Title	A novel patient with an attenuated Costello syndrome phenotype due to an HRAS mutation affecting codon 146-Literature review and update
Author(s)	Chiu, ATG; Leung, GKC; Chu, YWY; Gripp, KW; Chung, BHY
Citation	American Journal of Medical Genetics Part A, 2017, v. 173 n. 4, p. 1109-1114
Issued Date	2017
URL	http://hdl.handle.net/10722/241614
Rights	American Journal of Medical Genetics Part A. Copyright © John Wiley & Sons, Inc.; This is the peer reviewed version of the following article: American Journal of Medical Genetics Part A, 2017, v. 173 n. 4, p. 1109-1114, which has been published in final form at https://doi.org/10.1002/ajmg.a.38118. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A novel patient with an attenuated Costello syndrome phenotype due to an HRAS mutation affecting codon 146—Literature review and update

Annie Ting Gee Chiu | Gordon Ka-Chun Leung | Yoyo Wing-Yiu Chu | Karen W. Gripp | Brian Hon-yin Chung

1 LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong, China
2 Division of Medical Genetics, A.I. duPont Hospital for Children, Wilmington, Delaware
3 Correspondence
Dr. Brian Hon-Yin Chung, LKS Faculty of Medicine, Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, HKSAR, Rm 103, 1/F, New Clinical Building, Queen Mary Hospital, Hong Kong, China.
Email: bhychung@hku.hk

1 INTRODUCTION

Costello syndrome is a distinctive rare multisystem disorder comprising of characteristic facial appearance (thin hair, coarse facies, thick eyebrow, downslanted palpebral fissures, depressed nasal bridge, low set ears, thick lips, and full cheeks), intellectual disability, growth disturbance (biphasic pattern with intrauterine overgrowth and postnatal failure to thrive that improves in later life), and tumor predisposition (Hennekam, 2003; Johnson et al., 1998; Sammon et al., 2012).

It is caused by HRAS mutations exclusively (Aoki et al., 2005). The disease-causing mutations result in amino acid substitutions that allow constitutive or prolonged HRAS activation and subsequently dysregulation of the Ras/mitogen activated protein kinase pathway (Gripp & Lin, 2012). Over 90% of the mutations causing Costello syndrome affect amino acid position 12 (p.Gly12) or 13 (p.Gly13) (Gripp & Lin, 1993). Among them, the three most common mutations are p.Gly12Ser (81.3% of total), p.Gly12Ala (7.2%), and p.Gly12Cys (2%). Mutations affecting position 146 are rare and estimated to be seen in less than 1% of patients (Sol-Church et al., 2009). Here, we report on a patient who presented with failure to thrive and poor feeding, and was found to have a novel p.Ala146Pro HRAS mutation by exome sequencing. We reviewed the literature on patients with mutation involving this amino acid position and obtained updated information on these patients.

2 CLINICAL REPORT

Our patient was born full term to a non-consanguineous Chinese couple with a birth weight of 3.1 kg (25th centile). The prenatal course was uneventful. He had poor feeding and failure to thrive, which did not improve with dietetic intervention. At 6 months of age, he weight was 4.96 kg (<3rd centile), 50th centile for 1.5 months), with a height of 59 cm (<3rd centile, 50th centile for 2.5 months), and OFC of 43 cm (25th centile). Initial physical examination by his pediatrician did not reveal dysmorphic features.

Laboratory investigations showed metabolic acidosis with elevated fasting lactate of 6.7 mmol/L. Common mitochondrial hotspot mutation screening was negative. His initial thyroid function test was suspicious of secondary hypothyroidism with thyroid stimulating hormone of 0.35 mIU/L and free thyroxine of 9.5 pmol/L. However, it subsequently normalized and the thyroid-releasing-hormone...
FIGURE 1 Clinical photographs of the index patient with p.Ala146Pro mutation of *HRAS*. A) Profile view of his face (taken at 36 months) and B) Frontal view of his face (taken at 33 months). Note the fontal bossing, sparse and short hair, long eyelashes, deep set eyes, low set ears, short nasal tip, long philtrum and the absence of full cheeks and full lips. C) Clinical photographs of his hand with absence of deep palmar crease (taken at 36 months).

FIGURE 2 Screenshot of exome sequencing data of the index patient, showing a mutation in *HRAS*: c.436G>C:p.Ala146Pro (Figure 2A); subsequent Sanger validation confirmed the findings in the index patient’s peripheral blood sample (Figure 2B) and buccal swab (Figure 2C), showing no evidence of mosaicism.
stimulation test was normal. There was transient neutropenia with absolute neutrophil count of 0.25–0.5 × 10⁹/L which resolved after an episode of intercurrent illness. Other evaluations were essentially unremarkable with normal biotinidase level, carnitine, and acylcarnitine profile, dried blood spot test for amino acid and urine for organic acid. Brain MRI at 9 months showed an arachnoid cyst at the left posterior cranial fossa measuring 1.2 cm. It was repeated at 2.5 years showing similar findings.

He had moderate global developmental delay at 2.5 years and was referred for genetic evaluation. Physical assessment showed frontal bossing with sparse and short hair, long eyelashes, deep set eyes, low set ears, short nasal tip, long philtrum, dry skin and a left sided inguinal hernia. His cheeks and lips were not full, there was no deep palmer crease, no evidence of pectus deformity and no kyphoscoliosis (Figure 1).

Initial genetic evaluation including karyotype, chromosomal microarray, and methylation-specific multiplex ligation-dependent probe amplification of chromosome 11, were normal. Singleton exome sequencing (Mendelian inherited disorder panel, performed by Genome Diagnostics Nijmegen) identified a mutation in HRAS: c.436G>C.p.Ala146Pro, and subsequent parental testing confirmed its de novo origin. A screenshot of the exome sequencing data and the chromatogram of the subsequent Sanger validation showing the mutation is shown in Figure 2A and B. Sanger confirmation using DNA from the patient’s buccal mucosa was also performed (Figure 2C), showing similar findings as the peripheral blood sample and was not suggestive of mosaicism.

He was found to have a cardiac murmur at 3 years. Echocardiogram showed asymmetrical left ventricular hypertrophy which was more severe over the interventricular septum, systolic anterior motion of the mitral valve as well as left ventricular outflow tract obstruction with subvalvular aortic stenosis of 25–50 mmHg, suggestive of hypertrophic obstructive cardiomyopathy (HCM). He was monitored conservatively with serial echocardiogram.

His global developmental delay persisted despite intensive multidisciplinary training. At 4 years, he was walking fast, could scribble, and build a tower of two bricks. He was able to identify five body parts and had multiple single words. In terms of self-care skills, he could feed himself with a spoon and indicate toilet needs. Overall, his developmental profile was evenly distributed with a developmental quotient below 50.

2.1 Literature review and updated information on previously reported patients

Only two other patients have been reported with HRAS mutations involving codon 146 (Gripp et al., 2008; Zampino et al., 2007). Gripp et al. (2008) reported a 5.5 years old girl with a p.Ala146Val mutation, with mildly coarse facial features, short nasal tip, long philtrum, and mildly prominent ears without strikingly deep palmer creases. She also had global developmental delay, feeding difficulties requiring gastrostomy placement, history of treatment resistant tachycardia, growth hormone deficiency, and HCM requiring myomectomy (Gripp et al., 2008). Update from her primary care team revealed that she has not developed further cardiac hypertrophy while on metoprolol, but subsequent echocardiography noted mitral regurgitation at 8 years and ventricular septal defect with mild aortic regurgitation at 10 years. Brain imaging showed mild cerebellar tonsillar herniation (Gripp, Hopkins, Doyle, & Dobyns, 2010). Osteoporosis was treated with calcium and vitamin D supplements. Coxa valga did not require medical intervention (Detwiler, Thacker, Hopkins, Conway, & Gripp, 2013). She was in puberty had no menarche by age 14.5 years. Neuropsychological evaluation at 9 years in her native language showed a full scale IQ of 50 (verbal 53, non-verbal 51). She was originally studying in a mainstream school at grade level. However, after a move and change in the primary language spoken in school, learning difficulties resulted in placement in a school for individuals with moderate intellectual
disability, where she received an individualized education plan and had a behavior specialist for a diagnosis of anxiety. At 14 years, she attended a vocational school program and hoped to become an early childhood teacher’s assistant. Her dysmorphic features has remained subtle (Figure 3A and B).

Zampino et al. (2007) reported another patient with p.Ala146Thr mutation, with normal birth parameters, microcephaly, sparse thin but not curly hair, normally located ears, less compromised growth, and minor skin and joint involvement. Information regarding her systemic involvement was lacking. Unfortunately, we were not able to obtain further updates about the patient’s current condition.

3 | DISCUSSION

Costello syndrome is a RASopathy with multisystemic involvement including cardiac, orthopedic, neurological, growth, and musculoskeletal abnormalities as well as a predisposition for malignancies (Gripp & Lin, 2012). Most patients with Costello syndrome harbor a mutation at codon 12 of the HRAS, the most common one being p.Gly12Ser, accounting for around 80% (Kerr et al., 2006; McCormick et al., 2013). Alteration of glycine at position 12 or 13 of HRAS accounts for more than 90% cases of Costello syndrome. The mutated protein becomes bound to GTP in a constitutive or prolonged manner and activates multiple downstream pathway including MAPK, PI-3 kinase, and RalGDS (Aoki et al., 2005). This leads to altered cell growth, proliferation, and cell death, which is consistent with many of the clinical features seen in Costello syndrome.

Despite the overwhelming predominance of codon 12 or 13 related HRAS mutation, other mutations have been reported, as in the patient with substitution of alanine at position 146 by proline. To our knowledge, this is the third reported patient with Costello syndrome involving position 146 of HRAS. This residue is located within the G3 motif and is totally conserved in the RAS superfamily (Mitin, Rossman, & Der, 2005). It is involved in the binding to the purine ring of GTP/ GDP and interacts directly with the guanine base (Wittinghofer & Waldmann, 2000). Substitutions are predicted to destabilize HRAS binding to either GTP or GDP, but since GTP has a higher
concentration in the cytoplasm it will shift the equilibrium toward the
GTP bound active form (Zampino et al., 2007), acting in much the same
way as mutations in the position 12/13 hotspot.

Individuals with various mutations have an increased predisposi-
tion to malignancy, severe HCM, neonatal mortality, neurological
abnormality, and other complications (Kerr et al., 2006; McCormick
et al., 2013). Patients with the p.Gly12Cys mutation have less coarse
facial features subjectively and loose anagen hair with a matted
appearance. They also have significantly less multifocal atrial
tachycardia, ulnar wrist deviation, papilloma, and short stature (Gripp
et al., 2011). The expression of various downstream pathways,
however, were not shown to be different between genotypes in
functional studies (Gremer et al., 2010), and it is postulated that the
observed genotype-phenotype correlation may be secondary to cell
type specific effects (Gripp et al., 2011). However, genotype-
phenotype correlation of rare mutation like those involving codon
146 is given less attention simply because they are difficult to study
due to the rarity.

Comparing the three patients with HRAS mutations affecting
codon Ala 146, consistently the facial gestalt and physical findings
seems to be milder than patients with mutation at codon 12/13
hotspot and this includes less coarse facies, absence of thick lip,
and deep-palmer crease. Table 1 compared the clinical severity of
the three patients with codon 146 mutation, using the Costello
Syndrome Severity Scoring System (CSSSS) (McCormick et al.,
2013). As stated above, updated clinical information of the patient
with p.Ala146Thr is lacking. However, our patient with p.
Ala146Thr scored 2, which is equivalent to the mean CSSSS score
in patients with p.Gly12Ser mutation in their early childhood, while
the patient with p.Ala146Val already had a score of 5 at age
5 years, which is above the mean score of 3.743 in children with p.
Gly12Ser mutation at 10 years old (McCormick et al., 2013).
Therefore it is important to recognize that these patients with less
obvious signs of Costello syndrome may not necessarily run a more
benign clinical course.

Further management of this child would involve continual medical
surveillance for development and growth, malignancy, neurological,
and orthopedic complications (Gripp et al., 2010). Patients with
Costello syndrome are prone to development of malignancy, especially
rhombomysarcoma, neuroblastoma, bladder cell carcinoma, and
pituitary adenoma (Lin et al., 2011). In order to determine the
malignancy potential of the HRAS p.Ala146 mutation, we searched the
COSMIC database (Bamford et al., 2004) in a similar way as Gripp et al.
(2008) for somatic mutations involving the HRAS as well as the highly
homologous KRAS in human cancer tissues. In a total of 25,736 and
26,421 samples analyzed for HRAS and KRAS principal transcript, 196
and 2,816 mutations were identified for HRAS and KRAS, respectively.
Whereas no mutation was identified in position 146 of HRAS, 68
mutations were found involving position 146 of KRAS, with 52 cases of
p.Ala146Thr, 13 cases of p.Ala146Val, and three cases of p.Ala146Pro.
Such results support the need for vigilance regarding tumor
surveillance. It should be noted, however, that cancer surveillance in
Costello syndrome has been proven to be challenging, for example,
routine screening for neuroblastoma with urine for catecholamines is
not effective, as children with Costello syndrome are known to have
higher urinary excretion of catecholamines compared to the normal
population (Gripp, Kawame, Viskokchi, & Nicholson, 2004).

Another important field of surveillance important is brain imaging. Brain
malformation is highly prevalent in Costello syndrome, and most of it
pertains to postnatal onset posterior fossa crowding with cerebellar tonsillar
herniation, which may progress with time and lead to hydrocephalus, Chiari
malformation, and syrinx formation (Gripp et al., 2010).

Yet another field of surveillance is growth. While Costello syndrome is
associated with failure to thrive per se, nearly half of the
patients also have concomitant partial growth hormone deficiency
(Rauen et al., 2008) and there have been multiple case reports on the
successful use with growth hormone (Blachowska et al., 2016; Stein,
Legault, Daneman, Weksberg, & Hamilton, 2004). However, growth
hormone replacement need be considered with caution in the setting of
HCM. Even though no significant difference in progression of HCM
was noted in children receiving or not receiving growth hormone
replacement (Rauen et al., 2008), re-emergence of previously resolved
HCM during growth hormone replacement has been reported
(Kobayashi, Cook, & Williams, 2010). Rapid progression of embryonic
rhombomysarcoma has also been reported while a patient with
Costello syndrome was put on growth hormone replacement (Kerr
et al., 2003). Thus a thorough evaluation should be performed before
commencement of recombinant growth hormone therapy.

In summary, we report on a patient with Costello syndrome with
the novel position 146 mutation, p.Ala146Pro, in HRAS. The physical
features suggestive of Costello syndrome were noted to be less
classical. Detailed genotype-phenotype analysis is not possible due to
the rarity of position 146 mutation, but current evidence suggests the
same health surveillance as in other patients with Costello syndrome
should be offered. Long-term follow up of these patients will be
necessary for more tailor-made recommendations.

ACKNOWLEDGMENT

We would like to thank the Hong Kong Society for the Relief of
Disabled Children for financing the genetic testing of the index patient.

Disclosures: We, the author and co-authors of the case report, have
no actual or potential conflicts of interest, including any financial, personal,
or other relationships with people or organizations regarding the work.

REFERENCES

Aoki, Y., Niihori, T., Kawame, H., Kurosawa, K., Ohashi, H., Tanaka, Y., . . .
cause Costello syndrome. Nature Genetics, 37, 1038–1040.

Stratton, M. (2004). The COSMIC (Catalogue of Somatic Mutations in

Blachowska, E., Petriczko, E., Horodnicka-Jozwa, A., Skorka, A., Pelc, M.,
hormone therapy in a girl with Costello syndrome: A 4-year

Orthopedic manifestations and implications for individuals with
Costello syndrome. American Journal of Medical Genetics Part A,
factor-dependent MAPK and AKT activation. Human Molecular
Genetics, 19, 790–802.

of progressive postnatal cerebellar enlargement in Costello syndrome:
Brain overgrowth associated with HRAS mutations as the likely cause
of structural brain and spinal cord abnormalities. American Journal of
Medical Genetics Part A, 152A, 1161–1168.

Gripp, K.W., Hopkins, E., Sol-Church, K., Stabiley, D.L., Axelrad, M.E., Doyle,
syndrome due to HRAS p.G13C. American Journal of Medical Genetics

Gripp, K.W., Innes, A.M., Axelrad, M.E., Gillan, T.L., Parboosingh, J.S., Davies,
germine HRAS mutations: An attenuated phenotype? American Journal

catecholamine metabolites in patients with Costello syndrome.

Adam, H.H. Ardinger, S.E. Wallace, A. Amemiya, L.J.H. Bean, T.D. Bird,
C.T. Fong, H.C. Mefford, R.J.H. Smith, K. Stephens, (Eds). GenetReviews-
(R) Seattle (WA).

activated protein kinase pathway syndrome (rasopathy) resulting from

of Medical Genetics Part C Seminars in Medical Genetics, 117C, 42–48.

history, differential diagnosis, and possible cause. Journal of Pediatrics,
133, 441–448.

Kerr, B., Delrue, M.A., Sigaudy, S., Perveen, R., Marche, M., Burgelein, I., . . .
syndrome: HRAS mutation analysis in 43 cases. Journal of Medical Genetics,
43, 401–405.

Philip, N. (2003). Is growth hormone treatment beneficial or harmful in
Costello syndrome? Journal of Medical Genetics, 40, 74.

hypertrophic cardiomyopathy in a child with newly diagnosed Costello
syndrome while receiving growth hormone therapy. Cardiology Young,

Krzak, C.P., Franke, L., Peters, H., Kohlschmidt, N., Kazmierczak, B., Finkelh,

children with Noonan, Costello, and cardio-facio-cutaneous

Gripp, K.W. (2011). Clinical, pathological, and molecular analyses of
cardiovascular abnormalities in Costello syndrome: A Ras/MAPK
pathway syndrome. American Journal of Medical Genetics Part A,
155A, 486–507.

McCormick, E.M., Hopkins, E., Conway, L., Catalano, S., Hossain, J., Sol-
correlation in Costello syndrome using a severity score. Genetics in
Medicine, 15, 554–557.

Schoyer, L. (2008). Molecular aspects, clinical aspects and possible
treatment modalities for Costello syndrome: Proceedings from the 1st

Sammon, M.R., Doyle, D., Hopkins, E., Sol-Church, K., Stabiley, D.L.,
individuals with Costello syndrome. Am J Med Genet Part A, 158A,
2692–2699.

syndrome: G12S HRAS germline mutation inherited from a father
with somatic mosaicism. American Journal of Medical Genetics Part A,
149A, 315–321.

Growth hormone deficiency in Costello syndrome. American Journal of

in tumor formation. Angewandte Chemie International Edition, 39,
4192–4214.

Tartaglia, M. (2007). Diversity, parental germline origin, and phenotypic
spectrum of de novo HRAS missense changes in Costello syndrome.
Human Mutatation, 28, 265–272.

How to cite this article: Chiu ATG, Leung GK, Wing-Yiu Chiu Y, Gripp KW, and Chung BH. A novel patient
with an attenuated Costello syndrome phenotype due to an
HRAS mutation affecting codon 146—Literature review and