Probabilistic model of onset detection explains paradoxes in human time perception

Stanislav Nikolov ${ }^{1 \dagger}$, Dobromir A. Rahnev ${ }^{2 *+}$ and Hakwan C. Lau ${ }^{2}$
${ }^{1}$ Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Boston, MA, USA
${ }^{2}$ Department of Psychology, Columbia University, New York, NY, USA
Edited by: Zoltan Dienes, University of Sussex, UK
Reviewed by: John J. McDonald, Simon Fraser University, Canada David Eagleman, Baylor College of Medicine, USA
*Correspondence: Dobromir A. Rahnev, Department of Psychology, Columbia University, 406 Schermerhorn Hall, 1190 Amsterdam Ave, MC 5501, New York, NY 10027, USA. e-mail: rahnev@psych.columbia.edu
${ }^{\text {tS }}$ Stanislav Nikolov and Dobromir A. Rahnev have contributed equally to this work.
Received: 11 March 2010; paper pending published: 28 April 2010; accepted: 09 July 2010; published online: 10 September 2010.
Citation: Nikolov S, Rahnev DA and Lau HC (2010) Probabilistic model of onset detection explains paradoxes in human time perception. Front. Psychology 1:37. doi: 10.3389/ fpsyg.2010.00037
This article was submitted to Frontiers in Consciousness Research, a specialty of Frontiers in Psychology.
Copyright © 2010 Nikolov, Rahnev and Lau. This is an open-access article subject to an exclusive license agreement between the authors and the Frontiers Research Foundation, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

FIGURE S1 |We performed detection independently at each time point on an RP signal with Poisson-like noise. Unlike Gaussian noise, which has a constant variability, the variability of Poisson noise increases with strength of the signal. Each noisy sample was generated by sampling from a Poisson distribution with mean and variance equal to the noiseless sample. Because a signal of 0 would generate no noise and render the experiment trivial, we assumed a background signal of

10 Hz outside the stimulus interval, and a peak signal strength of 50 Hz during the interval. Detection time distributions are shown for criteria below, above and at the optimal criterion. As observed when performing detection independently at each time point, a low criterion mistakes the noise for a signal and results in premature detection, and a high criterion results in late detection or no detection at all. We performed 500 trials, in which the onset was varied uniformly at random

FIGURE S2 |We used an evidence accumulation model (Ratcliff and McKoon, 2008) to perform detection of an RP signal with a peak strength of $50 \mathbf{~ H z}$ and additive Gaussian noise with a SD $\mathbf{1 0} \mathbf{~ H z}$. Evidence was accumulated using a window of size 20, i.e., detection was recorded when the mean of the last 20 samples exceeded the criterion. Detection time distributions
are shown for criteria below, above and at the optimal criterion. As observed when performing detection independently at each time point, a low criterion mistakes the noise for a signal and results in premature detection, and a high criterion results in late detection or no detection at all. We performed 500 trials, in which the onset was varied uniformly at random.

FIGURE S3 |We used a temporal smoothing model (Rao et al., 2001) to perform detection of an RP signal with a peak strength of 50 Hz and additive Gaussian noise with a SD of $\mathbf{1 0} \mathbf{~ H z}$. Temporal smoothing was performed by computing a running correlation of the noisy signal with a centered Gaussian window with SD 0.25 s and a width of 6 SD. Detection was recorded whenever the correlation exceeded the criterion, but only reported
retrospectively after all data contributing to the correlation was observed. Detection time distributions are shown for criteria below, above and at the optimal criterion. As observed when performing detection independently at each time point, a low criterion mistakes the noise for a signal and results in premature detection, and a high criterion results in late detection or no detection at all. We performed 500 trials, in which the onset was varied uniformly at random.

REFERENCES

Rao, R. P., Eagleman, D. M., and Sejnowski, T. J. (2001). Optimal smoothing in visual motion perception. Neural Comput. 13, 1243-1253.

Ratcliff, R., and McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Comput. 20, 873-922.

