kidney fibrosis.

Although high-dose corticosteroids remain a cornerstone in
the treatment of severe active LN, the use of pulse corticoster-
oids is highly variable between clinicians”. Intravenous pulse
corticosteroid treatment has been reported to be more effective
than oral corticosteroids in suppressing circulating and intra-
renal expression of pro-inflammatory cytokines in autoimmune
conditions, including LN'"-""9 Although this should theoretically
be accompanied by reduction of renal inflammation, the impact
of pulse corticosteroids on renal inflammation and fibrosis
remains to be examined.

Biological therapies target key molecules in pathogenic
pathways, based on knowledge of the immunopathogenic mecha-
nisms in LN. Biologics tested or being developed in SLE or LN
(or both) inhibit B-cell proliferation and activation (for exam-
ple, anti-BAFF), target B-cell subpopulations (for example, anti-
CD20), reduce co-stimulatory signal in T lymphocyte activation
(for example, cytotoxic T-lymphocyte associated protein 4 (CTLA-
4) Ig), or antagonize the effect of key cytokines (for example,
IFN-0)'''='>. Treatment of lupus-prone mice with anti-BAFF or
CTLA-4 Ig was shown to ameliorate glomerular inflammation and
tubular damage and decrease intra-renal inflammatory cytokine
expression''®'"7. Anti-IL-6 monoclonal antibodies were shown to
ameliorate nephritis in murine LN models''*!'""; yet in a control-
led trial, the anti-IL-6 antibody sirukumab given for 24 weeks
did not reduce proteinuria that persisted despite standard induc-
tion immunosuppressive treatment for LN, and the treatment was
associated with excessive serious infections'”’. TWEAK (TNF-
like weak inducer of apoptosis) is a member of the TNF family
of cytokines, and the Fnl4 gene codes for the TWEAK recep-
tor. Monocytes, dendritic cells, and natural killer cells are the
major sources of TWEAK. Although transient activation of the
TWEAK/Fnl4 pathway is involved in tissue repair after injury,
excessive or persistent activation of the pathway is implicated in
autoimmune diseases, including lupus, and activation of the path-
way in diseased organs has been reported to drive local inflam-
mation leading to fibrosis'?'. Anti-TWEAK antibody therapy
has yielded promising results in animal models of autoimmune
diseases'**'*". A phase II randomized placebo-controlled clini-
cal trial that explored the efficacy, tolerability, and safety
of anti-TWEAK antibody as an add-on therapy in patients with
class III/IV LN did not demonstrate sufficient efficacy, and
the drug development program was terminated (ATLAS study,
NCT01499355).

Apart from positive trial outcomes with belimumab and ani-
frolumab in lupus patients without severe nephritis''"''*!*!  the
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other clinical trials on biologics to date either failed to achieve the
efficacy study endpoints or have been aborted because of perceived
unfavorable balance in effect size versus adverse events''*!!>!%,
The data nevertheless suggest that a subset of patients could
derive clinically observable benefit when these agents were
added to conventional immunosuppressive therapies for active
LN'"*-115, Factors contributing to the apparent discrepancy between
biological effect and clinical outcomes include efficacy of back-
ground therapy, definition of clinical study outcomes'”’, and
patient heterogeneity, the last of which was evidenced by the greater
impact of rituximab treatment in African-Americans compared
with Caucasians''“. The impact of these agents on renal parenchy-
mal inflammation or fibrosis remains unknown as this is rarely
an outcome parameter and the data have not been systematically
examined.

Conclusions

Inflammation and fibrosis are key processes in LN and involve
the interplay of immune cells of the innate and adaptive immune
system and resident renal cells. The identification of molecules
or pathways that contribute to the development of LN has flour-
ished over the past decade and is ever-expanding. Identifying the
roles of inflammatory mediators and the molecular mechanism
that regulate inflammatory responses is made more challenging by
their multi-faceted roles, not only at the onset of pathogenesis but
also during the effector phase where they facilitate kidney injury.
Defining how these molecules contribute to disease pathogen-
esis is crucial before more focused therapeutic strategies can be
devised. Despite a sound mechanistic rationale and encourag-
ing animal data, the clinical results with biologics have been dis-
appointing to date, yet the failure to demonstrate clinical utility
could reflect deficiencies in protocol design rather than a lack of
biological effect. There are a number of murine models of LN,
and choosing an optimal model is imperative to identify key
checkpoints of kidney injury and in the evaluation of potential
therapeutic interventions. Table 1 summarizes the phenotypic
differences between different murine models of LN. Current
therapies primarily target immunological and inflammatory path-
ways, yet disease mechanisms that lead to myofibroblast con-
version and fibrotic processes should not be overlooked. Lastly,
given that a multitude of effector mechanisms are activated in
patients with LN, biological profiling of patients with a proteomics
or genomics approach (or both) may facilitate better selection of
treatment regimens.

Abbreviations

ACE, angiotensin-converting enzyme; BAFF, B cell-activating
factor; CTLA-4, cytotoxic T-lymphocyte associated protein 4;
CYC, cyclophosphamide; dsDNA, double-stranded DNA; EMT,
epithelial-to-mesenchymal transition; FcR, Fc receptor; GBM,
glomerular basement membrane; IFN, interferon; Ig, immu-
noglobulin; IL, interleukin; LN, lupus nephritis; MAPK, mitogen-
activated protein kinase; MCP-1, monocyte chemoattractant
protein-1; miR, microRNA; MP, methylprednisolone; MPA,
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mycophenolate; NF-kB, nuclear factor kappa B; PBMC, periph-
eral blood mononuclear cell; PI3K, phosphoinositide 3-kinase;
PKC, protein kinase C; PTEC, proximal tubular epithelial cell;
SLE, systemic lupus erythematosus; TGF-B1, transforming growth
factor-beta 1; TLR, Toll-like receptor; TNF-o, tumor necrosis
factor-alpha; TWEAK, TNF-like weak inducer of apoptosis.
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