<table>
<thead>
<tr>
<th>Title</th>
<th>Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wijedasa, LS; Gibson, LG</td>
</tr>
<tr>
<td>Citation</td>
<td>Global Change Biology, 2017, v. 23 n. 3, p. 977-982</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/243569</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNNEN4, MAIJA LAMPела4, HARRI VASANDER4, MARIE-CLARIE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH9, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJAARD20,21, JENNY E. GOLDFIELD22, SUSAN WALDRON23, KRISTELL HERGOUALCH24, RENE DOMMAINE25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA1, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PADFIELD7,30,31, SOFYAN KURNIANTO24,32, PANUT HADISISWOYO33, TECK WYN LIM34, SUSAN E. PAGE18, VINCENT GAUCI35, PETER J. VAN DER MEER36, HELEN BUCKLAND37, FABIEN GARNIER38, ALUE DOHONG39, MAHDI ASAD40,41,42, MATTHEW WARREN42, SURIN SUKSWUAN43, ELHAM SUMARGA44, ANUJ JAIN2,45, WILLIAM F. LAURANCE46, JOHN COUWENBERG47, HANS JOOSTEN48, RONALD VERNIMMEN49, ALJOSJA HOOIJER50, CHRIS MALINS51, MARK A. COCHRANE52,53, BALU PERUMAL54, FLORIAN SIEGERT52,53, KELVIN S.-H. PEH54,55, LOUIS-PIERRE COMEAU56, LOUIS VERCHE57, CHARLES F. HARVEY58,59, ALEX COBB59, ZEESHAN JAAFAAR1,60, HENK WÖSTEN61, SOLICHN MANURI62, MORITZ MÜLLER63, WIM GIESSEN64, JACOB PHELPS65, DING LI YONG6,66, MARCEL SILVIIUS67, BEATRICE M. M. WEDEUX68, ALISON HOYT58,59, MITSURU OSAKI69, TAKASHI HIRANO69, HIDENORI TAKAHASHI70, TAKASHI S. KOHYAMA69, AKIRA HARAGUCHI71, NUNUNG P. NUGROHO72, DAVID A. COOMES68, LE PHAT QUOI73, ALUE DOHONG74, HARIS GUNAWAN74, DAVID L. A. GAVEAU74, ANDREAS LANGNER75, FELIX K. S. LIM76, DAVID P. EDWARDS76, XINGLI GIAM77, GUIDO VAN DER WERF78, RACHEL CARMENTA24, CASPAR C. VERWER79, LUKE GIBSON80, LAURE GANDOIS81, LAURA LINDA BOZENA GRAHAM82, JHANSON REGALINO82, SERGE A. WICH8,83, JACK RIELEY84, NICHOLAS KETTRIDGE85, CHLOE BROWN84, ROMAIN PIRARD24, SAM MOORE86, B. RIPOLL CAPILLA17, UWE BALLHORN53, HUA CHEW HO87, AGATA HOSCILO88, SANDRA LOHBERGER53, THEODORE A. EVANS89, NINA YULIANTI90, GRACE BLACKHAM91, ONRIZAL92, SIMON HUSSON17, DANIEL MURDIYARSO24,93, SUNITA PANGALA33, LYDIA E. S. COLE24, LUCA TACCONI93, HENDRIK SEGAH94, PRAYOTO TONTOTO95, JANICE S. H. LEE96, JACQUELINE M. WOLF96, GERALD SCHMILEWSKI97, STEPHAN WULFFRAAT97, ERNANDO INDRAYADI PUTRA2,3,100, MEGAN E. CATTAU101, R. S. CLYMO102, ROSS MORRISON103, AAZANI MUJAHID104, JUKKA MIETTINEN105, SOO CHIN LIEW105, SAMU VALPOLA106, DAVID WILSON107, LAURA D’ARCY17, MICHEL GERDING98, SITI SUNDARI108, SARA A. THORNTON17,18, BARBARA KALISZ19, THOMAS J. CHAPMAN110, AHMAD SUHAIZI MAT SU111, IMAM BASUKI24,32, MASAYUKI ITOH112, CARL TRAEHOLT113, SEAN SLOAN114, ALEXANDER K. SAYOK114 and ROXANE ANDERSEN115,*

1Department of Biological Sciences, National University of Singapore, 4 Science Drive 4, 117453, Singapore, 2ConservationLinks, 433 Clementi Avenue 3, #01-258, 120433, Singapore, 3Rimba, Malaysia, Jalan 1/9D, Bandar Baru Bangi, Selangor, MY 43650, Malaysia, 4University of Helsinki, P.O. Box 3 (Fabianinkatu 33), 00014 Helsinki, Finland, 5Faculté des Sciences de l’Agriculture et de l’Alimentation, 2425, Rue de l’agriculture, Pavillon Paul-Comtois, Bureau 1122, Ville de Québec, QC G1V 0A6, Canada, 6School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia, 7Tropical Catchment Research Initiative (TROCAIR), Kuala Lumpur, Malaysia, 8School of Natural Sciences &

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.
Andersen@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
LETTER TO THE EDITOR 979

Amsterdamseweg 15, 6814 CM Arnhem, The Netherlands, 166Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK, 167Southeast Asian Biodiversity Society, Raffles Museum of Biodiversity Research, Faculty of Science, The National University of Singapore, Block 56, Level 3, Science Drive 2, 117600, Singapore, 168Wetlands International, P.O. Box 471, 6700 AL Wageningen, The Netherlands, 169Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, UK, 170Hokkaido University, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido Prefecture 060-0808, Japan, 171NPO Hokkaido Institute of Hydro-Climate, Frontier 14, N 14 W 3, Kita-ku, Sapporo 001-0014, Japan, 172Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan, 173Research and Development Institute on Watershed Management Technology, Research, Development and Innovation Agency, Ministry of Environment and Forestry, Wanakakti Block I 2nd Floor Jalan Jenderal Gatot Subroto Jakarta Pusat, 10270 Jakarta, Indonesia, 174Institute for Environment and Natural Resources, National University at HCM City, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, 175Peatland Restoration Agency (BRG), UNPAR, Jakarta LP3HL, Indonesia, 176Joint Research Centre of the European Commission, Directorate D – Sustainable Resources – Bio-Economy Unit, Via E. Fermi, 2749, 1-21027 Ispra (VA), Italy, 177Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK, 178School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA 98105, USA, 179Faculty of Earth and Life Sciences, University Amsterdam, De Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands, 180International Union for Conservation of Nature (IUCN), National Committee of The Netherlands, Plantage Middenlaan 2K, 1018 DD Amsterdam, The Netherlands, 181School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, 182Laboratoire Ecologie Fonctionnelle et Environnement, Universite de Toulouse, CNRS, INPT, UPS, 18, Route de Narbonne Bât. 4R1, 31062 Toulouse Cedex 9, France, 183Borneo Orangutan Survival Foundation (BOSF), Jalan Papandayan No. 10, Bogor 16315, Indonesia, 184Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands, 185School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK, 186School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK, 187Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK, 188Nature Society (Singapore), 510 Geylang Road, 02-05, The Sunflower, 389466, Singapore, 189Remote Sensing Centre, Institute of Geodesy and Cartography, ul. Modzelewskiego 27, 02-679 Warsaw, Poland, 190School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia, 191University of Palangka Raya, Palangkaraya, 73112 Central Kalimantan, Indonesia, 192Wildfowl and Wetlands Trust, Queen Elizabeth’s Walk, London SW13 9WT, UK, 193Tropical Forest Ecology and Conservation Division, Faculty of Forestry, Universitas Sumatera Utara, Jl. Dr. Mansur No. 9B, Kampus USU, Padjadikan, Kota Medan, Sumatera Utara 20155, Indonesia, 194Department of Geophysics and Meteorology, Bogor Agricultural University, Jln. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia, 195Department of Global Change Biology Zoology, Oxford Long-term Ecology Laboratory, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK, 196Crawford School of Public Policy, The Australian National University, Acton, Canberra, ACT 2601, Australia, 197Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan, 198Asian School of the Environment, Nanyang Technological University, Nanyang Avenue, Singapore, 199International Peatland Society, Nisulankatu 78, 40720 Jyväskylä, Finland, 200World Wide Fund for Nature, Simatupang Tower 2 Unit C 7 Floor Jl. Letjen TB. Simatupang Kav. 38, Jakarta Selatan 12540, Indonesia, 201Faculty of Forestry, Bogor Agricultural University, Jl. Lingkar Akademik Kampus IPB, Dramaga, Bogor, Jawa Barat 16680, Indonesia, 202Grand Challenge Earth Lab, University of Colorado, 4001 Discover Drive Suite S348, Boulder, CO 80303, USA, 203Queen Mary University of London, Mile End Rd, London E1 4NS, UK, 204Land Surface Flux Measurements Group, Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowthorn Gifford, Wallingford, Oxfordshire OX10 8BB, UK, 205Department of Aquatic Science, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, 206Centre for Remote Imaging, Sensing and Processing, National University of Singapore, 10 Lower Kent Ridge Road, Blk S17, Level 2, 119076, Singapore, 207Geological Survey of Finland, P.O. Box 97 (Vaasantie 6), FI 67101 Kokkola, Finland, 208Earthly Matters Environmental Consultants, Glenvar, Letterkenny, Co., Donegal, Ireland, 209Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta – Bogor Km. 46 Cibinong, 16911 Bogor, Indonesia, 210Department of Soil Science and Land Reclamation, Faculty of Environment and Agriculture, University of Warmania and Mazury, Michała Oczapowskiego 2, Olszyn, Poland, 211Ecological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH Scotland, UK, 212Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Malaysia, 213Centre for Southeast Asian Studies, Kyoto University, 46 Shimoada-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan, 214Southeast Asia Program, Research and Conservation Division, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark, 215Institute of Biodiversity and Environmental Conservation, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, 216Environmental Research Institute, University of Highlands and Islands, Castle St., Thurso KW147JD, UK

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982
The first International Peat Congress (IPC) held in the tropics – in Kuching (Malaysia) – brought together over 1000 international peatland scientists and industrial partners from across the world (‘International Peat Congress with over 1000 participants!’, 2016). The congress covered all aspects of peatland ecosystems and their management, with a strong focus on the environmental, societal and economic challenges associated with contemporary large-scale agricultural conversion of tropical peat.

However, recent encouraging developments towards better management of tropical peatlands have been undermined by misleading newspaper headlines and statements first published during the conference. Articles in leading regional newspapers (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b; Wong, 2016) widely read across the region portrayed a general consensus, in summary of the conference, that current agricultural practices in peatland areas, such as oil palm plantations, do not have a negative impact on the environment. This view is not shared by many scientists or supported by the weight of evidence that business-as-usual management is not sustainable for tropical peatland agriculture.

Peer-reviewed scientific studies published over the last 19 years, as reflected in the Intergovernmental Panel on Climate Change (IPCC) Wetland Supplement on greenhouse gas inventories, affirm that drained tropical peatlands lose considerable amounts of carbon at high rates (Drosléré et al., 2014). Tropical peat swamp forests have sequestered carbon for millennia, storing a globally significant reservoir below ground in the peat (Page et al., 2011; Dommáin et al., 2014). However, contemporary agriculture techniques on peatlands heavily impact this system through land clearance, drainage and fertilization, a process that too often involves fire. Along with biodiversity losses driven by deforestation (Koh et al., 2011; Posa et al., 2011; Giam et al., 2012), the carbon stored in drained peatlands is rapidly lost through oxidation, dissolution and fire (Couwenberg et al., 2009; Hirano et al., 2012; Ramdani & Hino, 2013; Schrier-Uijl et al., 2013; Carlson et al., 2015; Warren et al., 2016). Tropical peat fires are a major contributor to global greenhouse gas emissions and produce transboundary haze causing significant impacts on human health, regional economies and ecosystems (Page et al., 2002; Marlier et al., 2012; Jaafar & Loh, 2014; Chisholm et al., 2016; Huijmen et al., 2016; Stockwell et al., 2016). With future El-Niño events predicted to increase in frequency and severity (Cai et al., 2014) and with fire prevalence now decoupled from drought years (Gaveau et al., 2014), future large-scale fire and haze events are imminent given the extensive areas of now-drained fire-prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016).

In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in South-East Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wosten et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become undrainable and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a,b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of ‘long-term sustainability of tropical peatland agriculture’.

A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, we must accept that ongoing peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimize the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments, is needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainable peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondeléz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016; Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwod companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations (Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management
remains persistent in influential policy spaces, as illustrated by the articles reporting on the conference (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommaint et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions (International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners.

Acknowledgements

Open access facilitated by Greifswald Mire Centre and Department of Forestry Sciences, University of Helsinki.

References

President of Indonesia (2014) Government Regulation Number 71 of year 2014 about Protection and Management of Peat Ecosystems.
President of Indonesia (2016) Presidential Regulation Number 1 of year 2016 About Peat Restoration Agency.
Wong J (2016) Yield of oil palm on peatland can be doubled. The Star.