<table>
<thead>
<tr>
<th>Title</th>
<th>Long-term data on sirolimus treatment in lupus nephritis patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yap, YHD; Ma, MK; Mok, MM; Kwan, LP; Chan, GC; Chan, DTM</td>
</tr>
<tr>
<td>Citation</td>
<td>The 12th International Congress on Systemic Lupus Erythematosus (LUPUS 2017) & the 7th Asian Congress on Autoimmunity (ACA 2017), Melbourne, Australia, 26-29 March 2017. In Lupus Science & Medicine, v. 4 n. Suppl. 1, p. A47, abstract no. 109</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/241711</td>
</tr>
<tr>
<td>Rights</td>
<td>Lupus Science & Medicine. Copyright © BMJ Group.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Background and Aims Igruatimod (IGT) is a small molecular immunomodulatory drug and has been approved for treating rheumatoid arthritis. In our previous work, IGT ameliorates lupus-like disease in MRL/lpr mice by inhibiting abnormal B cell differentiation. The aim of this study is to further investigate the effects of IGT on human B cells.

Methods We established a set of stimulations to induce naive human B cell into plasmablast (PB) in vitro. We also enrolled 7 patients with refractory lupus nephritis (LN) to assess the potential efficacy of IGT.

Results IGT significantly attenuates the generation of CD19 + CD20–CD27hiCD38hi plasma cells upon both BCR-dependent and independent stimulations. IGT affects neither proliferation or apoptosis of B cell in vitro. In further investigation on B cell differentiation signalling pathways, we identifies that Blimp-1 and Xbp-1 can be remarkably impaired by IGT both in transcriptional and protein level; while Jak/STAT or NF-κB signalling are intact with IGT treatment. For explosive clinical study, seven patients with refractory LN were enrolled and administrated with IGT and steroids. ALL of these patients surprisingly show improved proteinuria after 8 week treatment. One patient quit the treatment because of anaemia.

Conclusions The present issue demonstrated that the reversible SAHH inhibitor DZ2002 effectively ameliorates lupus syndrome in NZB/W F1 mice by regulating TLR signaling-mediated APC responses. This compound is prospective to become a novel drug for SLE treatment with Hey as a potential biomarker in autoimmune disease.

Background and aims Preliminary data suggested efficacy of sirolimus in treatment of lupus nephritis (LN), but its long-term efficacy and tolerability data is lacking.

Methods We reviewed Class III/IV/V LN patients who received prednisolone and sirolimus either as initial or maintenance treatment during Jan 2007 to Jan 2016.

Results Sixteen patients were included (duration of sirolimus treatment: 27.2±19.6 months). Ten patients received sirolimus due to intolerance to standard immunosuppressive treatments and six patients because of a history of malignancy. Five patients received sirolimus during active LN, and showed improvement in proteinuria (2.8±1.9 g/day and 0.1±0.1 g/day at baseline and 36 months, p=0.011 compared to baseline), anti-dsDNA (107.7±91.9 IU/mL and 37.0±55.4 IU/mL at baseline and 36 months, p=0.145) and C3 (54.8±26.1 mg/dL and 86.3±18.6 mg/dL at baseline and 36 months, p=0.084). Eleven patients received sirolimus during disease quiescence, and showed significant improvement in C3 (90.4±18.1 mg/dL and 117.7±25.1 mg/dL at baseline and 36 months, p=0.025) and stable renal function (58.5±25.2 mL/min and 56.7±29.0 mL/min at baseline and 36 months, p=0.199) and proteinuria (0.8±0.7 g/day and 0.7±0.7 g/day at baseline and 36 months, p=0.263). One patient, whose serum creatinine was 244 μmol/L when sirolimus was started, developed renal failure after 27 months. Renal flare occurred in one patient after 36 months. Sirolimus was discontinued in five patients including one with leucopenia. Four patients showed lipid profile deterioration which was adequately controlled with statin.

Conclusions Sirolimus can be an alternative treatment option for LN and the long-term results do not suggest excessive adverse effects.

Background and aims We report the case of a 62-year-old woman. Psoriasis Vulgaris (Psoriasis) was diagnosed in X-31 year and also SLE with nephritis (WHO IIIa) in X-11. She was treated with high-dose methylprednisolone and cyclosporine A (CsA) to achieve remission. Methylprednisolone was reduced to 4 mg/day.

Methods Because of renal dysfunction, although CsA was discontinued in May X, psoriasis, renal dysfunction and proteinuria became further worse, she was admitted to hospital in July X. She was diagnosed with SLE flare with class IV-G+(A/C)+V lupus nephritis (INS/RPS) and associated psoriasis. The SLEDAI score was 16 and psoriasis area and severity index (PASI) score was 16. Although high-dose corticosteroid (1 mg/kg/day) and a concomitant first dose of IV cyclophosphamide (IVCY) were started, anasarca was still observed and S-Cr was increased from 1.98 to 2.85 mg/dL. Because proportion of anti-dsDNA (107.7±91.9 IU/mL and 37.0±55.4 IU/mL at baseline and 36 months, p=0.145) and C3 (54.8±26.1 mg/dL and 86.3±18.6 mg/dL at baseline and 36 months, p=0.084). Eleven patients received sirolimus during disease quiescence, and showed significant improvement in C3 (90.4±18.1 mg/dL and 117.7±25.1 mg/dL at baseline and 36 months, p=0.025) and stable renal function (58.5±25.2 mL/min and 56.7±29.0 mL/min at baseline and 36 months, p=0.199) and proteinuria (0.8±0.7 g/day and 0.7±0.7 g/day at baseline and 36 months, p=0.263). One patient, whose serum creatinine was 244 μmol/L when sirolimus was started, developed renal failure after 27 months. Renal flare occurred in one patient after 36 months. Sirolimus was discontinued in five patients including one with leucopenia. Four patients showed lipid profile deterioration which was adequately controlled with statin.

Conclusions Sirolimus can be an alternative treatment option for LN and the long-term results do not suggest excessive adverse effects.

Background and aims Preliminary data suggested efficacy of sirolimus in treatment of lupus nephritis (LN), but its long-term efficacy and tolerability data is lacking.

Methods We reviewed Class III/IV/V LN patients who received prednisolone and sirolimus either as initial or maintenance treatment during Jan 2007 to Jan 2016.

Results Sixteen patients were included (duration of sirolimus treatment: 27.2±19.6 months). Ten patients received sirolimus due to intolerance to standard immunosuppressive treatments and six patients because of a history of malignancy. Five patients received sirolimus during active LN, and showed improvement in proteinuria (2.8±1.9 g/day and 0.1±0.1 g/day at baseline and 36 months, p=0.011 compared to baseline), anti-dsDNA (107.7±91.9 IU/mL and 37.0±55.4 IU/mL at baseline and 36 months, p=0.145) and C3 (54.8±26.1 mg/dL and 86.3±18.6 mg/dL at baseline and 36 months, p=0.084). Eleven patients received sirolimus during disease quiescence, and showed significant improvement in C3 (90.4±18.1 mg/dL and 117.7±25.1 mg/dL at baseline and 36 months, p=0.025) and stable renal function (58.5±25.2 mL/min and 56.7±29.0 mL/min at baseline and 36 months, p=0.199) and proteinuria (0.8±0.7 g/day and 0.7±0.7 g/day at baseline and 36 months, p=0.263). One patient, whose serum creatinine was 244 μmol/L when sirolimus was started, developed renal failure after 27 months. Renal flare occurred in one patient after 36 months. Sirolimus was discontinued in five patients including one with leucopenia. Four patients showed lipid profile deterioration which was adequately controlled with statin.

Conclusions Sirolimus can be an alternative treatment option for LN and the long-term results do not suggest excessive adverse effects.

Background and aims Preliminary data suggested efficacy of sirolimus in treatment of lupus nephritis (LN), but its long-term efficacy and tolerability data is lacking.

Methods We reviewed Class III/IV/V LN patients who received prednisolone and sirolimus either as initial or maintenance treatment during Jan 2007 to Jan 2016.

Results Sixteen patients were included (duration of sirolimus treatment: 27.2±19.6 months). Ten patients received sirolimus due to intolerance to standard immunosuppressive treatments and six patients because of a history of malignancy. Five patients received sirolimus during active LN, and showed improvement in proteinuria (2.8±1.9 g/day and 0.1±0.1 g/day at baseline and 36 months, p=0.011 compared to baseline), anti-dsDNA (107.7±91.9 IU/mL and 37.0±55.4 IU/mL at baseline and 36 months, p=0.145) and C3 (54.8±26.1 mg/dL and 86.3±18.6 mg/dL at baseline and 36 months, p=0.084). Eleven patients received sirolimus during disease quiescence, and showed significant improvement in C3 (90.4±18.1 mg/dL and 117.7±25.1 mg/dL at baseline and 36 months, p=0.025) and stable renal function (58.5±25.2 mL/min and 56.7±29.0 mL/min at baseline and 36 months, p=0.199) and proteinuria (0.8±0.7 g/day and 0.7±0.7 g/day at baseline and 36 months, p=0.263). One patient, whose serum creatinine was 244 μmol/L when sirolimus was started, developed renal failure after 27 months. Renal flare occurred in one patient after 36 months. Sirolimus was discontinued in five patients including one with leucopenia. Four patients showed lipid profile deterioration which was adequately controlled with statin.

Conclusions Sirolimus can be an alternative treatment option for LN and the long-term results do not suggest excessive adverse effects.
109 Long-term data on sirolimus treatment in lupus nephritis patients

DYH Yap, MK Ma, MM Mok, LP Kwan, GC Chan and TM Chan

Lupus Sci Med 2017 4: A47
doi: 10.1136/lupus-2017-000215.109

Updated information and services can be found at:
http://lupus.bmj.com/content/4/Suppl_1/A47.2

These include:

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/