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An Efficient Cloud Market Mechanism for
Computing Jobs with Soft Deadlines

Ruiting Zhou, Zongpeng Li, Chuan Wu, Zhiyi Huang

Abstract—This work studies the cloud market for computing
jobs with completion deadlines, and designs efficient online
auctions for cloud resource provisioning. A cloud user bids for
future cloud resources to execute its job. Each bid includes (a)
a utility, reflecting the amount that the user is willing to pay
for executing its job, and (b) a soft deadline, specifying the
preferred finish time of the job, as well as a penalty function
that characterizes the cost of violating the deadline. We target
cloud job auctions that executes in an online fashion, runs in
polynomial time, provides truthfulness guarantee, and achieves
optimal social welfare for the cloud ecosystem. Towards these
goals, we leverage the following classic and new auction design
techniques. First, we adapt the posted pricing auction framework
for eliciting truthful online bids. Second, we address the challenge
posed by soft deadline constraints through a new technique
of compact exponential-size LPs coupled with dual separation
oracles. Third, we develop efficient social welfare approximation
algorithms using the classic primal-dual framework based on
both LP duals and Fenchel duals. Empirical studies driven by
real-world traces verify the efficacy of our online auction design.

Index Terms—Cloud computing, Auction Mechanism, Online
Algorithm.

I. INTRODUCTION

Cloud computing has emerged as a new computing
paradigm that offers users rapid on-demand access to resources
such as CPU, RAM and disk storage, with minimal man-
agement overhead. In the past decade, two types of cloud
platforms blossomed on the Internet, including (i) large-
scale Internet data centers, exemplified by Amazon EC2 [1],
Microsoft Azure and Linode [2], [3], which organize a shared
resource pool for serving their users; and (ii) co-location
data centers, often found in metropolitan areas, where smaller
clouds from different users are physically co-located, jointly
managed and serviced by the co-location [4].

Virtualization technologies help cloud providers pack their
resources into different types of virtual machine (VM), for
allocation to cloud users. For example, Amazon EC2 [1]
currently offers 23 types of different VM types in 7 categories.
Each type of VM has its focus and forte, and a large computing
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job often requires cooperation among multiple VM instances.
For example, social games [5] and enterprise applications [6]
are often composed of a front-end web server tier, a load
balancing tier and a back-end data storage tier, each suited
for execution on a VM that is abundant in a particular type of
resource: bandwidth, CPU, or storage.

Cloud computing jobs can be categorized into two types,
depending on whether their computing need is elastic or not.
Cloud jobs such as large scale web servers utilize cloud service
as a utility, and require the rented VMs to be always active,
with possible dynamic size scaling. These jobs are similar
to the power users in a power grid who demands always-on
power supply. Other jobs such as big data analytics and Google
crawling data processing often have a batch processing nature.
They require a certain computing job to be completed without
demanding always-on VM service, and may tolerate a certain
level of delay in the job completion. These users are similar
to the energy users in a power grid who needs to draw a fixed
quantity of energy for powering a given job, but in a flexible
time window.

Existing market mechanisms for cloud computing, partic-
ularly the auction type mechanisms, have been implicitly
targeting the first type of non-elastic cloud jobs. In such one-
round [7] and online [8] cloud resource auctions, once a bid
is accepted, the service time window of the corresponding
VMs is fixed, i.e. either in the current round [8] or between
the start and finish times prescribed in the bid [9]. Such
auction algorithms do not need to consider the scheduling
of accepted jobs. In sharp contrast, a well designed market
mechanism for the second type of elastic jobs must pay close
attention to not only whether to accept a bid, but when to
schedule its execution based on its deadline information. For
example, consider a cloud user who bids for a VM bundle
tailored for human genome analysis. Its job can be processed
within 3 hours if the specified VM bundle is provisioned;
however, as long as the computing result is available within
the next 24 hours, the user is happy. This leaves ample
space for job scheduling in the temporal domain, which a
well-designed auction algorithm should judiciously exploit to
maximize resource utilization and social efficiency — for
example, scheduling a job within its tolerance window to time
slots with relatively low demand.

This work generalizes existing auction design in the cloud
market by proposing online auctions that explicitly handle
jobs with prescribed deadlines. We further allow a cloud user
to express soft deadlines, described by both a preferred job
completion time, coupled with a penalty function that encodes
how much penalty is associated with different degrees of dead-
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line violation. Compared with simple market mechanisms such
as fixed pricing, a well-designed auction provides automatic
price discovery, promptly adapts prices with the fluctuation of
supply and demand, and allocates cloud resources to jobs who
value them the most, maximizing the overall “happiness” of
everyone in the cloud ecosystem.

We simultaneously target the following goals in our cloud
auction design. First, we require the cloud auction to be
computationally efficient and executes in polynomial time.
Second, the auction should be truthful, so that bidding true
job valuation is the dominant strategy for a cloud user. Third,
the auction should maximize the social welfare of everyone
in the system including both the cloud provider and the cloud
users. Such cloud auction design is faced with a number of
challenges. First, truthfulness is a rather strong property that
comes only with a pair of carefully prepared VM allocation
and payment algorithms that work in concert with each other.
Furthermore, even if the cloud users can be assumed to be
altruistic and truthful bids are given for free, the winner
determination problem for social welfare maximization is an
integer linear program (ILP) that is NP-hard to solve. A new
challenge unique to this work is the non-traditional type of soft
deadline constraints, which is hard to model and handle with
traditional LP formulation and algorithm design. Last but not
least, we require the auction to be online, immediately making
a decision upon the arrival of each bid, without knowing future
bids in the market, yet still guaranteeing near-optimal decision
making as compared to the offline optimum.

We first consider a basic setting where resources in the cloud
are free of cost up to a known capacity limit, and that the
soft deadline can be expressed by enumerating a few hard
deadline options and their corresponding bidding prices. We
first present a natural ILP formulation of the social welfare
maximization problem. While polynomial in size, this ILP
involves both conventional constraints (capacity limits) and un-
conventional constraints (job deadlines). The latter further lead
to unconventional dual variables that are hard to interpret and
update in a primal-dual algorithm framework we will leverage.
We convert the natural ILP into a compact-exponential ILP that
has a compact formulation of conventional constraints only, at
the price of involving an exponential number of variables.

We apply the posted pricing primal-dual framework to
the compact-exponential ILP for online social welfare max-
imization. Although the dual has an exponential number of
constraints, we show fast dual oracles that can quickly update
the dual variables, which are interpreted as unit cost of cloud
resources in different time slots. We maintain carefully esti-
mated resource costs based on recently designed exponential
cost functions [10]. Upon receiving a bid, we compare the
bidding price with the estimated cost of the bid. If the bidding
price is higher, the bid is accepted and dual variables are
updated; otherwise the bid is rejected. The posted pricing
framework charges winning jobs an estimated cost that is
independent from the bidding price, and is truthful [11]. We
conduct theoretical analysis on the competitive ratio and prove
its upper-bound.

We proceed to generalize our cloud auction design by
addressing two practical concerns. First, we model the cost

of resource provisioning in data centers, using a convex cost
function that characterizes server cost with Dynamic Voltage
Frequency Scaling [12]. Second, we consider the general form
of a soft deadline, specified by (i) a preferred deadline and (ii)
a non-decreasing penalty function for deadline violation. The
new social welfare maximization problem is an integer convex
program. We resort to a new primal-dual solution framework
for well-structured convex programs based on Fenchel dual
[13], and adapt our posted pricing auction framework from
the previous scenario to this general setting.

In the rest of the paper, we discuss related work in Sec. II,
and introduce the system model in Sec. III. Design and
analysis of the online cloud auctions are presented in Sec. IV
and Sec. V. Sec. VI presents simulation studies, and Sec. VII
concludes the paper.

II. PREVIOUS RESEARCH

Market mechanism design for cloud computing, particularly
auction mechanisms for cloud resource trading, has attracted
substantial interest from the research community, with a large
number of VM auctions spawned in the past few years [7]–[9],
[14]–[16].

The earliest VM auctions are simple in that they are one-
round auctions, and assume that the cloud provisions a single
type of VM, or that VM configurations are equivalent up to
linear scaling [14]. They also assume the scenario of static
VM provisioning, where the number and type of VMs to be
sold are predetermined prior to the auction start [15].

Dynamic VM provisioning, in which the cloud provider
makes decision on which VMs to assemble and how many
based on demand learned from user bid during the auction, has
been studied in the past two years [7]–[9]. Zhang et al. design
a randomized auction for dynamic resource provisioning in
cloud computing based on a convex decomposition technique,
which is truthful and guarantees a small approximation ratio
in social welfare [7]. Shi et al. further study dynamic resource
provisioning where cloud users are subject to budget con-
straints, and design online auctions where decision making
is coupled in the time domain due to fixed user budgets [8].

Online cloud auctions appear later than their one-round
counterparts. Zhang et al. is among the first to study online
cloud auction design, but they assume all VMs are of a uniform
type [16]. The work of Shi et al. [8] designs online auctions,
but does not consider the temporal correlation in decision
making due to jobs spanning multiple time slots. A recent
work of Zhang et al [9] study online cloud auctions where a
user bids into a fixed time window for job execution; hence the
scheduling dimension is non-present in their solution space.

There have been recent studies on mechanism deign for
batch jobs with deadlines. Lucier et al. study two scheduling
algorithms for jobs with deadlines in cloud computing clusters
[17]. They analyze the competitive ratio for non-committed
scheduling, which does not require to finish executing a
job that has started execution. They do not provide any
performance guarantee on the competitive ratio for committed
scheduling. Navendu et al. design a truthful allocation and
pricing mechanism for computing jobs with deadlines, but
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restrict attention to the offline setting [18]. Azar et al. con-
struct an online mechanisms for preemptive scheduling with
deadlines [19]. Their mechanism is truthful and achieves a
constant competitive ratio. All of those work consider only
one fixed deadline for each job, and fail to model the server’s
operation cost.

Compared with existing literature on cloud auctions, this
work is the first to design cloud auctions that explicitly
consider job elasticity and job execution deadlines, which are
important for practical applications to batch processing jobs.
Accordingly, we propose the compact-exponential optimiza-
tion technique that can effectively handle the new job deadline
constraints in social welfare maximization for the cloud.

The online primal dual method (see [20] for a detailed
survey) is a power algorithmic technique that that has wit-
nessed broad applications, such as solving the ski rental
problem, maximizing revenue in ad-auctions, and solving the
general packing problem. The original primal dual framework
works on linear programs, and is not used to solve problems
modelled by convex programs in our work. Rather recently,
new techniques were introduced to help apply the primal dual
framework for algorithm design to convex programs. Blum et
al. study online combinatorial auctions with production costs
using the online primal dual framework [21]. They presents
algorithms for various cost functions. Huang et al. further
investigate the same problem and propose mechanisms with
improved competitive ratio [11]. All those work don’t consider
the scheduling of jobs, and they cannot handle VM departures
and resource recycling.

III. SYSTEM MODEL AND PRELIMINARIES

We consider a cloud data center hosting a pool of K types
of resource, including CPU, RAM and disk storage that can
be dynamically assembled into different types of VMs. Let
[X] denote the integer set {1, 2, . . . , X}. There are a total
c
k

unit of type-k resource in this cloud. The cloud service
provider acts as the auctioneer to lease VMs to cloud users
through an auction. User’s bid arrives randomly in a large
time span 1, 2, . . . , T . Note that multiple bids can arrive
simultaneously, and would be ordered randomly. There are
I users participating in the auction, and each user requests
multiple types of VM, and specifies in its bid: (i) rk

i

, the total
amount of type-k resource, and (ii) w

i

, the number of slots
required to finish the job by the designated VMs. Job execution
doesn’t need to be continuous. A user i’s job can be executed
at any time slot as long as the total execution time meets w

i

before the deadline. We consider two soft deadline models
in this work: a basic model with alternative deadlines and a
general model with penalty function and server operation cost.

A. Jobs with Alternative Deadlines
We first consider a basic scenario where each user submits

J optional bids to express disjunctive deadline options. A bid
from user i consists of a list of desired types of resource rk

i

,
8k; the number of requested slots w

i

, and deadlines for job
completion d

ij

, 8j, each with a corresponding bidding price
b
ij

. We use B
i

to denote the bidding language of user i’s bids
submitted at time t

i

:
B

i

= {t
i

, {rk
i

}
k2[K], wi

, {d
ij

, b
ij

}
j2[J]}.

We adopt the XOR bidding rule that assumes a user can
win at most one bid among its J optional bids [7]. Upon the
arrival of each bid, the cloud provider decides immediately
whether to accept it, and if so, which deadline to choose and
how to schedule the job. A binary x

ij

equals 1 if user i’s jth
bid wins, and 0 otherwise. Let another binary variable y

i

(t)
encode the scheduling of user i’s job: y

i

(t) = 1 if user i’s
job is scheduled to run at time t, and 0 otherwise. The cloud
provider also calculates the payment p

i

for each winner i.
Let v

ij

be the true valuation of user i’s jth bid, then the
utility of that bid with is u

ij

(b
ij

) = v
ij

�p
i

if x
ij

= 1, and is
0 if x

ij

= 0. In practice, user are assumed to be selfish with
a natural goal to maximize their own utilities; they may lie
about their true valuations in the hope of a higher utility. The
cloud provider instead pursues highest social welfare possible
to make everyone in the cloud system “happy”. Thus, it is
important for the cloud provider to elicit truthful bids.

Definition 1. (Truthful Auction): A cloud auction is truthful
if the dominant strategy for each user is to report its true
valuation, which always maximizes its utility: for all b

ij

6= v
ij

,
u

ij

(v
ij

) � u
ij

(b
ij

).

Definition 2. (Social Welfare): The social welfare in the cloud
market with alternative deadlines is the aggregate user utilityP

i2[I]

P
j2[J] vij

x
ij

�
P

i2[I] pi

plus the cloud provider’s
utility

P
i2[I] pi

. Payments cancel themselves, and the social
welfare becomes

P
i2[I]

P
j2[J] vij

x
ij

.

B. Jobs with Penalty Function and Operation Cost
We further consider a more general model where each user

submits a single preferred deadline d
i

, with a penalty function
g

i

(⌧
i

) defined over deadline violation ⌧
i

:

g
i

(⌧
i

) =

⇢
g
ci(⌧i), if ⌧ 2 [0, T � d

i

]

+1, otherwise
(1)

where d
i

+ ⌧
i

is the job completion time; b
i

� g
i

(⌧
i

) is the
bidding price, decreasing with job completion time; g

ci(·) is a
nondecreasing function and g

ci(0) = 0. User i’s bid with this
model is: B

i

= {t
i

, {rk
i

}
k2[K], wi

, d
i

, b
i

, g
i

(⌧
i

)}.
Existing studies on cloud auction design often ignore the

server operation cost of the cloud provider. It is natural to
include server cost in the computation of social welfare, albeit
the fact that it makes social welfare optimization substantially
more challenging (from linear to non-linear integer program-
ming). The operation cost in the cloud comprises mainly
of power consumption for provisioning the virtual machines,
increasing as the amount of resources used grows. Let z

k

(t)
be the amount of type-k resource used at time t in the cloud,
then the cost function of type-k resource is defined as:

f
k

(z
k

(t)) =

(
�
k

z
k

(t)1+�k , if z
k

(t) 2 [0, c
k

]

+1, otherwise
(2)

Parameter �
k

is the coefficient determined by the power
consumption of each type of resource. Recent measurement
studies suggest that the power consumption of memory, disk
are significantly lower than that of CPU [22]. �

k

� 0

modulates the shape of the cost function, following the
the operational model of physical servers in the cloud. For
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example, Dynamic Voltage Frequency Scaling (DVFS) is a
technique widely adopted in virtualization platforms, adjusting
the frequency or voltage of CPUs to save power consumption
[12]. �

k

is roughly 2 if the voltage is proportional to the usage
of CPU when DVFS is enabled, and equals 0 when DVFS in
disabled [23]. The shape of RAM and disk cost function is
different from that of CPU, with �

k

2 [0.5, 1] [22].
Similar to the notations in Sec. III-A, let a binary x

i

be an
auction decision and p

i

be the payment. v
i

� g
i

(⌧
i

) is the true
valuation of user i’s bid. The cloud provider’s utility equals
the aggregate user payment minus the operation cost, i.e.,P

i2[I] pi

�
P

k2[K]

P
t2[T ] fk

(z
k

(t)). The definitions of user
i’s utility, truthful auction and social welfare are omitted here
as similar ones can be found in Sec. III-A. Table I summaries
notation for ease of reference.

IV. ONLINE AUCTION MECHANISM FOR JOBS WITH
ALTERNATIVE DEADLINES

In this section, we focus on the scenario where each user’s
job has J alternative deadlines. Sec. IV-A presents the social
welfare maximization problem and the framework to handle
such deadline problems. We design an online auction in
Sec. IV-B and conduct theoretical analysis in Sec. IV-C.

A. Social Welfare Maximization Problem
Under the assumption of truthful bidding (b

ij

= v
ij

), the so-
cial welfare maximization problem with alternative deadlines
can be formulated into the following ILP:

maximize
X

i2[I]

X

j2[J]

b
ij

x
ij

(3)

subject to: y
i

(t)t 
X

j2[J]

d
ij

x
ij

, 8t 2 [T ], 8i 2 [I] : t
i

 t, (3a)

X

j2[J]

w
i

x
ij


X

t2[T ]:tit

y
i

(t), 8i 2 [I], (3b)

X

i2[I]:tit

rk
i

y
i

(t)  c
k

, 8k 2 [K[, 8t 2 [T ], (3c)

X

j2[J]

x
ij

 1, 8i 2 [I], (3d)

x
ij

, y
i

(t) 2 {0, 1}, 8i 2 [I], 8t 2 [T ], 8j 2 [J ]. (3e)

Note that the following constraint is redundant, and is not
explicitly included in the ILP above: y

i

(t) 
P

j2[J] xij

, 8i 2
[I], 8t 2 [T ]. Constraint (3a) ensures that a job is scheduled
to run between its arrival time and deadline. Constraint (3b)
guarantees that the number of allocated slots is sufficient for
serving a successful bid. The capacity limit of each type of
resource is expressed in constraint (3c), and the alternative
deadlines are modelled with the XOR bidding rule by (3d).

Even in the offline setting, ILP (3) without constraints
(3a) and (3b) is still a NP-hard combinatorial optimization
problem, equivalent to the classic knapsack problem. The
challenge further escalates when we involve the jobs’ dead-
lines and pursue online decision making. To address these
challenges, we resort to the primal-dual algorithm design
technique. In preparation, we first design a new framework to
handle the unconventional constraints for deadline modelling.
More specifically, we reformulate the original ILP (3) into a

TABLE I: Summary of Notations
I # of users [X] integer set {1, . . . , X}
T # of time slots J # of bids per user
f cost function f⇤ convex conjugate of f
g penalty function t

i

user i’s arrival time
p
i

user i’s payment u
i

user i’s utlity
rk
i

demand of type-k resource by user i
w

i

# slots requested by user i
⌧
i

# slots that passes the deadline for user i
d
ij

(d
i

) deadline of user i’s jth (user i’s) bid
b
ij

(b
i

) bidding price of user i’s jth (user i’s) bid
v
ij

(v
i

) true valuation of user i’s jth (user i’s) bid
x
ij

(x
i

) user i’s jth (user i’s) bid wins (1) or not (0)
y
i

(t) whether or not to allocate user i’s job in slot t
c
k

capacity of type-k resource
p
k

(t) marginal price of type-k resource at time t
z
k

(t) amount of allocated type-k resource at time t
U

k

(L
k

) maximum (minimum) value per unit
of type-k resource per unit of time

✓
k

max{2, (1 + �
k

)

1
�k }

⇢
k

max{ ✓k
ck
�
k

, ✓k
ck(✓k�1) ln(

U

0
k

�k(1+�k)c
�k
k

)}
↵1(↵2) competitive ratio of A

online1 (A
online2)

simplified compact-exponential ILP with a packing structure,
at the price of involving an exponential number of variables:

maximize
X

i2[I]

X

l2⇣i

b
il

x
il

(4)

subject to:
X

i2[I]

X

l:t2l

rk
i

x
il

 c
k

, 8k 2 [K], 8t 2 [T ], (4a)

X

l2⇣i

x
il

 1, 8i 2 [I], (4b)

x
il

2 {0, 1}, 8i 2 [I], 8l 2 ⇣
i

. (4c)

Constraints (4a) and (4b) are equivalent to (3c) and (3d).
⇣
i

is the set of time schedules that satisfy constraints (3a)
and (3b) for user i. The value of b

il

is based on schedule
l, and equals the corresponding b

ij

. We relax the integrality
constraints of x

il

to x
il

� 0 and formulate the dual problem.
By introducing dual variables p

k

(t) and u
i

to constraints (4a)
and (4b) respectively, the dual LP of the relaxed (4) is:

minimize
X

i2[i]

u
i

+

X

t2[T ]

X

k2[K]

c
k

p
k

(t) (5)

subject to: u
i

� b
il

�
X

k2[K]

X

t2l

rk
i

p
k

(t), 8i 2 [I], 8l 2 ⇣
i

, (5a)

p
k

(t), u
i

� 0, 8i 2 [I], 8k 2 [K], 8t 2 [T ].
(5b)

As we can observe, a feasible solution to ILP (4) has a
corresponding feasible solution in ILP (3), and the optimal
objective value of (4) is equal to that of (3). The number of
variables in ILP (4) is exponential as the number of possible
time schedules for user i is exponential in size. We next design
an efficient primal-dual allocation scheme that only updates a
polynomial number of variables, and can simultaneously solve
optimization problems (3), (4) and (5).

B. Online Auction Design
In the auction algorithm, the cloud provider needs to deicide

whether to accept a user i’s job and if so, how to schedule
its job to meet its deadline. If user i’s jth bid with schedule
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l is accepted, then let x
ij

= 1, and update the variable y
i

(t)
according to schedule l. To solve ILP (3), we adopt the primal-
dual technique to the compact-exponential ILP (4) and its
dual (5). For each primal variable x

il

in (4), there is a dual
constraint associated to it. Complementary slackness indicates
the update of the primal variable is based on its dual constraint.
x

il

is zero unless its associated dual constraint (5a) is tight.
Because the dual variable u

i

� 0, we let u
i

be the maximum
of 0 and the right hand side (RHS) of (5a),

u
i

= max{0,max

l2⇣i

{b
il

�
X

t2l

X

k2[K]

rk
i

p
k

(t)}}. (6)

Accordingly, the cloud provider accepts user i if u
i

> 0, and
serves user i’s job according to the schedule that maximizes
RHS of constraint (5a); if u

i

 0, the bid is rejected.

Algorithm 1 A Primal-dual Online Auction A
online1

Input: bidding language {B
i

}, {c
k

}
1: Define function p

k

(z
k

(t)) according to (7);
2: Initialize x

ij

= 0, y
i

(t) = 0, z
k

(t) = 0, u
i

= 0, p
k

(t) =

0, 8i 2 [I], 8j 2 [J ], 8k 2 [K], 8t 2 [T ]; Let x
il

= 0, 8i 2
[I], 8l 2 ⇣

i

, by default;
3: Upon the arrival of the ith user
4:

�
x
ij

, {y
i

(t)}, p
i

, {p
k

(t)}, {z
k

(t)}
�

= A
core1

�
B

i

, {c
k

},
{p

k

(t)}, {z
k

(t)}
�
;

5: if 9j 2 [J ], x
ij

= 1 then
6: Accept user i’s jth bid and allocated resources accord-

ing to y
i

(t); Charge p
i

for user i;
7: else
8: Reject user i.
9: end if

Algorithm 2 A Scheduling Algorithm A
core1

Input: bidding language {B
i

}, {c
k

}, {p
k

(t)}, {z
k

(t)}
Output: x

il

, p
i

, {p
k

(t)}, {z
k

(t)}
1: c(t) =

P
k2[K] r

k

i

p
k

(t), 8t 2 [T ]; // price per slot
2: for all j 2 [J ] do
3: Select w

i

slots with minimum (c(t)) and z
k

(t)+ rk

i


c
k

, 8k 2 [K] within [t
i

, d
ij

], save the schedule in l
j

;
4: p

ij

=

P
t2lj

c(t);u
ij

= b
ij

� p
ij

;

5: end for
6: j⇤ = argmax

j2[J]{uij

};
7: if u

ij

⇤ > 0 then
8: x

ij

⇤
= 1; y

i

(t) = 1, 8t 2 l
j

⇤ , p
i

= p
ij

⇤ ;
9: x

ilj⇤ = 1;

10: u
i

= u
ij

⇤
; z

k

(t) = z
k

(t) + rk

i

, 8k 2 [K], t 2 l
j

⇤
;

11: p
k

(t) = p
k

(z
k

(t)), 8k 2 [K], t 2 l
j

⇤
;

12: end if
13: Return x

ij

⇤ , {y
i

(t)}, p
i

, {p
k

(t)}, {z
k

(t)}

If we interpret dual variable p
k

(t) as the marginal price per
unit of type-k resource at time t, then

P
t2l

P
k2[K] r

k

i

p
k

(t) is
the total charge that user i should pay when its job is assigned
according to schedule l. The RHS of (5a) becomes the utility
of bid i with schedule l. Thus, the assignment of u

i

in (6)
effectively maximizes user i’s utility. This is a key step towards
achieving social welfare maximization and truthfulness.

Note that although the calculation of u
i

seems to take
exponential time as the size of dual constraint (5a) is expo-

nential, we design a dual oracle that selects only a polyno-
mial number of dual constraints. We fix a set of schedules
L

i

with polynomial size through the dual oracle, and set
u

i

= max{0,max

l2Li{bil

�
P

t2l

P
k2[K] r

k

i

p
k

(t)}}. Then
x

il

is updated to 1 when u
i

> 0. The dual oracle works as
follow. For each deadline d

ij

of user i’s job, we select w
i

slots with the minimum price for t 2 [t
i

, d
ij

], and let l
j

be the
corresponding schedule, and add l

j

to set L
i

. The schedule
that maximizes user i’s utility is the one with the minimum
price in set L

i

.
We next discuss the update of the dual variable p

k

(t). Recall
that p

k

(t) represents the marginal price per unit of type-k
resource at time t. We define a new variable z

k

(t) as the
amount of allocated type-k resource at time t, and let the
marginal price be a function of z

k

(t). p
k

(t) is increasing
with the growth of z

k

. Let U
k

and L
k

be the maximum and
minimum values per unit of type-k resource per unit of time,
respectively. p

k

(t) starts at L
k

and exponentially increases
when z

k

(t) is close to the capacity c
k

. It reaches U
k

when
z
k

(t) = c
k

because in this case, the cloud provider will never
allocate any type-k resource to any user. In summary, p

k

(t) is
defined as a function on z

k

(t) as following:

p
k

(z
k

(t)) = L
k

✓
U

k

L
k

◆ zk(t)
ck

(7)

Where U
k

 max

i2[I],j2]J]
bij

wir
k
i

and L
k

�
min

i2[I],j2]J]
bijP

k2[K] wir
k
i

.
A

online1 in Alg. 1 with the schedule algorithm A
core1

running for each user in Alg. 2 is the online auction. A
online1

first defines the price function and initializes the primal and
dual variables in lines 1-2. Upon the arrival of each user i,
we select the bid j⇤ with schedule l

j

⇤ that maximizes user
i’s utility through the dual oracle (lines 2-5). If user i obtains
positive utility, primal variables x

ij

⇤ and y
i

(t) are updated
according to schedule j⇤ (line 8). We then increase the usage
for different resources (z

k

(t)) and update the price (p
k

(t)) for
t 2 l

j

⇤ (lines 10-11).

Z1(1)=2
p1(1)=1.2

C1=10

Slot 1

Z1(2)=2
p1(2)=1.2

Slot 2

Z1(3)=2
p1(3)=1.2

Slot 3

Z1(4)=0
p1(4)=0

Slot 4

Z1(5)=0
p1(5)=0

Slot 5

User i arrives at time 2

2 units    bid 1: deadline 3, $6  
2 slots     bid 2: deadline 4, $4{

Z1(1)=2
p1(1)=1.2

Slot 1

Z1(2)=2
p1(2)=1.2

Slot 2

Z1(3)=4
p1(3)=1.32

Slot 3

Z1(4)=2
p1(4)=1.148

Slot 4

Z1(5)=0
p1(5)=0

Slot 5

Accept bid 2. User i’s job 
is processed at time slots 3 and 4

Fig. 1: An Example of the process in A
online1.

We next use an example to illustrate the winner determi-
nation process in A

online1, as shown in Fig. 1. Suppose the
online system spans 5 time slots. A cloud data center hosts
only one type of resource and the capacity is 10, i.e., c1 = 10.
Assume L1 = 1 and U1 = 2. Before the arrival of user i,
assume the marginal price per unit of resource at time t is
p1(1) = p1(2) = p1(3) = 1.2; p1(4) = p1(5) = 0. The
amount of allocated resource at time t is z1(1) = z1(2) =

z1(3) = 2; z1(4) = z1(5) = 0. User i arrives at time 2,



6

requiring 2 units of resource and 2 time slots to execute its job.
It submits two optional bids: it is willing to pay $6 if its job
is completed before time 3 or $4 if its job is finished before
time 4. The bidding price of the user i can be expressed as
B

i

= {2, 2, 2, {3, $6}, {4, $4}}. Upon the arrival of the user
i, A

core1 is executed to deicide whether to accept it and if so,
how to schedule the job. The price per slot is calculated at line
1 in A

core1 and c(1) = c(2) = c(3) = 2.4; c(4) = c(5) = 0.
For the first bid of user i, lines 3-4 in A

core1 compute the
schedule, payment and utility of it: l1 = [2, 3], p11 = 4.8
and u11 = 1.2. For the second bid of user 1, l2 = [3, 4],
p12 = 2.4 and u12 = 1.6. Now user i’s maximum utility is
larger than 0, i.e., u12 > 0, primal and dual variables are
updated accordingly at lines 8-11 in A

core1. Here z1(t) and
p1(t) at slots 3 and 4 are updated, i.e., z1(3) = 4, z1(4) = 2

and p1(3) = 1 · 2 4
10 ⇡ 1.32, p1(4) = 1 · 2 2

10 ⇡ 1.148. User i’s
second bid is accepted and its job is processed at time slots 3

and 4. The cloud provider charges $2.4 for user i. This process
is repeated until the last user’s job is handled.

C. Theoretical Analysis
i) Correctness, Polynomial Time, and Truthfulness.

Theorem 1. A
online1 computes a feasible solution to ILP (3),

ILP (4) and LP (5) in polynomial time.
Proof: (Correctness): A

online1 outputs a feasible solution for
ILP (3) because line 3 in A

core1 guarantees that the schedule
l
j

for user i’s jth bid satisfies constraints (3a), (3b) and (3c).
Constraint (3d) holds as only one bid per user can be accepted
by A

core1 in line 6. Furthermore, the corresponding relation
between x

ij

and x
il

implies x
il

is a feasible solution for ILP
(4). For the dual problem (5), A

core1 assigns 0 to u
i

if b
il

P
k2[K]

P
t2l

rk

i

p
k

(t), and b
il

�
P

k2[K]

P
t2l

rk

i

p
k

(t) to u
i

otherwise, ensuring the feasibility of A
online1.

(Polynomial running time): Lines 1-2 can be executed in
linear time for the initialization of the cost function, primal and
dual variables. Upon the arrival of user i, Algorithm A

core1

first takes T steps to calculate the price of each slot. The
for loop iterates J times to select the best slots for each bid.
Line 3 in Alg. 2 takes O(TK) time to schedule the job and
check the capacity limit. Line 4 can be done in O(1) steps.
Thus, the running time of the for loop in Alg. 2 is O(JKT ).
Then line 6 records the bid with the maximum utility in J
steps. The body of the if statement (line 8-11) takes O(KT )

time to update the primal and dual variables and compute the
payment. To sum up, the running time of A

core1 is O(JKT ).
The last step of A

online1 (lines 5-9) is to announce the auction
decision, which can be done in constant time. In conclusion,
A

online1 runs in polynomial time (O(IJKT )).

Theorem 2. The online auction A
online1 is truthful.

Proof: Our auction A
online1 belongs to the family of posted

pricing mechanisms [11]. Upon the arrival of user i, the
payment that user i needs to pay to the cloud provider if
it wins, depends only on the amount of resource that has
been sold, and user i’s demand. It is independent of user
i’s bidding price. Consequently, user i cannot improve its
utility by lying about its bidding price as its utility equals

its valuation minus the payment, i.e., u
ij

= v
ij

� p
i

.
Furthermore, A

online1 always selects the schedule with the
maximum utility among all possible schedules for user i.
Hence, truthful bidding guarantees that each user obtains its
maximum utility in A

online1.
ii) Competitive Ratio.

We next examine the competitive ratio of our online auction.
The competitive ratio is the upper-bound ratio of the social
welfare achieved by the optimal solution of ILP (3) to the
social welfare achieved by our online auction A

online1. We
first introduce the primal-dual analysis framework in Lemma
1, which guides the final proof of the competitive ratio.

Let OPT1 and OPT2 denote the optimal objective values of
ILP (3) and (4), respectively. We know that OPT1 = OPT2.
Let P

i

and D
i

be the objective value of primal problem (4)
and that of dual problem (5) returned by an algorithm after
processing user i’s bids. Let P0 = D0 = 0 be the initial values.
Then P

I

and D
I

are the final primal and dual objective values
achieved by the algorithm.

Lemma 1. If there exists a constant ↵1 � 1 such that P
i

�
P

i�1 � 1
↵1

(D
i

� D
i�1) for all i, then the algorithm is ↵1-

competitive in social welfare.
Proof: When we sum up the inequalities for each i, we
have P

I

=

P
i

(P
i

� P
i�1) � 1

↵1

P
i

(D
i

� D
i�1) =

1
↵1

D
I

.

According to weak duality [24], D
I

� OPT2, therefore
P

I

� 1
↵1

OPT2 =

1
↵1

OPT1. So we can conclude that the
algorithm is ↵1 competitive.

A
online1 guarantees P0=D0=0. We next define an

Allocation-Price Relationship and show that if it holds for a
given ↵1, then the primal and dual objective values achieved
by A

online1 satisfy the inequality in Lemma 1. pi

k

(t) denotes
the price of type-k resource after handling user i. zi

k

(t) is the
amount of allocated type-k resource after processing i’s job.

Definition 3. The Allocation-Price Relationship for A
online1

with ↵1 � 1 is pi�1
k

(t)(zi
k

(t)�zi�1
k

(t)) � 1
↵1

c
k

(pi
k

(t)�pi�1
k

(t)),

8i 2 [I], 8k 2 [K], 8t 2 l.

Lemma 2. If the Allocation-Price Relationship holds for a
given ↵1 � 1, then A

online1 guarantees P
i

�P
i�1 � 1

↵1
(D

i

�
D

i�1) for all i 2 [I].
Proof: If user i is rejected, then P

i

�P
i�1 = D

i

�D
i�1 = 0.

In the following analysis, we assume that user i’s jth bid
is accepted, and let l be the schedule of user i’s job. The
increment of the primal objective value is: P

i

� P
i�1 = b

il

.
Note that A

online1 makes the constraint (5a) tight when
bid b

ij

with schedule l is accepted. Thus, b
il

= u
i

+P
k2[K]

P
t2l

pi�1
k

(t)(zi
k

(t)� zi�1
k

(t)).

The increase of the dual objective value is: D
i

� D
i�1 =

u
i

+

P
k2[K]

P
t2l

c
k

(pi
k

(t) � pi�1
k

(t)). By summing up the
Allocation-Price Relationship over all k 2 [K] and t 2 l, we
can obtain: P

i

�P
i�1 � u

i

+

1
↵1

(D
i

�D
i�1�u

i

). Since u
i

� 0

and ↵1 � 1, it is obvious that P
i

�P
i�1 � 1

↵1
(D

i

�D
i�1).

The Allocation-Price Relationship involves only the vari-
ables for type-k resource, we next try to find the corresponding
↵1,k

for each resource k that satisfies the Allocation-Price
Relationship. The value of the approximation ratio ↵1 is just
the maximum value among all ↵1,k

. In order to compute ↵1,k

,
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we assume that rk

i

⌧ c
k

, then zi

k

(t)�zi�1
k

(t) can be expressed
as dz

k

(t). The derivative of the Allocation-Price Relationship
under the above assumption is:

Definition 4. The Differential Allocation-Price Relationship
for A

online1 with ↵1,k

� 1 is p
k

(t)dz
k

(t) � ck
↵1,k

dp
k

(t), 8i, k, t.

Lemma 3. ↵1,k

= ln

Uk
Lk

and the marginal price defined in (7)
satisfies the Differential Allocation-Price Relationship.
Proof: The derivative of the marginal price function is:
dp

k

(t) = p0
k

(z
k

(t)) = L
k

(U
k

/L
k

)

zk(t)
ck

ln(U
k

/L
k

)

1
ck . The

Differential Allocation-Price Relationship is:

L
k

✓
U

k

L
k

◆ zk(t)
ck

dz
k

(t) � c
k

↵1,k
L

k

✓
U

k

L
k

◆ zk(t)
ck

1

c
k

ln

U
k

L
k

dz
k

(t)

) ↵1,k � ln

U
k

L
k

.

Therefore this lemma holds for ↵1,k

= ln

Uk
Lk

.

Theorem 3. The online auction A
online1 in Alg. 1 is ↵1-

competitive in social welfare with ↵1 = max

k2[K] ln
Uk
Lk

.
Proof: According to the proof in Lemma 3, ↵1 =

max

k2[K] ln
Uk
Lk

satisfies the Differential Allocation-Price Re-
lationship. Under the assumption that dz

k

(t) = zi

k

(t) �
zi�1
k

(t)) is much smaller than the capacity of type-k resource
(c

k

), we have dp
k

(t) = p0
k

(z
k

(t))dz
k

(t) = pi

k

(t) � pi�1
k

(t).
As a result, we can obtain the Allocation-Price Relationship
holds for ↵1 = max

k2[K] ln
Uk
Lk

. Then, combining Lemma 1
and Lemma 2 we finish the proof.

V. ONLINE AUCTION DESIGN FOR THE GENERAL MODEL
WITH PENALTY FUNCTION AND OPERATION COST

In this section, we present the online auction design for the
general model that includes a penalty function and operation
cost. We focus on the more challenging case of superlinear
cost function with �

k

> 0. The auction design for linear cost
with �

k

= 0 is similar and is omitted here.

A. Social Welfare Maximization Problem
Under the assumption of truthful bidding, the social welfare

maximization problem in the general model is:

maximize
X

i2[I]

(b
i

x
i

� g
i

(⌧
i

))�
X

t2[T ]

X

k2[K]

f
k

(z
k

(t)) (8)

subject to: y
i

(t)t  d
i

+ ⌧
i

, 8t 2 [T ], 8i 2 [I] : t
i

 t, (8a)

w
i

x
i


X

t2[T ]:tit

y
i

(t), 8i 2 [I], (8b)

X

i2[I]:tit

y
i

(t)rk
i

 z
k

(t), 8k 2 [K[, 8t 2 [T ], (8c)

⌧
i

, z
k

(t) � 0, x
i

, y
i

(t) 2 {0, 1},
8i 2 [I],8t 2 [T ], 8k 2 [K]. (8d)

Again, constraint y
i

(t)  x
i

, 8i, t is redundant and is implied
by the other constraints. Recall the definition of the cost
function in (2) (f

k

(z
k

(t)) = +1 if z
k

(t) > c
k

), constraint
(8c) guarantees that the amount of allocated resource never
exceeds its capacity.

Let ⇣
i

be the set of time schedules that satisfy constraints
(8a) and (8b) for user i, we adopt the same framework to

reformulate the above convex optimization to the following
compact-exponential convex problem:

maximize
X

i2[I]

X

l2⇣i

b
il

x
il

�
X

t2[T ]

X

k2[K]

f
k

(z
k

(t)) (9)

subject to:
X

i2[I]

X

l:t2l

rk
i

x
il

 z
k

(t), 8k 2 [K], 8t 2 [T ], (9a)

X

l2⇣i

x
il

 1, 8i 2 [I], (9b)

x
il

2 {0, 1}, z
k

(t) � 0, 8i 2 [I], 8l 2 ⇣
i

, 8k 2 [K], 8t 2 [T ].
(9c)

We introduce dual variables p
k

(t) and u
i

to (9a) and (9b).
The Fenchel dual [13] of the relaxed convex problem (9) is:

minimize
X

i2[i]

u
i

+

X

t2[T ]

X

k2[K]

f⇤
k

(p
k

(t)) (10)

subject to: u
i

� b
il

�
X

k2[K]

X

t2l

rk
i

p
k

(t), 8i 2 [I], 8l 2 ⇣
i

, (10a)

p
k

(t), u
i

� 0, 8i 2 [I], 8k 2 [K], 8t 2 [T ].
(10b)

Where f⇤
k

(p
k

(t)) is the convex conjugate [25] of the cost
function f

k

(·), defined as: f⇤
k

(p
k

(t)) = sup

zk(t)�0{pk(t)zk(t)�
f
k

(z
k

(t))}. The explicit expression of the conjugate is as
following:

f⇤
k

(p
k

(t)) =

8
>><

>>:

⇣ p
k

(t)

1 + �
k

⌘ 1+�k
�k · �

k

�
1
�k
k

, z0
k

(t)  c
k

c
k

p
k

(t)� �
k

c
1+�k
k

, z0
k

(t) > c
k

(11)

where z0
k

(t) = (

pk(t)
�k(1+�k) )

1
�k .

Proof:

f⇤
k

(p
k

(t)) = sup

zk(t)�0

(
p
k

(t)z
k

(t)� �
k

z
k

(t)1+�k , z
k

(t) 2 [0, c
k

]

p
k

(t)z
k

(t)�1, z
k

(t) > c
k

We observe that p
k

(t)z
k

(t)�1 = �1 when z
k

(t) > c
k

, thus
we only need to obtain the conjugate of f when z

k

(t) 2 [0, c
k

],
Let  

k

(z
k

(t)) = p
k

(t)z
k

(t) � �
k

z
k

(t)1+�k . The derivative
of  

k

(z
k

(t)) with respect to z
k

(t) is :

 
k

(z
k

(t))0 = p
k

(t)� �
k

(1 + �
k

)z
k

(t)�k .

When we let  
k

(z0
k

(t))0 = 0, the local maximum happens at
the point z0

k

(t) and z0
k

(t) = (

pk(t)
�k(1+�k) )

1
�k .

Note that the domain of z
k

(t) is within the range [0, c
k

],
therefore the supremum of  

k

(z
k

(t)) is z0
k

(t) only if z0
k

(t) 2
[0, c

k

]. Otherwise, when z0
k

(t) > c
k

, we can obtain that
 

k

(z
k

(t))0 > 0, which means  
k

(z
k

(t)) monotonically in-
creases with the increment of z

k

(t) and the supremum happens
at z

k

(t) = c
k

.
To sum up, we derive the conjugate of the cost function as

shown in (11).

B. Online Auction Design
We adopt the same posted pricing primal-dual framework

from Sec. IV to solve the convex problem (8). Similarly, the
primal-dual technique is applied to its compact-exponential
problem (9) and its dual (10): the primal variable x

il

remains
zero unless its dual constraint (10a) becomes tight. The
assignment of u

i

is the same as that in (6).
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Although there are an exponential size of dual constraints
in the computation of u

i

, we design a dual oracle based
on dynamic programming to output a polynomial size of
schedules, then only dual constraints associated to this set of
schedules need to be considered.

The basic idea of the dual oracle is as follows. We fix the
completion time of user i’s job to be t

c

(t
c

2 [t
i

+w
i

�1, T ]),
and construct the best schedule l

j

with the minimum price
in this case. The set that includes all such l

j

has polynomial
size, and is the output of the dual oracle. The construction
of l

j

is based on the dynamic programming method. The
base case is the schedule l0 with t 2 [t

i

, t
i

+ w
i

� 1]. We
move the completion time one slot forward each time. Let
c(t) =

P
k2[K] r

k

i

p
k

(t) be the price of user i’s job running
at time t. If the completion time t

c

passes the deadline
d

i

, the corresponding penalty is added to the price, i.e.,
c(t) =

P
k2[K] r

k

i

p
k

(t)+g(t
c

�d
i

). When the old competition
time is replaced with the new one, we only need to compare
the price of the old competition time and w

i

�1 slots before the
old competition time. For example, if user i arrives at time 1

with w
i

= 4, then the basic case is l0 = {1, 2, 3, 4}. Assume
that argmax

t2{1,2,3} c(t) = 2. We next fix the completion
time to 5, the best schedule is then {1, 4, 3, 5} if c(4) < c(2)
and {1, 2, 3, 5} otherwise. The process is repeated until the
completion time reaches T .

The marginal price p
k

(t) per unit of type-k resource at time
t can be defined as the derivative of the cost function, i.e.,
f

k

0
(ẑ

k

(t)) if the overall demand of resource k at t (ẑ
k

(t)) is
known. But in the online setting, it is impossible for the cloud
provider to acquire the complete knowledge of the system.
The cloud provider predicts the final demand at future slots
as ✓

k

(✓
k

> 1) times of the current demand at those slots if
the predicted final demand is below the capacity, and set the
marginal price to f

k

0
(✓

k

z
k

(t)) where z
k

(t) is the amount of
current allocated resource k at t. Let U 0

k

be the maximum value
per unit of type-k resource per unit of time. The marginal price
grows exponentially when the predicted demand is larger than
the capacity, and reaches U 0

k

if z
k

(t) = c
k

. More specifically,
the marginal price function is defined as:

p
k

(z
k

(t)) =

8
><

>:

f 0
k

(✓
k

z
k

(t)), z
k

(t)  c
k

✓
k

f 0
k

(c
k

)e
⇢k(zk(t)�

ck
✓k

)
, z

k

(t) >
c
k

✓
k

(12)

with parameters ✓
k

= max{2, (1 + �
k

)

1
�k },

⇢
k

= max{✓k
c
k

�
k

,
✓
k

c
k

(✓
k

� 1)

ln(

U 0
k

�
k

(1 + �
k

)c
�k
k

)},

where U 0
k

 max

i2[I]
bi

wir
k
i

.
The online auction A

online2 for the general model is pre-
sented in Alg. 3. Upon the arrival of the ith user, A

online2

calls A
core2 in Alg. 4 to make decision. A

core2 computes the
best schedule for user i through the dual oracle (lines 1-10)
to maximize its utility u

i

. If u
i

> 0, the corresponding primal
and dual variables are updated in lines 14-17.

C. Theoretical Analysis

i) Correctness, Polynomial Time, and Truthfulness.

Lemma 4. The running time of A
core2 is O(KT + T 2

).

Algorithm 3 A Primal-dual Online Auction A
online2

Input: bidding language {B
i

}, {c
k

}, {�
k

, �
k

}
1: Define cost function f

k

(z
k

(t)) according to (2);
2: Define function p

k

(z
k

(t)) according to (12);
3: Initialize x

i

= 0, y
i

(t) = 0, z
k

(t) = 0, ⌧
i

= 0, u
i

= 0, p
k

(t) =

0, 8i 2 [I], 8k 2 [K], 8t 2 [T ]; Let x
il

= 0, 8i 2 [I], 8l 2 ⇣
i

,

by default;
4: Upon the arrival of the ith user
5:

�
x
i

, {y
i

(t)}, p
i

, {p
k

(t)}, {z
k

(t)}
�

= A
core2

�
B

i

, {c
k

},
{p

k

(t)}, {z
k

(t)}
�
;

6: if x
i

= 1 then
7: Accept user i’s bid and allocated resources according

to y
i

(t); Charge p
i

for user i;
8: else
9: Reject user i.

10: end if

Algorithm 4 A Scheduling Algorithm A
core2.

Input: B
i

, {c
k

}, {p
k

(t)}, {z
k

(t)}
Output: x

i

, {y
i

(t)}, p
i

, {p
k

(t)}, {z
k

(t)}
1: Add slot t 2 [t

i

, T ] to set T if z
k

(t)+ rk

i

 c
k

, 8k 2 [K];

2: Let schedule l0 include the first w
i

slots (t1, t2, . . . , twi )
in T ; Define j = 1;

3: while w
i

+ j  |T | do
4: l

j

= l
j�1;

5: Let t
c

is the (w
i

+ j)th slot in T ;
6: c(t) =

P
k2[K] r

k

i

p
k

(t), 8t 2 {t1, t2, . . . , twi , tc};
7: If t

c

> d
i

, c(t
c

) = c(t
c

) + g(t
c

� d
i

);
8: t

m

= argmax

t2{t1,...,twi�1} c(t);
9: If c(t

wi) < c(t
m

), for schedule l
j

, replace the slot t
m

with t
wi and save t

c

into t
wi ;

10: P
j

=

P
t2lj

c(t); j = j + 1;

11: end while
12: j⇤ = argmin

j

{P
j

};
13: if b

i

� P
j

⇤ > 0 then
14: x

i

= 1; y
i

(t) = 1, 8t 2 l
j

⇤ ; x
ilj⇤ = 1;

15: u
i

= b
i

� P
j

⇤
; p

i

=

P
k2[K]

P
t2lj⇤

rk

i

p
k

(t);

16: z
k

(t) = z
k

(t) + rk

i

, 8k 2 [K], t 2 l
j

⇤
;

17: p
k

(t) = p
k

(z
k

(t)), 8k 2 [K], t 2 l
j

⇤
;

18: end if
19: Return x

i

, {y
i

(t)}, p
i

, {p
k

(t)}, {z
k

(t)}

Proof: Line 1 initializes a feasible slot set T in O(KT ) steps.
Line 2 takes w

i

steps to define a schedule l
o

The while loop
(lines 3-11) is to compute the best schedule l

j

if the completion
time is fixed, will iterate at most T � w

i

times. Within the
while loop body, lines 4-7 takes O(w

i

+ 1) steps to update
c(t). The running time of finding the maximum price in line 8
is linear to w

i

. Lines 9-10 takes constant time for the compar-
ison and addition. Thus, the while loop can be executed in
O((T �w

i

)w
i

) steps. Line 12 can be done in O(T �w
i

) steps
to find the schedule with the minimum price. The running time
to execute the if body is O(KT ). In summary, the running
time of A

core2 is O(KT +w
i

(T �w
i

))  O(KT +T 2
).

Theorem 4. A
online2 in Alg. 3 is a truthful auction that returns
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feasible solutions for convex problems (8), (9) and (10) in
polynomial running time.
Proof: (Polynomial running time:) The running time of the
initialization process in lines 1-3 is linear. By Lemma 4, A

core2

in line 5 processes each user in O(KT + T 2
) time. The If

statement in lines 6-10 can be done within constant time.
Therefore, after handling the last user, the overall running time
of A

online2 is O(I(KT + T 2
)).

(Correctness and Truthfulness:) We omit the proof here as
similar proofs can be found in Theorem 1 and Theorem 2.
ii) Competitive Ratio.

The proof follows the same structure as that in Sec. IV-C.
Let P

i

and D
i

be the primal (9) and dual (10) objective
values achieved by A

online2 after handling user i’s request. By
Lemma 1, A

online2 is ↵2-competitive in social welfare if there
is a constant a2 � 1 such that P

i

� P
i�1 � 1

↵2
(D

i

� D
i�1)

for all i. We next define the Allocation-Price Relationship for
A

online2, and show that if the Allocation-Price Relationship
holds for a given ↵2, then P

i

� P
i�1 � 1

↵2
(D

i

� D
i�1) also

holds. The last step is to define the differential version of the
Allocation-Price Relationship and prove there exists a ↵2,k

that
satisfies this relationship. By setting ↵2 = max

k2[K]{↵2,k

},
we can obtain the competitive ratio of A

online2.

Definition 5. The Allocation-Price Relationship for A
online2

with ↵2�1 is pi�1
k

(t)
�
zi
k

(t) � zi�1
k

(t)
�

�
�
f
k

(zi
k

(t)) �
f
k

(zi�1
k

(t))
�
� 1

↵2

�
f⇤
k

(pi
k

(t))� f⇤
k

(pi�1
k

(t))
�
, 8i, 8k, 8t 2 l.

Lemma 5. If the Allocation-Price Relationship for A
online2

holds with a given ↵2 � 1, then A
online2 guarantees P

i

�
P
i�1 � 1

↵2
(D

i

�D
i�1) for all i 2 [I].

Proof: If user i is rejected, then P
i

�P
i�1 = D

i

�D
i�1 = 0.

In the next analysis, we assume that user i is accepted, and let
l be the schedule of user i’s job. The increment of the primal
objective value is:

P
i

� P
i�1 = b

il

�
X

t2l

X

k2[K]

�
f
k

(zi
k

(t))� f
k

(zi�1
k

(t))
�

= u
i

+

X

k2[K]

X

t2l

pi�1
k

(t)
�
zi
k

(t)� zi�1
k

(t)
�

�
X

t2l

X

k2[K]

�
f
k

(zi
k

(t))� f
k

(zi�1
k

(t))
�
.

The second equality holds because A
online2 update the value

of dual variables such that dual constraint becomes tight and
rk

i

= zi

k

(t)� zi�1
k

(t). Then the increase of the dual objective
value is:

D
i

�D
i�1 = u

i

+

X

t2l

X

k2[K]

�
f⇤
k

(pi
k

(t))� f⇤
k

(pi�1
k

(t))
�

By summing up the Allocation-Price Relationship for
A

online2 over all k 2 [K] and t 2 l, we can obtain:

P
i

� P
i�1 � u

i

+

1

↵2
(D

i

�D
i�1 � u

i

).

Since u
i

� 0 and ↵1 � 0, it is obvious that P
i

� P
i�1 �

1
↵2

(D
i

� D
i�1).

Definition 6. The Differential Allocation-Price Relationship
for A

online2 with ↵2,k

� 1 is: p
k

(t)dz
k

(t)� f 0
k

(z
k

(t))dz
k

(t) �
1

↵2,k
f⇤
k

0
(p

k

(t))dp
k

(t), 8i, 8k, 8t 2 l.

Lemma 6. ↵2,k

= max{4(1 + �
k

), 2(1+�k)
�k

ln(

U

0
k

�k(1+�k)c
�k
k

)}
and the marginal price function defined in (12) satisfy the
Differential Allocation-Price Relationship.
Proof: We first write down the explicit expressions for the
differentials of the cost function (2) and its convex conjugate
(11):

f 0
k

(z
k

(t)) =

⇢
�
k

(1 + �
k

)z
k

(t)�k , if z
k

(t) 2 [0, c
k

]

+1, otherwise

f⇤
k

0
(z

k

(t)) =

8
<

:

⇣ p
k

(t)

�
k

(1 + �
k

)

⌘ 1
�k , p

k

(t)  �
k

(1 + �
k

)c
�k
k

c
k

, p
k

(t) > �
k

(1 + �
k

)c
�k
k

When the amount of allocated type-k resource reaches the
capacity, i.e., z

k

(t) = c
k

, according to the definition of
marginal price in (12),

p
k

(t) = �
k

(1 + �
k

)c
�k
k

e
⇢k(ck�

ck
✓k

) � U 0
k

.

Recall that U 0
k

is the maximum value per unit of resource k
per unit of time. It is clear when the marginal price is larger
than U 0

k

, no bids can win. Thus, we may assume z
k

(t)  c
k

in the rest of the proof, and f 0
k

(z
k

(t)) = �
k

(1 + �
k

)z
k

(t)�k .
Next, we divide our proof into two cases:
Case 1: z

k

(t)  ck
✓k

: Because p
k

(t) = f 0
(✓

k

z
k

(t)) = �
k

(1 +

�
k

)(✓
k

z
k

(t))�k  �
k

(1 + �
k

)c�k

k

, the Differential Allocation-
Price Relationship can be rewritten as:

(�
k

(1 + �
k

)(✓
k

z
k

(t))�k � �
k

(1 + �
k

)z
k

(t)�k
)dz

k

(t)

� 1

↵2,k

⇣ p
k

(t)

�
k

(1 + �
k

)

⌘ 1
�k �

k

(1 + �
k

)✓
�k
k

�
k

z
k

(t)�k�1dz
k

(t). (13)

Cancelling the common term on both sides, (13) becomes
(✓�k

k

� 1) � 1
↵2,k

�
k

✓�k+1. i) If �
k

� 1, ✓
k

= max{2, (1 +

�
k

)

1
�k } = 2, we can obtain

�
k

✓
�k+1
k

✓�
k

� 1

=

�
k

2 · 2�k

2

� � 1

=

�
k

(4 · 2�k � 2 · 2�k
)

2

�k � 1

 4�
k

(2

�k � 1)

2

�k � 1

 4�
k

< ↵2,k

ii) If �
k

< 1, then ✓
k

= (1 + �
k

)

1
�k < e, and

�
k

✓
�k+1
k

✓�
k

� 1

= ✓
k

(1 + �
k

) < e(1 + �
k

) < ↵2,k.

Case 2: z
k

(t) > ck
✓k

: In this case, the marginal price z
k

(t) is:

p
k

(t) = �
k

(1 + �
k

)c
�k
k

e
⇢k(zk(t)�

ck
✓k

)
.

Note that dp
k

(t) = ⇢
k

p
k

(t)dz
k

(t), then the Differential
Allocation-Price Relationship is:

(p
k

(t)� f 0
k

(z
k

(t)))dz
k

(t) � 1

↵2,k
c
k

⇢
k

p
k

(t)dz
k

(t). (14)

By Lemma 7, we can obtain p
k

(t) � f 0
k

(z
k

(t)) � p
k

(t) �
1

1+�k
p

k

(t) � �k

1+�k
p

k

(t), thus to prove (14), it is sufficient to
prove:
�
k

1 + �
k

p
k

(t)dz
k

(t) � 1

↵2,k
c
k

⇢
k

p
k

(t)dz
k

(t) ) ⇢
k

 �
k

c
k

(1 + �
k

)

↵2,k.

By the value of ⇢
k

, either i)

⇢
k

=

✓
k

c
k

�
k

 e

c
k

�
k

=

�
k

c
k

(1 + �
k

)

e(1 + �
k

)  �
k

c
k

(1 + �
k

)

↵2,k.
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Or ii) ⇢
k

=

✓
k

c
k

(✓
k

� 1)

ln(

U 0
k

�
k

(1 + �
k

)c
�k
k

)

 2

c
k

ln(

U 0
k

�
k

(1 + �
k

)c
�k
k

)

=

�
k

c
k

(1 + �
k

)

2(1 + �
k

)

�
k

ln(

U 0
k

�
k

(1 + �
k

)c
�k
k

)

 �
k

c
k

(1 + �
k

)

↵2,k.

In conclusion, we have finished the proof for both cases.

Lemma 7. When z
k

(t) > ck
✓k

, the marginal price p
k

(t) is
larger than the marginal cost by a factor of at least 1 + �

k

:

p
k

(t) � (1 + �
k

)f 0
k

(z
k

(t)).

Proof: When z
k

(t) > ck
✓k

, p
k

(t) = �
k

(1+�
k

)c�k

k

e
⇢k(zk(t)� ck

✓k
).

So Lemma 7 is equivalent to verify

e⇢kzk(t)

z
k

(t)�k
� (1 + �

k

)e
⇢kck
✓k

c�k

k

(15)

We first show that the inequality (15) holds when z
k

(t) = ck
✓k

.
If z

k

(t) takes the value of ck
✓k

, (15) becomes ✓�k

k

� 1 + �
k

which is obviously true.
Next, it suffices to show the left side of (15) is non-

decreeing as z
k

(t) increases. Let L(z
k

(t)) denote the left hand
of (15). The derivative of L(z

k

(t)) is

L0
(z

k

(t)) =
e⇢kzk(t)

(⇢
k

z
k

(t)� �
k

)

z
k

(t)1+�k
.

Because ⇢
k

� ✓k
ck
�

k

and z
k

(t) > ck
✓k

, then ⇢
k

z
k

(t) � �
k

� 0

and the derivative L0
(z

k

(t)) is nonnegative. Consequently, the
lemma follows.

Theorem 5. The online auction A
online2 in Alg. 3 is ↵2-

competitive in social welfare with ↵2 = max

k2[K] ↵2,k

.
Proof: Because ↵2 is the maximum number among all ↵2,k

,
then Differential Allocation-Price Relationship also holds with
↵2. We assume that dz

k

(t) = zi

k

(t)� zi�1
k

(t) is much smaller
than the capacity of type-k resource (c

k

), then
f
k

(zi
k

(t))� f
k

(zi�1
k

(t)) = f 0
k

(zi�1
k

(t))(zi
k

(t)� zi�1
k

(t)),

f⇤
k

(pi
k

(t))� f⇤
k

(pi�1
k

(t)) = f⇤
k

0
(pi�1

k

(t))(pi
k

(t)� pi�1
k

(t)).

Therefore, the Allocation-Price Relationship holds with ↵2.
Combinng Lemma 1 and Lemma 5, we finish the proof.
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Fig. 2: An illustration of the competitive ratio of A
online2 (↵2)

under different settings.

We plot the value of ↵2 in Fig. 2 when we vary the value
of �

k

, �
k

, c
k

and U 0
k

[22], [23]. We can observe that if we

normalize c
k

to 1, the competitive ratio of A
online2 is close

to 6 with a small U 0
k

and �
k

, as demonstrated in the left
figure. The right figure shows that if c

k

is a large number,
the competitive ratio is determined by �

k

and increases with
the increment of �

k

.

VI. PERFORMANCE EVALUATION

We evaluate our online auctions A
online1 and A

online2

through trace-driven simulation studies. We exploit the trace
version 1 in Google Cluster Data [26], which contains the
information for each job including the start time, execution
duration, and resource demands (CPU and RAM). We translate
each job into a bid, arriving sequentially in 18 hours. We
assume that each user’s job consumes [1, 12] slots and each
time slot is 5 minutes [26]. User’s job deadline is generated
uniformly at random between its arrival time and the system
end time. The bidding price of each job equals its overall
resource demand times unit prices randomly picked in the
range [L

k

, U
k

]. By default, L
k

= 1 and U 0
k

= U
k

= 50. The
demand for CPU and RAM units is normalized so that the
maximum capacity is 1. For the cost function, �

k

is set within
[0.4, 0.6] for CPU and within [0.005, 0.02] for RAM [22]. �

k

is set within [1.7, 2.2] for CPU and within [0.5, 1] for RAM
[23].
Performance of A

online1. We examine the performance of
A

online1 in terms of the competitive ratio, social welfare and
user satisfaction.

Fig. 3 shows the competitive ratio of A
online1 with different

number of users (I) and bids per user (J). The observed
competitive ratio is much better than the theoretical bound
and remains at a low level (< 2). It fluctuates with the
increase of the number of users and sightly decreases when
the number of bids per user grows. This is because when each
user provides a larger number of optimal bids, A

online1 is
more likely to optimize the schedule of its job, leading to a
better performance. In A

online1, the marginal price function
is defined based on the real value of U

k

and L
k

. We vary
the value of U

k

/L
k

, and use the estimated values of U
k

as the input of A
online1, to examine the performance. As

shown in Fig. 4, there is a downward trend as the value of
U

k

/L
k

decreases, while there is no large difference with either
underestimation and overestimation. The observation confirms
the analysis in Theorem 3 that the value of U

k

/L
k

determines
the competitive ratio. Underestimation is more desirable than
the overestimation, as compared to that achieved by the real U

k

(labelled by 100%). Overestimation makes the price rise more
rapidly, filtering out users that are supposed to be accepted.

We next study the social welfare achieved by A
online1 in

Fig. 5 and Fig. 6. The 3d figure in Fig. 5 plots the social
welfare under different number of users and bids per user. Our
online auction A

online1 achieves a higher social welfare when
there is larger number of users participating the auction. The
change of bids per user doesn’t have major influence on the
social welfare. When the number of users grows, the number
of bids with larger bidding price also increases. As a result,
A

online

returns a larger social welfare. The social welfare
under different number of slots and U

k

/L
k

is illustrated in
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Fig. 3: Social welfare of A
online1 with

different number of users and J .
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Fig. 7: Percentage of winners in A
online2

used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.
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used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.
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used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.
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used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.
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used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[18] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[19] Technical Report, An Efficient Cloud Market Mechanism for Computing
Jobs with Soft Deadlines, https://www.dropbox.com/s/hsit71icuen6o9j/
main.pdf?dl=0.

[20] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[22] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Fig. 7: Percentage of winners in A
online1

with different I and U
k

/L
k

10 12 14 16 18 20
0

1

2

3

4

5

Number of Users

C
o

m
p

e
tit

iv
e

 R
a

tio

 

 

U
k
’=3 U

k
’=50 U

k
’=100

Fig. 8: Competitive ratio of A
online2 with

different I and U 0
k

Fig. 6. Both the number of slots and the value of U
k

/L
k

influence the social welfare. A
online1 is able to allocate more

jobs when the length of the system increases. Furthermore,
the bidding price rises with the increase of U

k

/L
k

, thus high
value bids lead to a higher social welfare.

User satisfaction which is measured by the percentage of
winners is demonstrated in Fig. 7. A higher fraction of users
are accepted with a small number of users. This is because the
number of winners is almost fixed due to the capacity limit.
We also obverse that the value of U

k

/L
k

doesn’t influence the
percentage as the winner determination process is not affected
by the change of U

k

/L
k

.
Performance of A

online2.
We first examine the competitive ratio of A

online2. We use
CVX with the Gurobi Optimizer to solve the convex problem
(8) exactly, and compute the competitive ratio by dividing
the optimal social welfare by the social welfare returned by
A

online2. However, CVX fails to solve in 24 hours even with
a medium-size input. Thus, we reduce the input size and only
consider 10-20 users. Fig. 8 shows the competitive ratio of
A

online2 under different number of users and U 0
k

. It becomes
larger with the increase of U 0

k

. The change of the number of
users doesn’t have much impact on the competitive ratio. As
indicated in Theorem 5, a larger U 0

k

negatively influences the
competitive ratio when we set c

k

to 1. We can also observe
that the competitive ratio is still less than 5 with a large U 0

k

,
which is much better than the theoretical bound.

We next study the performance of A
online2 in the aspects

of social welfare and user satisfaction. Fig. 9 shows the social
welfare and cloud provider’s revenue with different number of
users when we vary the value of U 0

k

. We can obverse that both
the social welfare and revenue increase with the increment of
number of users and U 0

k

. The reason for it has been explained
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used in the auction design include the posted pricing frame-
work for truthful online auctions, a new LP formulation and
solution method for handling soft deadline constraints, as well
as approximation algorithms based on LP dual and Fenchel
dual. Our method for handling soft deadline constraints may
be applicable to other auction design problems where deadline
is involved, for example, in demand response auctions in a
smart grid.
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Fig. 10: Percentage of winners in A
online2

when we evaluate the performance of A
online1 and is omitted

here, as the design of A
online2 follows the same primal-dual

technique. Fig. 10 reflects the percentage of winners gradually
rises when the number of slots increases. The possibility of
wining becomes higher when the system spans a long period
as there are more slots available for scheduling. In addition, a
small number of users leads to higher user satisfaction.

VII. CONCLUSIONS

We studied the auction design for cloud computing jobs that
have soft completion deadlines. Our main contribution is an
online cloud job auction that is truthful and computationally
efficient, and achieves a good competitive ratio in social
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welfare. Techniques used in the auction design include the
posted pricing framework for truthful online auctions, a new
LP formulation and solution method for handling soft deadline
constraints, as well as approximation algorithms based on LP
dual and Fenchel dual. Our method for handling soft deadline
constraints may be applicable to other auction design problems
where deadline is involved, for example, in demand response
auctions in a smart grid.

REFERENCES

[1] Amazon EC2 instance type, http://aws.amazon.com/ec2/instance-types/.
[2] Microsoft Azure, http://azure.microsoft.com/en-us/?rnd=1.
[3] Linode, https://www.linode.com/.
[4] L. Zhang, S. Ren, C. Wu, and Z. Li, “A truthful incentive mechanism

for emergency demand response in colocation data centers,” Tech. Rep.,
2015.

[5] RightScale, Social Gaming in the Cloud: A Technical White Paper, 2013.
[6] M. Hajjat, X. Sun, Y. Sung, D. Maltz, S. Rao, K. Sripanidkulchai, and

M. Tawarmalani, “Cloudward bound: planning for beneficial migration
of enterprise applications to the cloud,” Proc. of ACM SIGCOMM, 2011.

[7] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in
cloud computing: A randomized auction approach,” in Proc. of IEEE
INFOCOM, 2014.

[8] W. Shi, L. Zhang, C. Wu, Z. Li, and F. Lau, “An online auction
framework for dynamic resource provisioning in cloud computing,” in
Proc. of ACM SIGMETRICS, 2014.

[9] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau, “Online auctions in IaaS
clouds: welfare and profit maximization with server costs,” in Proc. of
ACM SIGMETRICS, 2015.

[10] N. Buchbinder and J. Naor, “Online primal-dual algorithms for covering
and packing problems,” in ESA. Springer, 2005, pp. 689–701.

[11] Z. Huang and A. Kim, “Welfare maximization with production costs: a
primal dual approach,” in Proc. of the ACM-SIAM SODA, 2015.

[12] Wikipedia, Dynamic frequency scaling, http://en.wikipedia.org/wiki/
Dynamic frequency scaling.

[13] N. R. Devanur, “Fisher markets and convex programs,” JACM, 2010.
[14] Q. Wang, K. Ren, and X. Meng, “When cloud meets ebay: Towards

effective pricing for cloud computing,” in Proc. of IEEE INFOCOM,
2012.

[15] S. Zaman and D. Grosu, “Combinatorial auction-based dynamic vm pro-
visioning and allocation in clouds,” in Proc. of IEEE Cloud CloudCom,
2011.

[16] H. Zhang, B. Li, H. Jiang, F. Liu, A. Vasilakos, and J. Liu, “A framework
for truthful online auctions in cloud computing with heterogeneous user
demands,” in Proc. of IEEE INFOCOM, 2013.

[17] B. Lucier, I. Menache, J. S. Naor, and J. Yaniv, “Efficient online
scheduling for deadline-sensitive jobs,” in Proc. of ACM SPAA, 2013.

[18] N. Jain, I. Menache, J. S. Naor, and J. Yaniv, “Near-optimal scheduling
mechanisms for deadline-sensitive jobs in large computing clusters,”
ACM Transactions on Parallel Computing, vol. 2, no. 1, p. 3, 2015.

[19] Y. Azar, I. Kalp-Shaltiel, B. Lucier, I. Menache, J. S. Naor, and J. Yaniv,
“Truthful online scheduling with commitments,” in Proc. of ACM EC,
2015.

[20] N. Buchbinder and J. Naor, “The design of competitive online algorithms
via a primal: dual approach,” Foundations and Trends® in Theoretical
Computer Science, vol. 3, no. 2-3, pp. 93–263, 2009.

[21] A. Blum, A. Gupta, Y. Mansour, and A. Sharma, “Welfare and profit
maximization with production costs,” in Proc. of IEEE FOCS, 2011.

[22] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya, “Virtual
machine power metering and provisioning,” in Proc. of ACM SoCC,
2010.

[23] K. H. Kim, A. Beloglazov, and R. Buyya, “Power-aware provisioning
of virtual machines for real-time cloud services,” Concurrency and
Computation: Practice and Experience, vol. 23, no. 13, pp. 1491–1505,
2011.

[24] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[25] Wikipedia, Convex conjugate, http://en.wikipedia.org/wiki/Convex
conjugate.

[26] Google Cluster Data, TraceVersion1, https://code.google.com/p/
googleclusterdata/wiki/TraceVersion1.

Ruiting Zhou received a B.E. degree in telecom-
munication engineering from Nanjing University of
Post and Telecommunication, China, in 2007, a
M.S. degree in telecommunications from Hong Kong
University of Science and Technology, Hong Kong,
in 2008 and a M.S. degree in computer science
from University of Calgary, Canada, in 2012. Since
March, 2016, she has been a PhD candidate at
the Department of Computer Science, University
of Calgary, Canada. Her research interests include
smart grids, cloud computing and mobile network

optimization.

Zongpeng Li received his B.E. degree in Computer
Science and Technology from Tsinghua University
(Beijing) in 1999, his M.S. degree in Computer
Science from University of Toronto in 2001, and his
Ph.D. degree in ECE from University of Toronto in
2005. He has been with the University of Calgary
since 2005, where he is now Professor of Computer
Science. In 2011-2012, Zongpeng was a visitor at the
Institute of Network Coding, Chinese University of
Hong Kong. His research interests are in computer
networks, network coding, cloud computing, and

energy networks.

Chuan Wu received her B.Engr. and M.Engr. de-
grees in 2000 and 2002 from the Department of
Computer Science and Technology, Tsinghua Uni-
versity, and her Ph.D. degree in 2008 from the
Department of Electrical and Computer Engineering,
University of Toronto, Canada. Between 2002 and
2004, She worked in the Information Technology
industry in Singapore. Since September 2008, Chuan
Wu has been with the Department of Computer
Science at the University of Hong Kong, where she
is currently an Associate Professor. Her research is

in the areas of cloud computing, data center networking, online and mobile
social networks, and mobile wireless networks. She was the co-recipient of
the best paper awards of HotPOST 2012 and ACM e-Energy 2016.

Zhiyi Huang is an assistant professor of Computer
Science at the University of Hong Kong since 2014.
He got his PhD under Sampath Kannan and Aaron
Roth from Penn in 2013 and worked as a postdoc
with Tim Roughgarden from 2013-2014. His re-
search interest is in the area of theoretical computer
science, including in particular algorithmic game
theory, differential privacy, and online algorithms.


