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ABSTRACT

Gaussian belief propagation (BP) has been widely used for

distributed estimation in large-scale networks such as the

smart grid, communication networks, and social networks,

where local measurements/observations are scattered over a

wide geographical area. However, the convergence of Gaus-

sian BP is still an open issue. In this paper, we consider the

convergence of Gaussian BP, focusing in particular on the

convergence of the information matrix. We show analytically

that the exchanged message information matrix converges

for arbitrary positive semidefinite initial value, and its dis-

tance to the unique positive definite limit matrix decreases

exponentially fast.

Index Terms— graphical model, belief propagation,

large-scale networks, Markov random field.

1. INTRODUCTION

In large-scale linear parameter estimation with Gaussian mea-

surements, Gaussian Belief Propagation (BP) [1] provides an

efficient distributed way to compute the marginal distribu-

tion of the unknown variables, and it has been adopted in

a variety of topics ranging from distributed power state es-

timation [2] in smart grid, distributed beamforming [3] and

synchronization [4, 5] in wireless communication networks,

fast solver for system of linear equations [6], distributed rate

control in ad-hoc networks [7], factor analyzer network [8],

sparse Bayesian learning [9], to peer-to-peer rating in social

networks [10]. It has been shown that Gaussian BP computes

the optimal centralized estimator if it converges [11].

Although with great empirical success, the major chal-

lenge that hinders Gaussian BP to realize its full potential is

the lack of theoretical guarantees of convergence in loopy net-

works. Sufficient convergence conditions for Gaussian BP

have been developed in [1,12–14] when the underlying Gaus-

sian distribution is expressed in terms of pairwise connec-

tions between scalar variables (also known as Markov random

field (MRF)). These works focus on the convergence analysis
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of Gaussian BP for computing the marginal distribution of a

joint distribution with pairwise factors. However, the iterative

equations for Gaussian BP on MRFs are different from that

for distributed estimation problems such as in [2–9,15], where

high order factors (non-pairwise) and vector-valued variables

are involved. Therefore, these existing conditions and analy-

sis methods are not applicable to distributed estimation prob-

lems. In this paper, we study the convergence analysis of

Gaussian BP for distributed parameter estimation focusing on

the convergence of message information matrix. We show an-

alytically that, with arbitrary positive semidefinite matrix ini-

tialization, the message information matrix being exchanged

among nodes converges and its distance to the unique positive

definite limit matrix decreases exponentially.

Note that distributed estimation based on the consensus+
innovations philosophy proposed in [16, 17] (see also the re-

lated family of diffusion algorithms [18]) converges to the

optimal centralized estimator under the assumption of global

observability of the (aggregate) sensing model and connec-

tivity of the inter-agent communication network. In partic-

ular, these algorithms allow the communication or message

exchange network to be different from the physical coupling

network and the former could be arbitrary with cycles (as long

as it is connected). The results in [16, 17] imply that the un-

known variables x can be reconstructed completely at each

node in the network. For large-scale networks with high di-

mensional x, it may be impractical to reconstruct x at every

node. In [19, section 3.4], the author developed approaches to

address this problem, where each node can reconstruct a set of

unknown variables that should be larger than the set of vari-

ables that influence its local measurement. This paper stud-

ies a different distributed estimation problem when each node

estimates only its own unknown variables under pairwise in-

dependence condition of the unknown variables; this leads to

lower dimensional data exchanges between neighbors.

2. COMPUTATION MODEL

Consider a general connected network of M nodes, with V =
{1, . . . ,M} denoting the set of nodes, and ENet ⊂ V × V as
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the set of all undirect communication links in the network,

i.e., if i and j are within the communication range, (i, j) ∈
ENet. At every node n ∈ V , the local observations are in the

form of yn =
∑

i∈n∪I(n) An,ixi + zn, where I(n) denotes

the set of direct neighbors of node n (i.e., all nodes i with

(n, i) ∈ ENet), An,i is a known coefficient matrix with full

column rank, xi is the local unknown parameter at node i with

dimension Ni × 1, and with the prior distribution p(xi) ∼
N (xi|0,Wi), and zn is the additive noise with distribution

zn ∼ N (zn|0,Rn). It is assumed that p(xi, xj) = p(xi)p(xj)
and p(zi, zj) = p(zi)p(zj) for i 6= j. The goal is to estimate

xi, based on yn, p(xi) and p(zn).
The Gaussian BP algorithm can be derived over the cor-

responding factor graph to compute the estimate of xn for

all n ∈ V [20]. It involves two kinds of messages: One is

the message from a variable node xj to its neighboring factor

node fn, defined as

m
(ℓ)
j→fn

(xj) = p(xj)
∏

fk∈B(j)\fn

m
(ℓ−1)
fk→j(xj), (1)

where B(j) denotes the set of neighbouring factor nodes of

xj , and m
(ℓ−1)
fk→j(xj) is the message from fk to xj at time l−1.

The second type of message is from a factor node fn to a

neighboring variable node xi, defined as

m
(ℓ)
fn→i(xi) =

∫
· · ·

∫
fn ×

∏

j∈B(fn)\i

m
(ℓ)
j→fn

(xj) d{xj}j∈B(fn)\i,

(2)

where B(fn) denotes the set of neighboring variable nodes of

fn. The process iterates between equations (1) and (2). At

each iteration l, the approximate marginal distribution, also

named belief, on xi is computed locally at xi as

b
(ℓ)
BP (xi) = p(xi)

∏

fn∈B(i)

m
(ℓ)
fn→i(xi). (3)

It can be shown [20] that the general expression for the

message from variable node to factor node is

m
(ℓ)
j→fn

(xj) ∝ exp
{
−

1

2
||xj − v

(ℓ)
j→fn

||
C

(ℓ)
j→fn

}
, (4)

where C
(ℓ)
j→fn

and v
(ℓ)
j→fn

are the message covariance matrix

and mean vector received at variable node j at the l-th itera-

tion, with

[
C

(ℓ)
j→fn

]−1
= W−1

j +
∑

fk∈B(j)\fn

[
C

(ℓ−1)
fk→j

]−1
. (5)

Furthermore, the message from factor node to variable node

is given by [20]

m
(ℓ)
fn→i(xi) ∝ exp

{
−

1

2
||xi − v

(ℓ)
fn→i||C(ℓ)

fn→i

}
, (6)

where C
(ℓ−1)
fk→j and v

(ℓ−1)
fk→j are the message covariance matrix

and mean vector received at variable node j at the l− 1 itera-

tion with

[C
(ℓ)
fn→i]

−1 =AT
n,i

[
Rn +

∑

j∈B(fn)\i

An,jC
(ℓ)
j→fn

AT
n,j

]−1
An,i. (7)

The following lemma shown in [20] indicates that setting

the initial message covariances [C
(0)
fn→i]

−1 � 0 for all n, i ∈

V guarantees [C
(ℓ)
j→fn

]−1 ≻ 0 for l ≥ 1.

Lemma 1. Let the initial messages at factor node fk be in

Gaussian function forms with covariance [C
(0)
fk→j ]

−1 � 0

for all k ∈ V and j ∈ B(fk). Then [C
(ℓ)
j→fn

]−1 ≻ 0 and

[C
(ℓ)
fk→j ]

−1 ≻ 0 for all l ≥ 1 with j ∈ V and fn, fk ∈ B(j).

Furthermore, in this case, all the messages m
(ℓ)
j→fn

(xj) and

m
(ℓ)
fk→j(xi) exist and are in Gaussian form.

For this factor graph based approach, according to the

message updating procedure (4) and (6), message exchange

is only needed between neighboring nodes. For example, the

messages transmitted from node n to its neighboring node i

are m
(ℓ)
fn→i(xi) and m

(ℓ)
n→fi

(xn). Thus, the message passing

scheme given in (1) and (2) automatically conforms with the

network topology. Furthermore, if the messages m
(ℓ)
j→fn

(xj)

and m
(ℓ)
fn→i(xi) exist for all l (which can be achieved using

Lemma 1), the messages are Gaussian, therefore only the cor-

responding mean vectors and information matrices (inverse of

covariance matrices) are needed to be exchanged.

Finally, if the BP messages exist, according to the defini-

tion of belief in (3), b
(ℓ)
BP (xi) at iteration l is computed as [20]

b
(ℓ)
BP (xi) = p(xi)

∏

fn∈B(i)

m
(ℓ)
fn→i(xi) ∝ N

(
xi|µ

(ℓ)
i ,P

(ℓ)
i

)
,

(8)

with P
(ℓ)
i =

[
W−1

i +
∑

fn∈B(i)

[
C

(ℓ)
fn→i

]−1]−1
, and µ

(ℓ)
i =

P
(ℓ)
i

[∑
fn∈B(i)

[
C

(ℓ)
fn→i

]−1
v
(ℓ)
fn→i

]
. The iterative computa-

tion terminates when message (4) or message (6) converges

to a fixed value or the maximum number of iterations is

reached.

3. CONVERGENCE OF INFORMATION MATRICES

The challenge of deploying the BP algorithm for large-scale

networks is determining whether it will converge. In particu-

lar, it is generally known that if the factor graph contains cy-

cles, the BP algorithm may diverge. Thus, determining con-

vergence conditions for the BP algorithm is very important.

Sufficient conditions for the convergence of Gaussian BP with

scalar variable in loopy graphs are available in [1, 12, 14].

However, they are derived based on pairwise graphs with lo-

cal functions that only involve two variables. This is in sharp



contrast to the model considered in this paper, where the fn
involves high-order interactions between vector variables, and

thus the convergence results in [1,12,14] cannot be applied to

the factor graph based vector-form Gaussian BP.

Due to the recursively updating property of m
(ℓ)
j→fn

(xj)

and m
(ℓ)
fn→i(xi) in (4) and (6), the message evolution can be

simplified by combining these two kinds of messages into

one. By substituting
[
C

(ℓ)
j→fn

]−1
in (5) into (7), the updat-

ing of the message covariance matrix inverse, named message

information matrix in the following, can be denoted as

[
C

(ℓ)
fn→i

]−1
=AT

n,i

[
Rn +

∑

j∈B(fn)\i

An,j

[
W−1

j

+
∑

fk∈B(j)\fn

[
C

(ℓ−1)
fk→j

]−1]−1
AT

n,j

]−1
An,i

,Fn→i

(
{
[
C

(ℓ−1)
fk→j

]−1
}(fk,j)∈B̃(fn,i)

)
,

where B̃(fn, i) = {(fk, j)|j ∈ B(fn)\i, fk ∈ B(j)\fn}. Ob-

serving that C
(ℓ)
fn→i in (9) is independent of v

(ℓ)
j→fn

and v
(ℓ)
fn→i

in (4) and (6), we can focus on the convergence property of

[C
(ℓ)
fn→i]

−1 alone.

To consider the updates of all message information ma-

trices, we introduce the following definitions. Let C(ℓ−1)
,

Bdiag({[C
(ℓ−1)
fn→i]

−1}n∈V,i∈B(fn)) be a block diagonal ma-

trix with diagonal blocks being the message information

matrices in the network at time l − 1 with index arranged

in ascending order first on n and then on i. Using the def-

inition of C(ℓ−1), the term
∑

fk∈B(j)\fn
[C

(ℓ−1)
fk→j ]

−1 in (9)

can be written as Ξn,jC(ℓ−1)
Ξ

T
n,j , where Ξn,j is for select-

ing appropriate components from C(ℓ−1) to form the sum-

mation. Further, define Hn,i = [{An,j}j∈B(fn)\i], Ψn,i =

Bdiag({W−1
j }j∈B(fn)\i) and Kn,i=Bdiag({Ξn,j}j∈B(fn)\i),

all with component blocks arranged with ascending order on

j. Then (9) can be written as

[C
(ℓ)
fn→i]

−1 =AT
n,i

{
Rn + Hn,i[Ψn,i + Kn,i(I|B(fn)|−1

⊗ C(ℓ−1))KT
n,i]

−1HT
n,i

}−1
An,i.

(9)

Now, we define the functionF , {F1→k, . . . ,Fn→i, . . . ,

Fn→M} that satisfies C(ℓ) = F(C(ℓ−1)). Then, by stacking[
C

(ℓ)
fn→i

]−1
on the left side of (9) for all n and i as the block

diagonal matrix C(ℓ), we obtain

C(ℓ) = AT
{
Ω+ H[Ψ+ K(Iϕ ⊗ C(ℓ−1))KT ]−1HT

}−1
A,

, F(C(ℓ−1)), (10)

where A, H, Ψ, and K are block diagonal matrices with

block elements An,i, Hn,i, Ψn,i, and Kn,i, respectively,

arranged in ascending order, first on n and then on i (i.e.,

the same order as [C
(ℓ)
fn→i]

−1 in C(ℓ)). Furthermore, ϕ =

∑M

n=1 |B(fn)|(|B(fn)| − 1) and Ω is a block diagonal ma-

trix with diagonal blocks I|B(fn)| ⊗ Rn with ascending order

on n. We first present properties of the updating operator

F(·), with the proof given in [20].

Property 1. The updating operator F(·) satisfies the follow-

ing properties:

P 1.1: F(C(ℓ)) � F(C(ℓ−1)), if C(ℓ) � C(ℓ−1) � 0.

P 1.2: αF(C(ℓ)) ≻ F(αC(ℓ)) andF(α−1C(ℓ)) ≻ α−1F(C(ℓ)),

if C(ℓ) ≻ 0 and α > 1.

P 1.3: Define U , AT
Ω

−1A and L , AT
[
Ω+HΨ

−1HT
]−1

A.

With arbitrary C(0) � 0, F(C(ℓ)) is bounded by U �

F(C(ℓ)) � L ≻ 0 for l ≥ 1.

In this paper, X � Y (X ≻ Y) means that X − Y is posi-

tive semidefinite (definite). Based on the above properties of

F(·), we can establish the convergence property for the infor-

mation matrices. The following theorem establishes that there

exists a unique fixed point for the mapping F(·). The proof is

omitted due to space restrictions; it is provided in [20].

Theorem 1. With C
(0) � 0, there exists a unique positive

definite fixed point for the mapping F(·).

Lemma 1 states that with arbitrary positive semidefinite

(p.s.d.) initial message information matrices, the message in-

formation matrices will be kept as positive definite (p.d.) at

every iteration. On the other hand, Theorem 1 indicates that

there exists a unique fixed point for the mapping F . Next,

we will show that with arbitrary initial value C(0) � 0, C(ℓ)

converges to a unique p.d. matrix.

Theorem 2. The matrix sequence {C
(ℓ)}l=0,1,... defined

by (10) converges to a unique positive definite matrix for any

initial covariance matrix C
(0) � 0.

Proof. With arbitrary initial value C(0) � 0, following P 1.3,

we have U � C(1) � L ≻ 0. On the other hand, according to

Theorem 1, (10) has a unique fixed point C∗ ≻ 0. Notice that

we can always choose a scalar α > 1 such that

αC∗ � C(1) � L. (11)

Applying F(·) to (11) l times, and using P 1.1, we have

F l(αC∗) � F l+1(C(0)) � F l(L), (12)

where F l(X) denotes applying F on X for l times.

We start from the left inequality in (12). Following the

fixed point definition, αC∗ = αF(C∗). Then, accord-

ing to P 1.2, αC∗ ≻ F(αC∗). Applying F again gives

F(αC∗) ≻ F2(αC∗). Applying F(·) repeatedly, we can

obtain F2(αC∗)
≻ F3(αC∗) ≻ F4(αC∗), etc. Thus F l(αC∗) is a decreas-

ing sequence with respect to the partial order induced by

the cone of p.s.d. matrices as l increases. Furthermore,



since F(·) is bounded below by L, F l(αC∗) is convergent.

Finally, since there exists only one fixed point for F(·),
liml→∞ F l(αC∗) = C∗. On the other hand, for the right

hand side of (12), as F(·) � L, we have F(L) � L. Apply-

ing F repeatedly gives F2(L) � F(L), F3(L) � F2(L),
etc. So, F l(L) is an increasing sequence (with respect to

the partial order induced by the cone of p.s.d. matrices).

Since F(·) is upper bounded by U, F l(L) is a convergent

sequence. Again due to the unique fixed point, we have

liml→∞ F l(L) = C∗. Finally, taking the limit with respect

to l on (12) we have liml→∞ F l(C(0)) = C∗, for arbitrary

initial C(0) � 0.

According to Theorem 2, the covariance matrix C
(ℓ)
fn→i

converges if all initial information matrices are p.s.d., i.e.,[
C

(0)
fn→i

]−1
� 0 for all i ∈ V and fn ∈ B(i). Notice that, for

the pairwise model, the information matrix does not neces-

sarily converge for all initial non-negative value (in the scalar

variable case) as shown in [12,13]. Moreover, due to the com-

putation of [C
(ℓ)
fn→i]

−1 being independent of the local obser-

vations yn, as long as the network topology does not change,

the converged value [C∗
fn→i]

−1 can be precomputed offline

and stored at each node, and there is no need to re-compute

[C∗
fn→i]

−1 even if yn varies.

Another fundamental question is how fast the conver-

gence is, and this is the focus of the discussion below. Since

the convergence of a dynamic system is often studied with

the part metric [21], in the following, we start by introducing

the part metric.

Definition 1. Part (Birkhoff) Metric [21]: For arbitrary ma-

trices X and Y with the same dimension, if there exists α ≥ 1
such that αX � Y � α−1

X, X and Y are called the parts, and

d(X,Y) , inf{logα : αX � Y � α−1
X, α ≥ 1} defines a

metric called the part metric.

Next, we will show that {C(ℓ)}l=1,.. converges at a geo-

metric rate with respect to the part metric in C, which is con-

structed as

C = {C(ℓ)|U � C(ℓ) � C∗+ǫI}∪{C(ℓ)|C∗−ǫI � C(ℓ) � L},

where ǫ > 0 is a scalar and can be arbitrarily small.

Theorem 3. With the initial covariance matrix set to be an

arbitrary p.s.d. matrix, i.e., [C
(0)
fn→i]

−1 � 0, the sequence

{C
(ℓ)}l=0,1,... converges at a geometric rate with respect to

the part metric in C.

Proof. Consider two matrices C(ℓ) ∈ C, and C∗ 6∈ C, ac-

cording to Definition 1, we have d(C(ℓ),C∗) , inf{logα :

αC(ℓ) � C∗ � α−1C(ℓ)}. Since d(C(ℓ),C∗) is the smallest

number satisfying αC(ℓ) � C∗ � α−1C(ℓ), this is equivalent

to

exp{d(C(ℓ),C∗)}C(ℓ) � C∗ � exp{−d(C(ℓ),C∗)}C(ℓ).

(13)

Applying P 1.1 to (13), we have exp{d(C(ℓ),C∗)}F(C(ℓ) �

F(C∗) � exp{−d(C(ℓ),C∗)}F(C(ℓ)). Then applying

P 1.2 and considering that exp{d(C(ℓ),C∗)} > 1 and

exp{−d(C(ℓ),C∗)} < 1, we obtain

exp{d(C(ℓ),C∗)}F(C(ℓ))

≻ F(C∗) ≻ exp{−d(C(ℓ),C∗)}F(C(ℓ)).
(14)

Notice that, for arbitrary p.d. matrices X and Y, if X−kY ≻ 0

then, by definition that, we have xT Xx − kxT Yx > 0. Then

there must exist o > 0 that is small enough such that xT Xx−
(k + o)xT Yx > 0 or equivalently X ≻ (k + o)Y. Thus, as

exp (·) is a continuous function, there must exist some △d >

0 such that

exp{−△d + d(C(ℓ),C∗)}F(C(ℓ))

≻ F(C∗) ≻ exp{△d− d(C(ℓ),C∗)}F(C(ℓ)).
(15)

Now, using the definition of part metric, (15) is equivalent to

−△d + d(C(ℓ),C∗) ≥ d(F(C(ℓ)),F(C∗)). (16)

Hence, we obtain d(F(C(ℓ)),F(C∗)) < d(C(ℓ),C∗). This re-

sult holds for any C(ℓ) ∈ C, d(F(C(ℓ)),F(C∗)) < cd(C(ℓ),C∗),

where c = supCl∈C
d(F(Cl),F(C∗))

d(Cl,C∗)
< 1. Consequently,

we have d(C(ℓ),C∗) < cld(C(0),C∗). Thus the sequence

{C(ℓ)}l=1,... converges at a geometric rate with respect to the

part metric.

It is useful to have an estimate of the convergence rate of

C(ℓ) in terms of the more standard induced matrix norms. Ac-

cording to [22, Lemma 2.3], the convergence rate of ||C(0) −

C∗|| is dominated by that of d(C(0),C∗), where || · || is a

monotone norm defined on the p.s.d. cone, with || · ||2 and

|| · ||F being examples of such matrix norms [23, 2.2-10].

More specifically,

(2 exp{d(C(ℓ),C∗)} − exp{−d(C(ℓ),C∗)} − 1)

×min{||C(ℓ)||, ||C∗||} ≥ ||C(ℓ) − C∗||.
(17)

The physical meaning of Theorem 3 is that the sequence

{C(ℓ)}l=1,... converges at a geometric rate (the distance be-

tween C(ℓ) and C∗ decreases exponentially) before C(ℓ)

enters C∗’s neighborhood, which can be chosen arbitrarily

small.

4. CONCLUSION

This paper has established the convergence of the exchanged

message information matrix of Gaussian belief propagation

(BP) for distributed estimation. We have shown analytically

that, with arbitrary positive semidefinite initial value, the in-

formation matrix converges to a unique positive definite ma-

trix at geometric rate. The convergence guaranteed property

and fast convergence rate of the message information matrix

pave the way for the convergence analysis of the Gaussian BP

message mean vector.
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