<table>
<thead>
<tr>
<th>Title</th>
<th>Environmental factors and out-of-hospital cardiac arrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tian, L; Qiu, H</td>
</tr>
<tr>
<td>Citation</td>
<td>European Heart Journal - Quality of Care and Clinical Outcomes, 2017, v. 3 n. 2, p. 97-98</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2017</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/241514</td>
</tr>
<tr>
<td>Rights</td>
<td>This is a pre-copy-editing, author-produced PDF of an article accepted for publication in European Heart Journal - Quality of Care and Clinical Outcomes following peer review. The definitive publisher-authenticated version European Heart Journal - Quality of Care and Clinical Outcomes, 2017, v. 3 n. 2, p. 97-98 is available online at: https://doi.org/10.1093/ehjqcco/qcw061; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Out-of-hospital cardiac arrest (OHCA) is a condition characterized by unexpected cardiovascular collapse due to an underlying cardiac cause. The most common cause of cardiac arrest is coronary artery disease. Survival rate after an incident of OHCA is as low as 8% so that it is often used as a surrogate for sudden cardiac death, a leading cause of death in the world. Emerging evidence supports a relationship between OHCA and environmental factors such as extreme weather conditions and air pollution.

Sudden cardiac deaths occur more often during morning hours, on Mondays, and during winter months. The winter peak in sudden cardiac death could be explained by cold temperature in the winter. Extreme weather conditions associated OHCA have also been examined. A study conducted in six large Chinese cities and a nationwide study in 47 prefectures of Japan suggested that both extremely cold and hot temperatures are associated with an increased risk of OHCA. The association of heat waves with an increased risk of OHCA has also been confirmed by a multi-city study in Korea.

Air pollution, especially by PM$_{2.5}$ and ozone, is another risk factor for OHCA, as summarized in recent systematic reviews. A time-stratified case-crossover design using 11,677 emergency medical service-logged OHCA events between 2004 and 2011 in Houston, Texas reported an increased risk of OHCA (OR=1.046; 95% confidence interval (CI), 1.012-1.082) for each increment of PM$_{2.5}$ pollution by 6 µg/m3 in the two days prior to an OHCA event, and an increased risk of OHCA (OR=1.039; 95% CI, 1.005-1.073) for each increment of ozone pollution by 20 ppb on the same day as an OHCA event. Another case-crossover study in Stockholm, Sweden found ambient ozone was associated with an increased risk of OHCA for the time windows of 0-2, 0-24, and 0-72 hours before an OHCA event, with odds ratios (OR) of 1.02 (1.01-1.05), 1.04 (1.01-1.07), and 1.05 (1.01-1.09), respectively, per 10 µg/m3 increment in ozone concentration. Exposure to forest fire smoke (particulate matter and carbon monoxide) was also linked to an increased risk of OHCA in Australia.

Interestingly, sunshine exposure was also linked to risk of OHCA, as reported by Onozuka and Hagihara in an ecological study in Japan. The authors followed Antonio Gasparrini’s method to calculate the fraction and number of OHCA events attributable to sunshine exposure. The distributed lag nonlinear models integrated in quasi-Poisson regression and the second stage random-effect meta-analysis were acceptable and standard. The sample size was large, with a total of 658,742 cases from 47 Japanese prefectures. A total of 5.78% OHCA cases were
attributed to non-optimal durations of daily sunlight exposure, among which 4.18% and 1.59% to short and long sunshine duration, respectively.

Is sunshine good for our heart? Reduced sunshine exposure may result in vitamin D deficiency, which is associated with incident cardiovascular disease and even sudden cardiac death. Avoidance of sun exposure has been indicated as a risk factor for major causes of death in women with a similar magnitude as smoking in a large Sweden cohort with 20-year’s follow-up. The beneficial effects of sunlight on cardiovascular health has also been hypothesized to be mediated by mechanisms that are independent of melatonin, vitamin D, and exposure to ultraviolet B. It is suggested that the skin maintains a significant store of nitric oxide (NO)-related species which can be mobilized by sunlight and delivered to the systemic circulation to exert coronary vasodilator and cardio-protective as well as antihypertensive effects.

Although the relationship between sunshine exposure and heart health may be biological plausible, we need to interpret the human epidemiologic data with caution. The sunshine and OHCA study by Onozuka and Hagihara was strengthened by its comprehensive nationwide data and sufficient covariate adjustment in a standard statistical model. On the other hand, the authors acknowledged the limitations of potential exposure misclassification and the heterogeneous relationships in different seasons. The daily sunshine duration and intensity may vary with season, and the health effects of reduced sunlight exposure are distinct in cold and warm seasons. According to the stratified analysis by season that the authors provided in the supplementary materials, the OHCA risk attributable to non-optimal sunshine exposure was much higher in winter than that in summer (37.1% vs. 10.7%). Another question to be explored in the future is whether the association between sunshine exposure and OHCA represents a direct effect or an indirect effect mediated by other environmental factors such as ambient temperature and air pollution.

References:

