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Abstract—The renewables will constitute an important part
of the future smart grid. As a result, the growing portion of
renewable generation in the power grid will bring challenges to
the operations of the power grid because of the fluctuation and
intermittency properties of renewables. In order to make the
operations of power grid stable and reliable, the power outputs
from renewable energy sources must be smoothed. In this paper,
we propose a scheme inspired from the idea of the leaky bucket
mechanism for smoothing the power output from a renewable
energy system. In our proposed method, the settings of energy
storage size and power output level have significant effects on
the system performance and thus needs to be determined. An
optimization framework is thus proposed for storage and power
output planning of the renewable energy system. To operate our
proposed scheme practically, a load-adaptive power smoothing
algorithm is devised aiming to match the power output level with
the actual load in the grid. Our simulation studies show that the
proposed algorithm can reduce the operation cost comparing to
other algorithms and maintain high renewable energy utilization.

I. INTRODUCTION

Accelerated by the greenhouse gas emissions caused by
the utilization of fossil fuels, global warming becomes one
of the significant problems in the 21st century. The needs
of reducing greenhouse gas emissions draw the attentions
of governments and societies to environmentally-friendly and
sustainable energy sources. In recent years, the renewables
(such as solar and wind) have gained increasing popularity
and the involved infrastructure investment has increased sub-
stantially. For example, the installed capacity of wind power in
the United States (U.S.) contributed 4.44% of total electrical
energy in 2014, and it has been expected to reach 20% by
2030 [1]. There is an emerging trend that the utilization of
renewables will significantly increase in the next-generation
smart grid.

However, the development of renewable generation poses
many challenges [2]. The growing renewable generation may
jeopardize the smooth operation of utility grid due to the
fluctuation and intermittency of renewables. Moreover, the
renewable generated power is hard to predict. The uncertainty
induced by the renewable power supply also brings difficulty
to the operations of power grid.

With the challenges mentioned above, research on the
integration of renewable generation gains popularity in recent

years. Several methods have been proposed to help stabilize
the operations of power grid with renewable generation, such
as demand response [3], [4], smart charging of electric vehicles
[5], [6], and optimal scheduling for power network with
renewable generation [1]. Most of the existing work assumes
that the renewable generated power can be accurately pre-
dicted. Nevertheless, based on the current technologies, such
prediction still suffer from certain short-term errors, getting
worse in the long term [7]. The integration of renewables in the
grid becomes a tough problem since both the power supply and
demand possess stochastic properties. A smooth power supply
profile is very important and highly preferable because it can
reduce the uncertainty of power supply and thus increase the
reliability of the power grid. As a result, it is fundamental for
smoothing the power output from a renewable energy system
before it is injected to the utility grid.

The key to implement power output smoothing for a re-
newable energy system lies in how to regulate the renewable
generation with stochastic properties. In this work, we propose
a power output smoothing scheme inspired from the leaky
bucket mechanism for constant load. Suppose that a renew-
able source is attached with storage constituting a renewable
energy system. Some power distribution architectures, such
as [8], require a constant power supply. With our scheme,
the renewable energy system can be controlled as a constant
power source to serve the grid at a pre-defined power output
level and it is suitable for critical loads, which requires smooth
power supply for operation. In the design, we need to configure
the energy storage size and the power output level, which
are critical to the overall system performance. Some of the
previous work that focuses on storage sizing does not consider
the power output level of the renewable energy system [9],
[10]. In fact, the energy storage size and the power output level
should be jointly determined since they influence the system
performance simultaneously. In this work, an optimization
framework is proposed to solve this storage and power output
planning problem.

The power output smoothing scheme provides a constant
power output, making the renewable generation a reliable
power source for the grid. However, the load demands may
vary with time. To serve the time-varying loads, most of the
previous work applies the optimization techniques to control
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or schedule the renewable generated power, which are time-
consuming and need prediction information [1], [11]. Some
previous work using heuristic algorithm to solve this problem
mostly focuses on a single perspective, such as, operation cost
reduction [12]. In this work, we propose a heuristic load-
adaptive power smoothing algorithm to adaptively change the
power output level to meet the time-varying loads by jointly
considering the actual load demands, the current renewable
generation, the state of charge (SOC) of energy storage, and
the electricity price. By communicating with other entities in
the grid, the algorithm can reduce operation cost and enhance
the renewable energy utilization.

To summarize, the contributions of this paper are given as
follows:

• We propose a power output smoothing scheme to make
the renewable energy system a reliable power source for
the grid;

• An optimization framework is devised for energy storage
and power output planning for the renewable energy
system. Convex relaxation is adopted to transform the
original optimization problem into a solvable mixed-
integer linear program (MILP).

• A load-adaptive power smoothing algorithm is designed
to reduce operation cost and enhance renewable energy
utilization.

The rest of this paper is organized as follows. The system
model is introduced in Section II. Section III introduces the
power output smoothing scheme, in which the energy stor-
age size and power output reference are determined through
optimization. A load-adaptive power smoothing algorithm is
proposed to adapt to the demand variation in Section IV. The
simulation results of the proposed algorithm are examined in
Section V and the paper is concluded in Section VI.

II. SYSTEM MODEL

Consider a renewable energy system connecting to a power
network, as shown in Fig. 1, indicating the power and in-
formation flows. Consider that the time horizon is divided
into slots, each of which lasts for ∆t minutes. The total
operation time has duration of T time slots, which is indexed
by t ∈ {1, 2, ..., T}. All grid operations can only be changed at
the boundaries of the time slots. We model the total demand in

the power network, as the network load, which requires power
supply from the renewable energy system, with equivalent load
of D(t) kW. It should be noted that D(t) is not a single
load but the equivalent aggregated load of the power network.
The renewable energy system includes a wind power plant,
an energy storage, and a storage controller. The renewable
generated power at Time t is represented by R(t) kW. The
energy storage has size of B kWh where B > 0 and its
construction cost is ce dollars/kWh. TL denotes the total
lifetime of the energy storage. It gets charged and discharged at
Pc(t) ≤ P c(t) and Pd(t) ≤ P d(t), respectively, where P c(t)
and P d(t) are the maximum charging and discharging powers
in kW. The charging and discharging efficiencies are defined
as 0 < η < 1 and 0 < β < 1, respectively. The state of charge
(SOC) of the energy storage is represented by S(t) kWh. The
storage controller controls the charging or discharging of the
energy storage to change the power output. The actual power
output from renewable energy system, Pout(t) kW, is given
by:

Pout(t) = R(t)− Pc(t) + Pd(t). (1)

Suppose that the renewable energy system is utilized to
serve the network load D(t). To meet the network load
demand, the other generation units in the smart grid are
required to compensate the discrepancy by injecting power
of Pe(t) kW satisfying Pe(t) ≥ 0, such that

Pout(t) + Pe(t) = D(t). (2)

If Pout(t) is larger than D(t), R(t) can be curtailed by the
wind power plant to maintain the contracted power output. The
unit cost of buying electricity from the controllable generation
unit is denoted as p(t) dollars/kW.

III. POWER OUTPUT SMOOTHING FOR CONSTANT LOAD

In this Section, we assume that the network load is constant.
The renewable energy system makes a contract with the power
grid and acts as a constant power source to serve the network
load. The network load D(t) kW maintains at the level
supported by the contracted power output C kW, such that
the renewable energy system can provide a good power output
reference for the network load. We will relax this constant
network load assumption in Section IV. We design a power
output smoothing scheme for the renewable energy system.
The principle of the power output smoothing is firstly intro-
duced and then an optimization problem for determining the
optimal storage size and power output reference is discussed.

A. Design Principle

The key to implement power output smoothing lies in how
to regulate the power sources with stochastic properties. With
energy storage, the renewable energy system has more capa-
bilities to control the power output. A scheme to control the
energy storage is thus required in order to smooth the power
output for practical utilization. To find our solution, we find
that the stochastic power sources share some similarities with
the stochastic traffic sources. In fact, a mechanism to smooth
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Fig. 2. Power output smoothing scheme.

the stochastic traffic sources, called leaky bucket mechanism,
has been proposed in [13] and showed its effectiveness in
traffic shaping for stochastic traffic sources [14], [15]. A
scheme that is inspired from the leaky bucket mechanism can
be applied for smoothing the power output from the renewable
energy system. In our scheme, the energy management of
the energy storage can be considered as the way how the
leaky bucket handles the fluid. We define C as the power
output reference for the renewable energy system in kW.
The renewable energy system thus serves the network load
with constant power C = D(t) kW. The energy storage
is controlled to equalize Pout(t) and C in case of power
imbalance, as shown in Fig. 2.

An algorithm to implement the power output smoothing
scheme is devised in Algorithm 1. In step 2–3, the charging
and discharging demand are computed in order to equalize
Pout(t) and C, respectively. In step 4–5, the maximum charg-
ing and discharging rate considering the SOC constraints are
computed. In step 6–7, Pc and Pd are computed by jointly
considering the charging and discharging demands, the SOC
constraints, and the charging and discharging bounds. Our
algorithm aims to maintain the power output of renewable
energy system constant, so as to meet the needs of the network
load with a flat smooth power supply profile.

It should be noted that the proposed power output smooth-
ing scheme is not a simple extension of the leaky bucket
mechanism. In fact, power cannot be directly injected to the
energy storage as the way that the fluid flows into the leaky
bucket. This increases the power losses substantially because
of the charging and discharging losses of the energy storage.
In our scheme, as shown in Fig. 2, the energy storage only
compensates for the power imbalance between Pout(t) and C.
Moreover, we also need to consider the SOC constraints, the
charging and discharging bounds, and charging and discharg-
ing efficiencies in our power output smoothing scheme.

For the proposed scheme, the energy storage size B kWh
and the power output reference C kW have great influences
on the system performance. Thus, there is a need to properly
configure their values. To do this, we formulate the storage
and power output planning problem to determine their optimal
values.

Algorithm 1 Power output smoothing scheme
Input: Real-time data for renewable generated power R(t), storage

SOC S(t), storage size B, P c(t), P d(t).
Output: Pc(t), Pd(t).

1: for each time slot ∆t do
2: Compute the charging demand Gc(t) = max{R(t)− C, 0}.
3: Compute the discharging demand Gd(t) = max{C −
R(t), 0}.

4: Compute the maximum charging rate before battery is full at
the end of this time slot Mc(t) = B−S(t)

η∆t
.

5: Compute the maximum discharging rate before battery is
empty at the end of time slot Md(t) = S(t)β

∆t
.

6: Compute Pc(t) = min{Gc(t),Mc(t), P c(t)}.
7: Compute Pd(t) = min{Gd(t),Md(t), P d(t)}.
8: Update S(t+ 1) = S(t) + ηPc(t)∆t− Pd(t)

β
∆t.

9: Return Pc(t), Pd(t).
10: end for

B. Storage and Power Output Planning Problem

Our objective is to provide the power supply with higher
power output reference, leading to higher renewable energy
utilization and higher contract revenue. Meanwhile, we try to
avoid power shortage and constrain the energy storage size.
The objective function should capture the storage construction
cost, operation cost, and the revenue made from the renewable
energy system. The electricity cost stemmed from the control-
lable generation unit Cg dollars is given by:

Cg =

T∑
t=0

Pe(t)p(t)∆t =

T∑
t=0

[C − Pout(t)]+p(t)∆t, (3)

where [x]+ means max{x, 0}.
The construction cost for energy storage Ce dollars is

represented by:

Ce = ceB
T

TL
. (4)

It describes the averaged construction cost of the energy
storage in the operation period of T time slots [16]. For
simplicity, the capacity fade of energy storage is ignored in
our model since the capacity fade is not significant during the
storage lifetime [17].

The contract revenue is given as:

Rc = rcC
T

Ta
, (5)

where rc dollars/kW is the annual contract revenue for each
unit of power supply and Ta is the duration of the contract
period in time slots.

Hence, the objective function f can be expressed as:

f = Cg + Ce −Rc. (6)

The charging and discharging powers of energy storage
follow the design principles introduced in Section III-A. Note
that the energy storage is controlled to equalize Pout(t) and
C in case of power imbalance, considering the charging and
discharging bounds P c(t) and P d(t), and the SOC constraints.



The charging power Pc(t) kW is thus formulated as:

Pc(t) = min{max{R(t)− C, 0}, B − S(t)

η∆t
, P c(t)}, (7)

where max{R(t) − C, 0} is the amount of excessive power
in kW, B−S(t)

η∆t is the maximum charging rate before battery
is full at the end of time slot, and P c(t) gives the charging
bound.

Similarly, the discharging power Pd(t) kW is given by:

Pd(t) = min{max{C −R(t), 0}, S(t)β

∆t
, P d(t)}, (8)

where max{C − R(t), 0} is the amount of power shortage,
S(t)β

∆t is the maximum discharging rate before battery is empty
at the end of time slot, and P d(t) gives the discharging bound.

Since the charging and discharging of the energy storage
cannot happen simultaneously, we have:

Pd(t) · Pc(t) = 0. (9)

The evolution of SOC through Time t is denoted as:

S(t+ 1) = S(t) + ηPc(t)∆t−
Pd(t)

β
∆t, (10)

where S(0) is the initial SOC. Furthermore, the storage SOC
is bounded by the energy storage size, which is as follows:

0 ≤ S(t) ≤ B. (11)

The power output reference C kW should not exceed the
maximum contracted power output C kW. This means that:

0 ≤ C ≤ C. (12)

Therefore, the overall optimization problem for storage and
power output planning is given as:

minimize
B,C

f

subject to (7)–(12).
(13)

Solving (13) gives the optimal B and C for storage and power
output planning. Due to (7), (8), and (9), the problem is non-
convex and cannot be solved easily.

C. Problem Relaxation

Here, we show that Problem (13) can be relaxed to form a
convex problem. To do this, we transform Constraint (7) into:

0 ≤ Pc(t) ≤ a0P c(t) (14)

0 ≤ Pc(t) ≤
B − S(t)

η∆t
(15)

0 ≤ Pc(t) ≤ R(t). (16)

Constraint (8) can also be transformed into:
0 ≤ Pd(t) ≤ a1P d(t) (17)

0 ≤ Pd(t) ≤
S(t)β

∆t
(18)

0 ≤ Pd(t) ≤ C. (19)

Note that a0 and a1 need to satisfy:

a0 + a1 = 1, a0, a1 ∈ N (20)

In fact, (14)–(20) are convex and are sufficient conditions for
(7), (8), and (9). Then, we have a relaxed problem:

minimize
B,C,Pc(t),Pd(t)

f

subject to (10)–(12), (14)–(20).
(21)

Theorem 1. Suppose that the cost induced from the control-
lable generation unit p(t) is constant. The optimal solutions
for B and C in (21) are these of (13).

Proof. It is easy to see that the feasible region of Problem (13)
is a subset of the feasible region of Problem (21). Comparing
the storage charging and discharging constraints (7), (8), and
(9) in (13) with (14)–(20) in (21), we divide the storage charg-
ing and discharging constraints (14)–(20) in Problem (21) into
four cases: (i) 0 ≤ Pc(t) < max{R(t)−C, 0} and Pd(t) = 0;
(ii) max{R(t) − C, 0} < Pc(t) ≤ R(t) and Pd(t) = 0; (iii)
Pc(t) = 0 and 0 ≤ Pd(t) < max{C − R(t), 0}; and (iv)
Pc(t) = 0 and max{C −R(t), 0} < Pd(t) ≤ C.

Compared with (7), (8), and (9), the above four cases
correspond to the states of the energy storage (i) under-
charging; (ii) over-charging; (iii) under-discharging; and (iv)
over-discharging, respectively. We can conclude from (3) and
(6) that f cannot be reduced by adopting (i) and (iv) since
(i) and (iv) only result in a smaller S(t) without reducing Cg .
Given that p(t) is a constant, we can conclude from (3) and
(6) that f cannot be reduced by adopting (ii) and (iii) since
Cg cannot be reduced by curtailing current power output and
reserving energy for future use. Therefore, by deriving Cg and
S(t) based on Pc(t) and Pd(t), it can be proved that, for all the
four situations, given B and C, Problem (13) always achieves
a smaller or the same value of f than Problem (21). Since
the feasible region of Problem (13) is a subset of the feasible
region of Problem (21), coupled with the above results, we
can conclude that, solving Problem (13) for optimal B and C
is equal to solving Problem (21) for optimal B and C. Thus,
the optimal solutions for B and C in Problem (21) is also
optimal for Problem (13).

With this theorem, we can obtain the solution of the original
problem (13) by solving the relaxed problem (21), which is
an MILP.

IV. LOAD-ADAPTIVE POWER SMOOTHING ALGORITHM

The proposed power output smoothing scheme is ideal
for its constant power output reference C kW. In real grid
operations, the network load D(t) kW that the renewable
energy system serves may vary around the power output refer-
ence C kW with time. In this section, a load-adaptive power
smoothing algorithm is developed to alter the power output
reference to meet the load variations by taking the network
load, current renewable generation, and electricity price into
account. Because D(t) changes with time, the power output
reference also needs changing to adapt to the load demand.



The time-varying power output reference is thus denoted as
C(t) kW, which is the dynamic power output reference C kW
with time. By employing the advanced grid communication
facilities, the network load demand D(t) kW and electricity
price p(t) dollars/kW can be updated and made available at
the renewable energy system. We further show that, by jointly
considering the above information, the operation cost can be
reduced and the renewable utilization can be improved.

The pseudocode of the algorithm is shown in Algorithm
2. It iterates at the beginning of each time slot and each
iteration consists of two parts: determining C(t) in Steps
2–3 and equalizing Pout(t) and C(t) in Steps 4–5. In Step
2, three indicators includes SOC indicator MSOC , renewable
generation indicator MRG, and price indicator Mp are defined
and calculated to measure the grid information. We define the
threshold for the storage SOC as Sth kWh. The SOC indicator
MSOC is defined to measure the extent that the SOC is below
the threshold:

MSOC =
[Sth − S(t)]+

Sth
. (22)

The renewable generation indicator MRG is defined to
measure the current level of renewable generated power:

MRG =
Rmax −R(t)

Rmax
, (23)

where Rmax denotes the maximum renewable generated
power. The price indicator Mp is defined to measure the
current electricity price:

Mp =
pmax − p(t)
pmax − pmin

, (24)

where pmax and pmin denote the highest and lowest electricity
prices, respectively. MSOC , MRG, and Mp are then computed
based on S(t), R(t), and p(t). In Step 3, C(t) is determined
by jointly considering the above indicators:

C(t) = D(t)(1−Mp(αMSOC + µMRGMSOC)). (25)

Intuitively, if the current electricity price is low, which
means that Mp approaches to one, C(t) is curtailed so that
the system can save enough energy for the situation when the
electricity price goes high. In this way, the system can save the
operation cost. The curtailment level is determined by jointly
considering the renewable generation indicator and the SOC
indicator, where α and µ are curtailment coefficients. When
the SOC is above Sth and the current renewable generated
power is high, the curtailment vanishes so that the algorithm
can maintain high renewable generation utilization. Steps 4–
5 implement the power output smoothing scheme as (7) and
(8) to determine the Pc(t) and Pd(t), where C is replaced by
C(t):

Pc(t) = min{max{R(t)− C(t), 0}, B − S(t)

η∆t
, P c(t)} (26)

Pd(t) = min{max{C(t)−R(t), 0}, S(t)β

∆t
, P d(t)}. (27)

The storage SOC is updated (Step 6). Pc(t) and Pd(t) are
returned as the control signals to control the energy storage
(Step 7).

Algorithm 2 Load-adaptive power smoothing algorithm
Input: Real-time data for renewable generated power R(t), the

network load demand D(t), storage SOC S(t), electricity price
p(t), storage size B, P c(t), P d(t).

Output: Pc(t), Pd(t).
1: for each time scale ∆t do
2: Compute MSOC , MRG, and Mp with MSOC = [Sth−S(t)]+

Sth
,

MRG = Rmax−R(t)
Rmax

, Mp = pmax−p(t)
pmax−pmin

.
3: Compute C(t) = D(t)(1−Mp(αMSOC + µMRGMSOC)).
4: ComputePc(t)=min{max{R(t)−C(t), 0}, B−S(t)

η∆t
, P c(t)}.

5: ComputePd(t)=min{max{C(t)−R(t), 0}, S(t)β
∆t

, P d(t)}.
6: Update S(t+ 1) = S(t) + ηPc(t)∆t− Pd(t)

β
∆t.

7: Return Pc(t), Pd(t).
8: end for

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate our proposed power output smoothing scheme
and the load-adaptive power smoothing algorithm with a case
study of a small-scale wind power generator located in the
north of Los Angeles, California. We consider a set of real
data recorded for the whole 2012 with the metering interval of
five minutes [18]. The network load of D(t) kW is assumed to
follow the normal distribution with mean of 8 kW and variance
equal to 1 kW2. The electricity price for the controllable
generation unit is time-varying and the historical pricing data
is obtained from [19]. The durations of the whole operation
period T and a time slot ∆t are set to one year (365 days) and
one minute, respectively. Due to the randomly generated D(t),
the simulations are run for 100 times with different random
seeds.

B. Scenarios for Comparison

We compare five scenarios for power output smoothing:
(S1) without storage (base scenario), (S2) with storage using
a utilization-based algorithm, (S3) with storage using a price-
based algorithm, (S4) with storage using the power output
smoothing scheme described in Section III, and (S5) with
storage using the proposed load-adaptive power smoothing
algorithm described in Section IV.

S1 is considered as the base case for reference in which
no energy management method is implemented. In S2, the
storage gets charged or discharged for any imbalance between
the renewable power supply and the network load demand.
When the storage is fully charged or empty, it stops operating
until it regains its capability of charging and discharging.
Thus, we only control the charging and discharging power
as Pc(t) = min{max{R(t) − D(t), 0}, B−S(t)

η∆t , P c(t)} and
Pd(t) = min{max{D(t) − R(t), 0}, S(t)β

∆t , P d(t)}, respec-
tively. It should be noted that S2 gains the optimal renewable
energy utilization so it is used as a benchmark for the



comparison of renewable energy utilization. In S3, the price-
based algorithm curtails the power output reference when the
electricity price becomes high. The power output reference
C(t) kW is determined by the current electricity price p(t)
dollars and the network load demand D(t) kW as C(t) =
D(t)(1 − φMp), where Mp is the price indicator defined in
(24) and φ (set to 0.1) is the coefficient that determines the
effect of the price signal. Pc(t) and Pd(t) can be computed
with (26) and (27) given C(t). S3 takes electricity price into
account and aims to reduce the operation cost compared to
S2. In S4, given C, Pc(t) and Pd(t) are computed with (7)
and (8). C is set as eight, which equals the mean of D(t).
In S5, the threshold of energy storage is set as Sth = 0.2B.
Coefficients α and η are both set to 0.5.

C. Performance Metrics

We consider two performance metrics: Cavg and URG. Cavg
is the daily average cost, which is defined as:

Cavg =
Td
T

T∑
t=0

max{(D(t)− Pout(t)), 0}p(t)∆t, (28)

where Td is the time period of 24 hours. This is the daily
average operation cost for the whole time horizon. URG
represents the renewable energy utilization and measures the
actual renewable penetration in serving the network load. It is
given as:

URG =

∑T
t=0 min{D(t), Pout(t)}∆t∑T

t=0D(t)∆t
. (29)

An algorithm resulting in lower Cavg and higher URG indi-
cates better performance.

D. Simulation Results

We perform four tests to evaluate the performance of our
methods. In first test, we examine our proposed power output
smoothing scheme, i.e., S4, for the ideal constant load. In
the second and third, we compare the four scenarios S1, S2,
S3, and S5 in the presence of time-varying load in terms
of operation cost and renewable utilization, respectively. In
the fourth, we test the capability of the load-adaptive power
smoothing algorithm (S5).

1) Test 1 : We focus on constant load and compare S1 and
S4 in terms of renewable energy utilization. This allows us
to investigate the capability of the power output smoothing
scheme in serving the ideal constant load. Fig. 3 shows
the corresponding utilization with different storage size B.
It reveals that, when the energy storage size increases, the
utilization of the power output smoothing scheme improves
but the marginal utilization gain decreases.

2) Test 2: We compare the four scenarios, S1–S3, and
S5, in the presence of time-varying load in terms of daily
average cost. The results are given in Fig. 4 with 95%
confidence interval. We can see that the cost is the highest
in S1 than in the others with storage and thus storage can
help reduce the operation cost. Among those with storage,

Fig. 3. Renewable energy utilization gain of using power output smoothing
scheme.

Fig. 4. Comparison on daily average cost among different algorithms.

the load-adaptive power smoothing algorithm outperforms the
utilization-based and the price-based algorithms. When the
storage size increases, the gain between the load-adaptive
algorithm and the others becomes larger. It is because the
algorithm gives the system with larger capability to response
to the price signal.

3) Test 3: Next, we perform a similar test as Test 2 but we
do the comparison in terms of renewable energy utilization.
Fig. 5 depicts the performance under the four scenarios, with
95% confidence interval. The utilization-based algorithm gains
the optimal renewable energy utilization since it always aims
at meeting the load demand without considering the price.
Among those with storage, the price-based algorithm earns
the lowest utilization since it only responds to the price signal.
When the storage size is small, e.g., B = 10 kWh, the price-
based algorithm has even a lower utilization than that of the
base scenario as it curtails its power output to save energy
reserve for future cost reduction. Although the utilization-
based algorithm performs a little better than the load-adaptive
power smoothing algorithm, the utilization gap between them
becomes smaller when the storage size increases.



Fig. 5. Comparison on renewable energy utilization among different algo-
rithms.

Fig. 6. Gain of the load-adaptive power smoothing algorithm with time-
varying load.

4) Test 4: We focus on the load adaptability of our proposed
methods. We compare the power output smoothing scheme in
S4 and the load-adaptive power smoothing algorithm in S5
under different variances of time-varying network load. Note
that the former is designed for constant load but it can still
function in time-varying load conditions. The storage size is
set as 100 kWh. The results are given in Fig. 6 with 95%
confidence interval. From Fig. 6, we see that the load-adaptive
power smoothing algorithm has a lower daily average cost and
a higher renewable energy utilization because it can adaptively
alter the power output reference to track the actual network
load demand. As the load variance increases, the performance
of the power output smoothing scheme deteriorates drastically
while the load adaptive power smoothing algorithm can main-
tain the daily average cost and renewable energy utilization.

VI. CONCLUSION

This paper investigates how to smooth the power output
of the renewable energy system for practical utilization. In
this paper, we introduce a renewable power output smoothing
scheme to serve the constant load inspired by the leaky
bucket mechanism. In this scheme, an optimization method

is developed to determine the optimal energy storage size and
the power output reference. We show the optimization problem
can be convexified under certain assumptions, so that the
original non-convex optimization problem can be solved using
MILP. To serve the time-varying load, a load-adaptive power
smoothing algorithm is proposed to alter the power output
reference based on the current renewable generation, the actual
load demand and the electricity price. Our simulation shows
that the algorithm can reduce operation cost and maintain high
renewable utilization level.
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