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Abstract 

Purpose of review: 

At present, the most common diagnostic measures for the autoimmune neuromuscular 

disease myasthenia gravis (MG) are radioimmunoprecipitation assay (RIPA), enzyme-linked 

immunosorbent assay (ELISA), and cell-based assay (CBA).  Considering the pitfalls of 

these diagnostic assays, this review describes the advantages of using Xenopus tissue cultures 

for MG diagnosis and research.    

 

Recent findings: 

Our recent study described a novel CBA involving Xenopus tissue cultures for MG 

serological diagnosis.  Moreover, this CBA can potentially be applied to elucidate the 

pathogenic mechanisms underlying AChR endocytosis and degradation, and to develop and 

validate potential therapeutic strategies for MG. 

 

Summary: 

Although most CBAs are relatively labor intensive, Xenopus CBA is a promising tool 

for the initial clinical serological diagnosis and for the pathological research of MG.  The future 

studies will be devoted to gain a better understanding of the etiology of MG and to provide a 

therapeutic intervention for this disease. 
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Introduction 

The African clawed frog Xenopus is the leading vertebrate model for the study of 

gene function in embryonic development for the past 50+ years [1, 2].  Using a combination 

of various techniques, including molecular manipulation, cell lineage analysis, and live-cell 

imaging, Xenopus offers an ideal platform for studies on the molecular and cellular controls 

of patterning formation, morphogenesis and organogenesis during embryonic development.  

Remarkably, the well-established Xenopus primary cultures of nerve and muscle tissues have 

been used extensively to elucidate the cellular and molecular mechanisms of neuromuscular 

junction (NMJ) development [3, 4].  Embryonic Xenopus tissue cultures provide several 

unique advantages, including the feasibility of forming functional NMJs in vitro by co-

culturing the muscle cells and spinal neurons (Figure 1a, b), over-expression of green 

fluorescent protein (GFP) fusion proteins or their mutant, and morpholino-mediated 

knockdown of a specific endogenously expressed protein can be easily performed in early 

Xenopus embryos.  Importantly, many findings originally discovered in Xenopus system have 

been subsequently validated in the mammalian systems [5, 6]. 

Myasthenia gravis (MG) is an acquired autoimmune disease of NMJ with a 

prevalence of 200-300 per million populations.  MG is heterogeneous in terms of 

pathophysiology, which is determined by the pathogenic autoantibodies (autoAbs) targeting 

to synaptic proteins at the NMJs [7•].  Approximately 85% of generalized MG patients have 

autoAbs against the acetylcholine receptors (AChRs) in the postsynaptic muscle membrane 

[8], and about 60% of the remaining patients have autoAbs against the muscle associated 

receptor tyrosine kinase (MuSK) and LDL receptor related protein 4 (LRP4) [9, 10].  In this 

review paper, we will describe our recently developed assay involving the use of Xenopus 

muscle or nerve-muscle cultures as an alternative CBA for MG diagnosis.  Afterwards, we 

will highlight the strengths of Xenopus tissue cultures as a research platform to elucidate the 

pathogenic mechanisms underlying AChR endocytosis in MG patients, and to develop 

potential therapeutic strategies by manipulating AChR endocytosis and degradation in MG 

pathogenesis. 

Development of functional NMJs in embryonic Xenopus nerve-muscle cultures 

The NMJ is comprised of the presynaptic motor nerve terminal, the postsynaptic 

muscle membrane, and the terminal Schwann cell [11].  The basal lamina components at 

synaptic cleft also contribute a crucial role in synaptic development.  The study of NMJ 
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development in tissue cultures is traceable back to the landmark discovery by Ross Harrison 

in 1907, in which he invented the “hanging drop” technique using the combined frog 

embryonic nerve fragments and lymphoid tissue to prepare explants on sterile coverslips [12]. 

This denotes the very first observation of nerve tissues that can be cultured, maintained, and 

grown outside the body.  Anderson et al. have further developed the preparation of nerve-

muscle co-cultures using dissociated tissues from early Xenopus embryos in the late 1970s 

[13].  They discovered that the formation of NMJs in vitro can be reproducibly observed 

when the dissociated Xenopus spinal neurons and muscle cells are cultured together, as 

evidenced by the accumulation of AChRs at nerve-muscle contact sites after the labeling with 

fluorescent α-bungarotoxin (α-BTX) (Figure 1b).  Moreover, by making successive 

observations on the same muscle cells, Anderson and Cohen demonstrated the re-distribution 

of fluorescently labeled AChRs upon synaptic induction [14].  Nerve-induced redistribution 

of AChRs is thus believed to be one of the initial steps in neuromuscular synaptogenesis.  

The development of functional NMJs after the initial establishment of a nerve-muscle contact 

was further supported by in vitro electrophysiological recordings on Xenopus nerve-muscle 

co-cultures [15] (Figure 1c).  Similar to the NMJs in mammalian systems, the developmental 

transition of AChR subunit composition from γ- to ε-subunit is also detected at Xenopus 

NMJs [16], reflecting the modulation of AChR channel properties during the 

developmentally regulated maturation of neuromuscular synapses in both mammalian and 

Xenopus systems. 

Regulation of AChR trafficking and clustering at developing NMJs 

The presence of a high density of AChR clusters at postsynaptic membrane is the 

most prominent feature of the NMJs.  Even prior to nerve innervation, AChRs are expressed 

and assembled in spontaneous clusters, called aneural AChR clusters, in Xenopus muscle 

cultures and other muscle cell lines [5, 17] (Figure 1b).  During neuromuscular 

synaptogenesis, it is widely believed that the induction, assembly, and maturation of AChR 

clusters at postsynaptic site are initiated by the stimulation of a nerve-derived heparan-sulfate 

proteoglycan agrin (AGRN) [18].  Binding of agrin to LRP4 activates MuSK that 

consequently causes AChR clustering through a cytoplasmic linker protein rapsyn, receptor 

associated protein of the synapse (RAPSN) [19-21].  In addition, agrin-induced MuSK 

activation causes dephosphorylation of aneural AChR clusters by tyrosine phosphatases, 

which eventually leads to the dispersal of aneural AChR clusters [22].  There are two non-
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mutually exclusive hypotheses that have been proposed to mediate redistribution of AChRs 

from extra-synaptic regions to the nascent postsynaptic sites for clustering.  First, the 

diffusion-trap mechanism suggests that nerve-induced assembly of cytoskeletal scaffolds may 

act as a trap to recruit and/or stabilize the mobile AChR molecules that exhibit random 

Brownian motion in the muscle membrane surface [23].  Second, AChRs at the aneural 

cluster may be internalized, transported via the endocytic vesicles, and then re-inserted to the 

synaptic sites by the vesicular trafficking mechanism.  The recycling of internalized AChRs 

is a calcium-dependent process, mediated by calcium-activated calmodulin-dependent kinase 

II (CaMKII) activity [24].  

Both actin and microtubule cytoskeleton are shown to be crucial for vesicular 

trafficking and clustering of AChRs at the postsynaptic sites [25, 26].  Agrin activates a small 

GTPase Cdc42 that in turn regulates Arp2/3 complex to promote actin polymerization 

through the activation of Wiskott Aldrich Syndrome protein (WASp) [27].  The postsynaptic 

stabilization of AChR clusters is achieved by the rapsyn-mediated linkage of the AChR to the 

cytoskeleton-anchored dystrophin-glycoprotein complex [28].  Apart from serving as a stable 

cytoskeletal scaffold for the docking and anchoring of structural and signaling molecules, our 

previous studies have provided definitive evidence to show that another dynamic pool of F-

actin, regulated by actin depolymerizing factor (ADF)/cofilin, actively facilitates the site-

directed delivery of AChRs to the nascent postsynaptic sites by modulating dynamic actin 

turnover locally.  ADF/cofilin may break the cortical actin barrier for allowing the fusion of 

AChR-containing vesicles with the plasma membrane [5].  As for the involvement of 

microtubules for AChR clustering, a recent study has demonstrated that an increase in 

microtubule capturing leads to an increase in AChR density at the postsynaptic membrane 

[29].  Agrin inhibits the phosphorylation of serine residues of microtubule plus end-tracking 

protein CLASP2.  Phosphatidylinositol-3,4,5-triphosphate (PIP3)-binding protein LL5β 

promotes the binding of CLASP2 to microtubule plus-ends in regulating microtubule 

capturing. 

Pathogenic mechanisms of AChR endocytosis and degradation in MG 

MG is a prototypical autoimmune neuromuscular disease caused by the attack of 

autoAbs against some crucial postsynaptic proteins at NMJs.  It has been shown from the 

clinical data that around 85% MG patients contain autoAbs against complex epitopes in 

different subunits of AChR, including cholinergic receptor nicotinic alpha 1 (CHRNA1), 
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cholinergic receptor nicotinic beta 1 (CHRNB1), cholinergic receptor nicotinic delta 

(CHRND), cholinergic receptor nicotinic epsilon (CHRNE), and cholinergic receptor 

nicotinic gamma (CHRNG) (Table 1), which represent the most typical type of autoAbs in 

seropositive MG (SPMG) patients [30].   The pathogenic mechanisms underlying SPMG are 

relatively well characterized, including antigenic modulation, activation of complement 

system, and inhibition of AChR channel function [7•, 31•] (Figure 2).  The antigenic 

modulation is initiated by the binding of autoAbs to antigens in AChR proteins, which 

induces receptor crosslinking and internalization, and eventually leads to the loss of surface 

AChRs from the postsynaptic membrane (Figure 2a).  The reduced number of postsynaptic 

AChRs decreases the amplitude of nerve-evoked end-plate potentials, and thereby the nerve 

signal is unlikely to initiate muscle contraction by depolarizing the muscle membrane 

potential beyond the threshold for generating an action potential.  In addition, the direct 

binding of autoAbs occupies the ligand-binding sites of AChRs, which prevents the 

activation of AChR from binding with ACh ligands released from the nerve terminal and 

leads to the inhibition of channel function (Figure 2b).  Regarding the activation of 

complement system, autoAbs against AChR belong to IgG1 subclass, consisting of bivalent 

Fc (fragment crystallizable region).  This suggests that binding of IgG1 to AChR activates the 

classical complement system.  Assembly of the membrane attack complex (MAC) triggers 

the influx of calcium ions that causes the destruction of postsynaptic membrane and 

junctional folds, as well as the lysis of muscle fibers (Figure 2c).  Taken together, antigenic 

modulation, complement activation, and channel inhibition are the major pathological 

mechanisms of MG. 

The remaining 15% MG patients that do not have anti-AChR autoAbs were initially 

considered as seronegative MG (SNMG) patients [30, 32, 33]; however, a considerable 

amount of work has been carried out to search for novel antigenic reactivity in SNMG 

patients in the past decades.  Now, more than half of the previously identified SNMG patients 

indeed pose autoAbs against MuSK.  Unlike MG caused by autoAbs against AChR (AChR-

MG), the pathogenic mechanism of autoAbs against MuSK (MuSK-MG) is not well 

understood.  It is believed that the pathogenic subclass of autoAbs involved in MuSK-MG 

belongs to IgG4 [34].  The presence of monovalent Fc due to Fab (fragment antigen-binding 

region) arm exchange making MuSK IgG4 follows a different immunological pathway to 

AChR depletion as in AChR-MG.  This evidence suggests that the depletion of AChR caused 

by anti-MuSK autoAbs is not complement-related.  It has been demonstrated that when the 
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passive transfer of the MG patient-derived IgG with high titres of MuSK antibody into mice, 

there is an internalization of MuSK followed by a reduction in the density and cluster size of 

AChRs at NMJs [32].  It is possible that the dimerization-induced MuSK activation by 

autoAbs leads to its depletion.  However, the exact pathogenic mechanism is yet to be 

revealed.  Apart from the autoAbs against MuSK, there is a growing list of autoAbs has been 

identified in those initially identified SNMG patients, which attack other synaptic proteins at 

the NMJs [7•], including AGRN, LRP4, RAPSN, collagen like tail subunit of asymmetric 

acetylcholinesterase (COLQ), cortactin (CTTN), potassium voltage-gated channel subfamily 

A member 4 (KCNA4), ryanodine receptor 1 (RYR1), and titin (TTN) (Table 1).  With the 

identification of these novel autoAbs, the percentage of SNMG has now been dramatically 

reduced.  Considering the high sequence homology of all these proteins between Xenopus 

and human (as summarized in Table 1), Xenopus tissue cultures offer an ideal assay for the 

study of autoAb-mediated pathogenic mechanisms underlying AChR endocytosis, 

trafficking, and degradation in MG pathogenesis. 

Xenopus cultures as an alternative cell-based assay for MG diagnosis 

In 1976, Lindstrom’s group firstly described a serological assay for MG diagnosis by 

detecting the presence of anti-AChR autoAbs with radioimmunoprecipitation assay (RIPA) 

[35].  In short, radioactive α-BTX molecules are added to bind with AChR proteins in human 

muscle extracts that serve as antigens for autoAbs.  After incubating the patient’s serum 

containing potential pathogenic autoAbs, co-precipitation is performed with the anti-human 

IgG antibodies.  Radioactivity of the pellets indicates the presence of anti-AChR autoAbs in 

the patient serum sample.  An alternative approach is enzyme-linked immunosorbent assay 

(ELISA), which was first adopted for MG diagnosis in 1984 [36].  In this assay, recombinant 

AChR proteins are coated on flat-bottom microtiter plate, followed by an incubation of 

patient serum samples.  Color given out by the reaction between peroxidase-conjugated anti-

human IgG and the substrate indicates the presence of autoAbs against AChR in the serum 

sample.  As the recombinant AChR proteins are in solution phase, some autoAbs against 

clustered AChR may not be detected in RIPA [37].  Besides, insufficient blocking may also 

give false positive results in ELISA. 

Despite RIPA and commercial ELISA kits have been widely adopted for MG 

diagnosis, their sensitivity is questionable.  A more sensitive approach using the cell-based 

assay (CBA) is therefore developed.  It has been shown that 66% of serum samples from 
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previously identified SNMG patients indeed contain low-affinity AChR-binding IgG against 

clustered AChR when CBA was used as the serological test [38••].  Co-expression of 

complementary DNA sequences encoding AChR and the anchoring protein, rapsyn, in human 

embryonic kidney (HEK) cells mimics the postsynaptic specializations of NMJ in vivo where 

AChRs are highly concentrated.  The presence of autoAbs in the patient serum sample is then 

determined by immunocytochemistry.  In comparison to RIPA and ELISA, CBA is 

considered as a more reliable approach for MG diagnosis [38••], which allows the expression 

of AChR proteins in a cellular environment to enable the localization and clustering of 

AChRs at a high density in anchorage to membrane surface via rapsyn.  This apparently 

improves the sensitivity of detecting the binding of low reactivity autoAbs against clustered 

AChRs.  

Apart from using heterologous cell lines, our recent study described the use of 

Xenopus tissue cultures as an alternative CBA for MG diagnosis and research [39••].  We 

were able to use Xenopus tissue cultures to detect the pathogenicity of serum samples from 

both SPMG and SNMG patients, as evidenced by a significant reduction of aneural and 

nerve-induced AChR clusters after incubating with MG patient serum samples (Figure 1b).  

The interaction between autoAbs in the serum samples from MG patients and proteins in the 

postsynaptic apparatus would cause the endocytosis and disassembly of aneural and nerve-

induced AChR clusters in pure muscle cultures and nerve-muscle co-cultures, respectively.  

Apart from the cell imaging approach to quantify the effects of MG serum on AChR cluster 

dispersal, Xenopus neuron-myoball co-cultures can also be employed to test the effects of 

MG patient serum samples on synaptic functions of NMJs by in vitro electrophysiological 

recordings (Figure 1c).  Spontaneous synaptic currents (SSCs) can be measured by the 

whole-cell patch-clamp recording method on 1-day-old neuron-myoball co-cultures before 

and after the incubation of MG patient serum samples.  The change in SSC frequency and/or 

amplitude implicates the effects of MG serum on presynaptic and/or postsynaptic inhibitions 

of neuromuscular functions, respectively.  Hence, the possibility of assessing the structural 

(cell imaging approach) and functional (electrophysiology approach) defects of NMJs after 

the treatment of pathogenic MG serum samples in Xenopus tissue cultures infers their 

potential to be used as an alternative CBA in MG diagnostic practice. 

One might argue on the feasibility of translating the knowledge obtained from the 

Xenopus model into our understanding of human diseases.  As shown in the recent 

completion of sequencing data, Xenopus genome shares a high level of spatial and functional 
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collinearity of genes with humans [40].  Xenopus is well positioned between distant 

invertebrates, like the fruit fly (Drosophila) and the worm (C. elegans), and the less 

accessible mammalian models [41].  Importantly, we have found that the amino acid 

sequence of some postsynaptic proteins in association to the MG pathogenesis shows a high 

degree of similarities between Xenopus and human (Table 1).  For instance, the amino acid 

sequences of AChR α1 subunit, CHRNA1, the ACh-binding subunit of AChR, in Xenopus 

tropicalis and Xenopus laevis share 74% and 73% similarity to that in human, respectively.  

Another important postsynaptic protein, MuSK, also shows more than 80% sequence 

homology between Xenopus species and human.  Taken together, this gives a strong 

argument that Xenopus tissue culture is an ideal platform for the serological diagnosis and the 

pathological research of MG. 

In search of therapeutic strategies for the treatment of MG using Xenopus tissue 

cultures 

Many potential strategies have been identified to alleviate the symptoms of muscle 

weakness after the onset of MG [7•].  One of the most commonly used medications is the 

reversible acetylcholinesterase (AChE) inhibitor, pyridostigmine [42].  The increased level 

and duration of neurotransmitter acetylcholine by inhibiting AChE activity at the synaptic 

cleft can alleviate muscle weakness in MG patients.  However, the transient and mild effects 

of AChE inhibition are insufficient to treat MG [43], and may also contribute to various side 

effects, such as muscarinic overactivity, nicotinic side effects, and cholinergic crisis state 

[44].  Other common treatments to MG also include the immunosuppressant drug, the 

plasmapheresis, the immunoglobulin therapy, and thymectomy [7•].  These treatment 

strategies, however, cannot give a complete remission for MG patients, which urge the 

development of advanced therapeutic approaches for MG treatment in the future. 

At mature NMJs, it has long been believed that AChRs are metabolically stable in the 

postsynaptic membrane at the mature NMJs, until they are internalized and targeted to 

lysosomes for protein degradation [45].  In fact, some internalized AChRs are recycled and 

inserted back to the postsynaptic membrane for maintaining a high postsynaptic AChR 

density [24, 46].  Using biotin-α-BTX and streptavidin-conjugates of different fluorophores, 

it is possible to distinguish various pools of AChRs, namely pre-existing, recycling, and 

newly synthesized AChRs [46, 47].  This sequential labeling approach will allow us to 

investigate the trafficking mechanisms of endocytosed AChR vesicles following endocytosis.  
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Our long-term goal is to develop a potential therapeutic strategy that alleviates the loss of 

AChRs at NMJs in MG pathogenesis.  One of the possible therapeutic approaches is to 

manipulate the trafficking and stability of synaptic AChR clusters.  Given the fact that the 

loss of AChR clusters is triggered by autoAb-induced crosslinking followed by endocytosis 

of AChRs, a therapeutic strategy can be developed to modulate the rate of AChR endocytosis 

and/or to regulate the recycling of endocytosed AChRs, so as to maintain the high density of 

AChR clusters for efficient neurotransmission between motor neurons and muscle fibers.  

Our recent studies using Xenopus muscle cells have demonstrated the spatial and temporal 

correlation between ADF/cofilin localization and the clustering of AChRs at developing 

NMJs [5].  We also observed the disassembly of AChR clusters and the disappearance of 

ADF/cofilin localization upon the treatment of MG patient serum samples, suggesting that 

pathogenic autoAbs regulate ADF/cofilin localization and function for the dispersal of AChR 

clusters [39••].  It is of interest to further investigate if manipulating the activity of 

ADF/cofilin or its upstream regulators could inhibit the endocytosis and degradation of 

AChR clusters in response to MG serum treatment.   

Our recent study reported a procedure to mimic the pathogenic autoAbs for inducing 

the crosslinking and endocytosis of AChRs in Xenopus tissue cultures [48•].  In that study, 

we took advantage of the multivalent interaction between biotin and streptavidin to crosslink 

the biotin-α-BTX-labeled AChR molecules by streptavidin-quantum dots (QDs) (Figure 2d).  

QDs are nanometer-sized semiconductor particles that are much brighter and more stable 

than traditional organic fluorescent probes, which allow us to visualize and perform long-

term tracking of internalized AChR vesicles upon receptor crosslinking-induced AChR 

endocytosis.  The unique features of QDs, which include the direct relationship between the 

QD-emitted wavelength of fluorescence emission and its size, the multicolor imaging from 

wide excitation and narrow emission range, and the possible detection of QDs in transmission 

electron microscopy (TEM) without chemical staining [49], offer a powerful tool for single-

molecule imaging and tracking.  By using correlative light and electron microscopy (CLEM) 

[50], high resolution correlative microscopy images can be acquired to characterize the 

particular subcellular structures in association with the endocytic trafficking and lysosomal 

degradation pathways of endocytosed AChRs upon the crosslinking action by streptavidin-

QDs.  Therefore, QDs can be employed not only to visualize and track the surface movement 

of AChRs during the formation of synaptic AChR clusters in live muscle cells [51], but also 

the multivalent interaction between biotin and streptavidin allows us to track the internalized 
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AChR vesicles following the crosslinking-induced endocytosis [48•].  As this crosslinking 

effect mimics the antigenic modulation, one of the pathogenic mechanisms of autoAbs that 

induces internalization of crosslinked AChR clusters in MG patients, a possible treatment 

may be developed to interfere the clathrin-mediated endocytic pathway, which has been 

implicated to regulate the crosslinking-induced AChR endocytosis in cultured muscle cells 

[48•].  Therefore, the reduced level of antigenic modulation should prevent the loss of AChR 

clusters in postsynaptic membrane.  Taken together, Xenopus tissue cultures offer a simple in 

vitro assay to study and manipulate the pathogenic mechanisms in MG.   

 Conclusion 

In light of the potential pitfalls of all current diagnostic assays described above, it is 

essential to develop a more reliable, sensitive, and specific tool for the diagnosis of MG, even 

at the early stage of pathogenesis.  Although most CBAs are relatively labor intensive, 

Xenopus tissue culture-based serological test is a promising tool for the initial clinical 

diagnosis of MG by testing autoAb pathogenicity in vitro.  This assay can also be employed 

to distinguish the disease severity among different patients, and to monitor the course of the 

disease and the efficacy of treatment received for a particular MG patient.  Additionally, 

Xenopus tissue cultures provide an important research platform for elucidating the pathogenic 

mechanisms underlying AChR endocytosis in both seropositive and seronegative MG 

patients.  Therefore, results of these studies using Xenopus tissue cultures should contribute 

to a better understanding of the etiology of MG and provide a therapeutic intervention for this 

malady in the future. 
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Figures 
 

 
 
Figure 1.  Experimental approaches to examine the effects of autoantibodies in MG patient 

serum on the synaptic structure and function of NMJs in vitro.  (a) The dorsal part (dotted lines, 

highlighted regions in green) of a 1-day-old Xenopus embryo (at stage 22), which contains neural tube 

(NT), somite (S), and notochord (NC), is dissected and then subjected to enzymatic collagenase 

treatment.  Somite tissues are dissociated and plated separately to prepare muscle cultures, or together 

with neural tube tissues to prepare neuron-muscle co-cultures.  (b) Left: Spontaneously formed 

aneural AChR clusters (inset) are observed by live labeling the muscle cells with rhodamine-

conjugated α-bungarotoxin (red).  Right: In neuron-muscle co-cultures, nerve-induced AChR clusters 

(inset, arrows) are found to be spatially localized along the contact sites between neurons and muscle 

cells (dotted lines).  Arrowhead points to the cell body of a spinal neuron.  (c) Dissociated muscle 

cells (M) and spinal neurons (N) are plated on plain glass coverslips for electrophysiological 

recordings.  Spontaneous synaptic currents (SSCs) are recorded from the innervated muscle cells in 1-

day-old neuron-myoball co-cultures by the whole-cell patch clamp technique.  The effects of MG 

patient serum samples on the synaptic structure and function of NMJs can be examined by cellular 

imaging and electrophysiology approaches, respectively.  Scale bars represent 20 μm. 
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Figure 2.  The pathological mechanisms of anti-AChR autoAbs and the experimental approach 

to mimic the pathogenic autoAbs for inducing the crosslinking and internalization of AChRs in 

MG.  Pathological mechanisms: (a) Antigenic modulation: The binding of autoAbs to AChRs causes 

crosslinking and internalization of AChRs.  Then, the endocytosed AChRs are targeted to lysosomal 

degradation, leading to the loss of AChR density at the end plates of NMJs.  (b) Channel inhibition: 

The binding of autoAbs to the ligand-binding site of AChRs directly inhibits the function of AChR 

channels in mediating membrane depolarization.  (c) Complement activation: The binding of autoAbs 

to AChR leads to the assembly of C1 complement complex and membrane attack complex (MAC), 

which consequently causes the destruction of junctional fold structures in the sarcolemma and the cell 

lysis through the calcium influx via MAC.  Experimental approach: (d) Tracking of endocytosis 

AChRs by QDs: To mimic the crosslinking-induced endocytosis mediated by autoAbs, AChRs are 

first labeled with biotin-conjugated α-bungarotoxin (biotin-BTX), followed by the addition of 

streptavidin-conjugated quantum dot (streptavidin-QD).  Due to the multivalent interaction between 

biotin and streptavidin, QD allows us to visualize and perform long-term tracking of AChR vesicles 

upon receptor crosslinking-induced endocytosis in live cells.  
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