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Strongly interacting p-wave Fermi gas in two dimensions: Universal relations and breathing mode
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The contact is an important concept that characterizes the universal properties of a strongly interacting
quantum gas. It appears in both thermodynamic (energy, pressure, etc.) and dynamic quantities (radio-frequency
and Bragg spectroscopies, etc.) of the system. Very recently, the concept of contact was extended to higher
partial waves; in particular, the p-wave contacts have been experimentally probed in recent experiments. So
far, discussions on p-wave contacts have been limited to three dimensions. In this paper, we generalize the
p-wave contacts to two dimensions and derive a series of universal relations, including the adiabatic relations,
high-momentum distribution, virial theorem, and pressure relation. At the high-temperature and low-density
limit, we calculate the p-wave contacts explicitly using virial expansion. A formula which directly connects the
shift of the breathing-mode frequency and the p-wave contacts is given in a harmonically trapped system. Finally,
we also derive the relationships between interaction parameters in three- and two-dimensional Fermi gases and
discuss possible experimental realization of a two-dimensional Fermi gas with p-wave interactions.
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I. INTRODUCTION

In cold atomic gas, the resonance p-wave interaction was
realized experimentally quite some time ago in both 40K
and 6Li [1–10]. It was observed that the system in general
suffers significant loss close to resonance, preventing the
systematic study of the many-body system in equilibrium
and, in particular, the achievement of the superfluid regime.
Recently, radio-frequency spectroscopic measurement of 40K
showed that the normal state of a p-wave Fermi gas close
to resonance can achieve a quasiequilibrium state with
equilibration between scattering fermions and the shallow
p-wave dimers within the p-wave centrifugal barrier, thus
establishing a strongly interacting p-wave system [11]. The
extracted free-energy reduction close to resonance is of the
order of the Fermi energy. Furthermore, it was shown that just
as in the s-wave case [12–15], the p-wave Fermi gas also has
universal relations, except that now both the p-wave scattering
volume v and the effective range R are relevant. Apart from
this, there now appear several molecular states due to the
different orientations of the angular momentum quantization
of the molecule. As a result, the contact parameters have to
be generalized, which leads to a set of universal relations that
has been discussed in detail in recent works [16–22]. Explicit
calculation of the p-wave contact within the Noziéres and
Schmitt-Rink formula has been carried out and has generally
good agreement with the experimental findings [23].

So far, p-wave contacts have been defined and discussed
mostly in the three-dimensional case. In two dimensions, the
derivation of these universal relations proceeds essentially
in the same manner as in three dimensions, except that
while in three dimensions, one is dealing with a power-law
divergence; in two dimensions, one has to deal with the
logarithmic divergence. This requires a slight generalization,
especially in dealing with the p-wave effective range. Another
interesting aspect of two-dimensional systems is the apparent
scale invariance in the s-wave δ-function interaction [24],
which would predict a breathing-mode frequency exactly
at twice the trap frequency. Here we investigate a similar
problem in two-dimensional (2D) p-wave resonance, derive

the equation of motion for the breathing mode, and show that
the p-wave contact is also implicated in the equation of motion.
In particular, we show that at resonance, the contact parameter
related to the effective range breaks the scale invariance and
determines the breathing-mode frequency shift.

In this paper, we extend the concept of p-wave contacts to
two dimensions. In Sec. II, we review some basic facts about
low-energy scattering, in particular, the scattering amplitude
for p-wave interaction and its associated weakly bound state.
In Sec. III, we define the p-wave contacts in two dimensions
and derive the adiabatic theorem. Universal relations for the
tail of momentum distribution, the virial theorem, and the
pressure relation are given in Sec. IV. In Sec. V, we give
explicit calculation of the two contacts in two special cases:
a two-body bound state and high temperature. We apply the
theory to the trapped case in Sec. VI and derive the frequency
shift of the breathing mode in terms of the p-wave contact.
A general expression for the frequency shift is obtained, and
its explicit evaluation is given at high temperature. We give
a summary in Sec. VII. Two appendixes discuss the detailed
derivations of the frequency shift of the breathing mode and
virial theorem in a trap and the relation between effective
p-wave scattering parameters in two dimensions and those of
three dimensions.

II. TWO-BODY SCATTERING AND BOUND STATES

For spinless Fermi gas, the s-wave interaction is totally
suppressed due to the Pauli principle. So at low energy, it is the
p-wave scattering channel that dominates. For a short-range
potential, as is usually the case in cold-atom experiments, the
effective range expansion for a p-wave in two dimensions is
[25–28]

k2

[
cot δ1 − 2

π
ln(ρk)

]
= −1

a
+ 1

2
r1k

2 + O(k4), (1)

where δ1 is the p-wave phase shift and r1 is a dimensionless
parameter; a and ρ are the scattering area and effective range,
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respectively. The above equation can be rewritten as

k2 cot δ1 = −1

a
+ 2k2

π
ln(Rk) + O(k4). (2)

Hereafter, we will refer to R ≡ ρ exp(πr1/4) as the p-wave
effective range.

The Schrödinger equation for the relative motion of the
two scattering fermions in two dimensions is given by (setting
h̄ = 1 and mass M = 1)[

1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂θ2
+ k2 − U (r)

]
ψ(r,θ ) = 0. (3)

The radial and angular parts of the wave function ψ(r,θ ) can
be separated for a central potential U (r), ψ(r,θ ) ≡ Rk(r)T (θ ),
where T (θ ) satisfies the following equation:

d2T

dθ2
+ m2T = 0, (4)

and its solution is given by

T (θ ) = 1√
2π

e±imθ ,

where m ∈ Z is the quantum number of the angular part and
m = ±1 for p-wave scattering. The radial part of the wave
function satisfies

1

r

d

dr

(
r
dR(r)

dr

)
+

[
k2 − U (r) − m2

r2

]
Rk(r) = 0. (5)

Let the range of the potential U (r) be r0. Then for r > r0,
the radial wave function Rk(r) can be written as a linear
combination of two linearly independent Bessel functions,

Rk(r) = πk

2
[cot δm(k)Jm(kr) − Nm(kr)]. (6)

Here Jm and Nm are the Bessel functions of the first and second
kinds. When r � 1/k, using the asymptotic expressions for
Bessel functions, the wave function Rk(r) becomes

Rk(r) ∝ 1

2

√
2

πkr
[Sei(kr− mπ

2 − π
4 ) + e−i(kr− mπ

2 − π
4 )], (7)

where we have defined the S matrix in terms of phase shift δm,

S ≡ 1 + i tan δm

1 − i tan δm

= e2iδm . (8)

The scattering wave function can be written as

ψ = eikx + f√
r
eikr = eikr cos θ + f√

r
eikr , (9)

where f ≡ ∑
f̂meimθ/

√
2π is the scattering amplitude in

two dimensions. Taking the mth angular component of the
scattering wave function,

ψm = imJm(kr)eimθ + f̂m√
r
eimθeikr , (10)

and comparing with Rk(r) when kr � 1, we get the scattering
amplitude of the mth wave as

f̂m = eiπ/4

√
4

k

1

cot δm(k) − i
. (11)
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FIG. 1. The variations of binding energy of bound state |Eb| with
1/a (fixed R). Near the resonance 1/a → 0+, the bound-state energy
approaches zero.

For p-wave scattering with m = ±1 in two dimensions, using
the effective range expansion equation (2), we obtain

f̂±1 = eiπ/4

√
4

k

k2

− 1
a

+ 2k2

π
ln(Rk) − ik2

. (12)

The total scattering cross section (taking into account the
degeneracy of m = ±1)

σ =
∫ 2π

0
[|f̂−1|2 + |f̂1|2]dθ = 16π sin2(δ1)

k
. (13)

As we shall show later, the effective range R is always
positive, and as a result, it is possible that a shallow two-body
bound state emerges when a > 0. The binding energy of the
shallow two-body bound state must be much smaller than 1/r2

0
in order to be consistent with effective range expansion. Letting
k = iκ , one finds that the imaginary part in the denominator
of Eq. (12) vanishes identically, and the real part is zero when
(a > 0)

x2 ln(x) = −π

2

R2

a
, (14)

where x = Rκ and the bound-state energy is given by Eb =
−κ2. The above equation can be solved using Lambert’s W

function, which is x = exp[ 1
2W−1(−πR2/a)]. In the limit

when 1/a → 0+, one finds that Eb � π/[a ln(πR2/a)] and
Eb tends to 0−. The other solution of Eq. (14) is of the order
of or larger than 1/r2

0 and has to be discarded. The energy of
the shallow bound state is shown in Fig. 1.

At low energy when k 	 1/r0, the radial wave function
Rk can be expanded in terms of powers of k2, e.g., Rk(r) =
u0(r) + k2u1(r) + O(k4), and each satisfies[

−1

r

d

dr

(
r

d

dr

)
+ U (r) + 1

r2

]
u0(r) = 0, (15)

[
−1

r

d

dr

(
r

d

dr

)
+ U (r) + 1

r2

]
u1(r) = k2u0(r). (16)

For r � r0, the radial wave function Rk(r) is given in Eq. (6).
Using effective range expansion for the scattering phase shift
in Eq. (2) and considering the regime where r0 	 r 	 1/k,
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the radial wave function, and hence u0,1(r), can be written as

u0(r) = −1

r
+ πr

4a
, (17)

u1(r) = r

2
ln

r

R̃
− πr3

32a
, (18)

where R̃ = 2 exp(1/2 − γE)R and γE � 0.577 is the Euler-
Mascheroni constant. At the same time, the wave function near
the origin should be regular, which satisfies Rk(r = 0) = 0
and (r∂Rk/∂r)|r=0 = 0 for a not very singular interatomic
potential.

Bethe’s integral formula for a three-dimensional s-wave
effective range [29] has been generalized to arbitrary partial
waves [30] and arbitrary dimensions [26]. For our two-
dimensional p-wave case, it takes following form:∫ rc

0
ru2

0(r)dr = ln
eγE rc/2

R
− πr2

c

4a
+ π2r4

c

64a2
, (19)

where rc � r0 is a cutoff length scale. Note that the nor-
malization of the wave function is slightly different (up to
a factor

√
π/2r) from that in Ref. [26]. Because the left-hand

side of Eq. (19) is positive definite, the effective range is
bounded by 0 < R < eγE r0/2 � 0.89r0 close to resonance
(a → ∞). Note that in the following, we will always refer
to “resonance” as 1/a = 0, just as in the three-dimensional
case where the s-wave scattering length 1/as → 0. Bethe’s
formula for effective range [Eq. (19)] will play an important
role in the derivation of the breathing-mode frequency shift in
Sec. VI.

Before we end this section, we would like to derive two
relations that relate the change of scattering parameters to the
variation of interatomic potential U (r) → U (r) + δU (r). As
in the case of three-dimensional p-wave scattering [17], two
important relations related to the scattering parameters (a and
R) can be obtained:

δ(1/a) = − 2

π

∫ ∞

0
rδ(U )u2

0(r)dr, (20)

δ(ln R) = 2
∫ ∞

0
rδ(U )u0(r)u1(r)dr. (21)

III. DEFINING THE p-WAVE CONTACTS

To define the p-wave contacts in two dimensions, we follow
the route of Ref. [17]. Let us consider the two-body density
matrix

ρ2(�r1,�r2; �r ′
2,�r ′

1) ≡ 〈ψ†(�r1)ψ†(�r2)ψ(�r ′
2)ψ(�r ′

1)〉
= ρ∗

2 (�r ′
1,�r ′

2; �r2,�r1), (22)

written in terms of second-quantized field operators ψ . ρ2 is a
Hermitian matrix, so it can be diagonalized,

ρ2(�r1,�r2; �r ′
2,�r ′

1) =
∑

i

niφ
∗
i (�r1,�r2)φi(�r ′

1,�r ′
2). (23)

Here ni and φi are its eigenvalues and eigenfunctions. For
a spinless Fermi gas, the eigenfunction φi is odd under
exchanges of two fermions φi(�r1,�r2) = −φi(�r2,�r1). When two
particles come very close to each other, the eigenfunction

can be expanded using a two-body wave function (using
translational invariance),

φ �P ,m=±1(�r1,�r2) = ei �P · �Reimθ

√
2πV

∑
k

a �P ,m,kRk(r). (24)

Here �P = �p1 + �p2 and �R = (�r1 + �r2)/2 are the center-of-mass
momentum and position. θ describes the angle of relative
coordinates �r = �r1 − �r2. a �P ,m,k is the expansion coefficient
introduced such that (1)

∫
d�r1d�r2|φ(�r1,�r2)| = 1 is normalized

and (2) the radial wave function Rk(r) in the asymptotic regime
r0 	 r 	 1/k is given by Eqs. (17) and (18). As a result, we
have

ρ2(�r1,�r2; �r ′
2,�r ′

1) =
∑
�P ,m

n �P ,m

ei �P ·( �R− �R′)eim(θ−θ ′)

2πV

×
∑
k,k′

a∗
�P ,m,k

a �P ,m,k′Rk(r)Rk′(r ′). (25)

Here r ′ and θ ′ are defined accordingly. As in Ref. [17], we
have included possible bound states in the sum over k. The
interaction energy can be expressed as [short-range potential
U (r)]

〈U 〉 = 1

2

∫
d2r1d

2r2U (r1 − r2)ρ2(r1,r2; r2,r1)

= Ca

∫
drrU (r)u2

0(r) + 2CR

∫
drrU (r)u0(r)u1(r),

(26)

where we have defined two p-wave contacts Ca and CR as

Ca ≡ 1

2

∑
P,m,k′k

nP,ma∗
P,m,k′aP,m,k, (27)

CR ≡ 1

4

∑
P,m,k′k

nP,ma∗
P,m,k′aP,m,k(k′2 + k2). (28)

By definition, Ca � 0, while CR has no definite signs. The
variations of free energy F as the interatomic potential is
varied by δU are given by

δF = δ〈U 〉
= Ca

∫
drrδUu2

0(r) + 2CR

∫
drrδUu0(r)u1(r).

(29)

Using Eqs. (20) and (21), we obtain two adiabatic relations,

∂F

∂a−1
= −π

2
Ca, (30)

∂F

∂ ln R
= CR. (31)

Similar to the cases of s- and p-wave scattering in three dimen-
sions, the above two equations give important relationships
between the two contacts (Ca,CR) and the thermodynamics of
the system. Here we should mention that for a p-wave resonant
Fermi gas in two dimensions, the effective potential resulting
from the three-body correlation could support the so-called
super Efimov states, for which the energy for three bodies has
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a double-exponential scaling law [31–33]. Very recently, the
three-body contact arising from the super Efimov states was
discussed in Ref. [34]. However, in the present paper, we shall
focus on contacts arising from two-body correlations.

IV. UNIVERSAL RELATIONS

The utility of contacts lies in the fact that they relate various
physical observables and provide a crucial consistency check
on theory and experiments.

A. Tails of momentum distribution

The derivation of momentum distribution follows that of
Ref. [17]. The momentum distribution n�q is related to single-
particle density matrix ρ1(r,r ′),

ρ1(�r,�r ′) ≡ 〈ψ†(�r)ψ(�r ′)〉 = 1

V

∑
�q

ei �q· �ρn�q, (32)

where �ρ = �r ′ − �r and we have used the translational invariance
of the system. In terms of a many-body wave function
�(�r1,�r2, . . . ,�rN ), the single-particle density matrix can be
written as

ρ1(�r1,�r ′
1) = N

∫
d�r2 · · · d�rN�∗(�r1,�r2, . . . ,�rN )

×�(�r ′
1,�r2, . . . ,�rN ). (33)

As a result,

n�q = 1

V

∫
d2�rd�r ′ρ1(�r,�r ′)e−i �q·(�r−�r ′) (34)

= N

V

∫
d2�rd�r ′d�r2 · · · d�rNe−i �q·(�r−�r ′)�∗(�r,�r2, . . . ,�rN )

×�(�r ′,�r2, . . . ,�rN ). (35)

Now, we need �r to be close to �r ′ in order to extract the high-
momentum distribution. This requires one of the coordinates
�r2 · · · �rN to be close to both �r and �r ′, which gives the singular
contribution to the one-body density matrix. Note that in total
there are N − 1 possibilities, and we finally obtain n�q in terms
of the singular part of the two-body density matrix,

n�q = 1

V 2

∑
�Pmk′k

n �P ,ma∗
�P ,m,k′a �P ,m,k

∫
d2�rd2�r ′ei( �P/2−�q)·(�r−�r ′)

×
{ ∫

d2�r1
eimθ

|�r − �r1|
e−imθ ′

|�r ′ − �r1| − (k′2 + k2)
∫

d2�r1

× eiθ |�r − �r1|
2

ln
|�r − �r1|

R̃

e−iθ ′

|�r ′ − �r1|
}

(36)

= (2π )2

V

∑
�Pmk′k

n �P ,ma∗
�P ,m,k′a �P ,m,k

×
{

1

q2
+ (k′2 + k2) + �P · �q − P 2/4

q4

}
. (37)

That is,

n�q ∼ 4π

V

{
Ca

q2
+ 2CR − CP

q4

}
, (38)

where

CP ≡ π

4

∑
P,m,k′k

nP,ma∗
P,m,k′aP,m,kP

2, (39)

which arises from the center-of-mass motion of the pairs. In
the above derivation, we have assumed that the system respects
inversion symmetry so that the linear term in �P vanishes.

B. Pressure relation and virial theorem

To derive the pressure relation and the virial theorem,
it is enough to invoke the dimensional analysis. The free
energy F of the system should be of the form F =
NεF f (T/TF ,k2

F a,kF R), where f is a dimensionless func-
tion, εF = TF ≡ k2

F /2 = 2πn is Fermi energy (kB = 1), kF

is Fermi momentum, and n is particle density. From the
thermodynamic relation,

p = −∂F

∂V
= − ∂F

∂kF

∂kF

∂V
(40)

= E

V
+ 1

V

πCa

2a
+ CR

2V
. (41)

In the last line we have used the adiabatic theorems. Similarly,
one can extend the virial theorem in a harmonic trap Vtrap(r) =
1
2Mω2r2; then the total energy can be written as

E ≡ E(N,ω,a,R) = h̄ωε(N,a/�2,R/�), (42)

where ε is a dimensionless function and � = √
h̄/Mω is the

oscillator length. Taking the derivative with respect to the
oscillator frequency ω, we have

∂E

∂ω
= 2〈Vtrap〉

ω
. (43)

Carrying out manipulations similar to those in the uniform
case, we find

2〈Vtrap〉 = E + π

2

Ca

a
+ CR

2
. (44)

In both Eqs. (41) and (44), when a → ±∞ (at resonance),
the second contact CR breaks the scaling invariance of the
two-dimensional p-wave Fermi gas at resonance.

V. EXPLICIT CALCULATIONS

To gain more insight into the behavior of p-wave contacts
defined by the adiabatic theorem, we discuss two explicit
calculations of them in the following.

A. Two-body bound state

Let us choose a cutoff scale rc as before and write down
the wave function for r � rc (rc � r0) in the center-of-mass
coordinates as

ψ>(r) = αK1(κr), (45)

where α is a normalization constant and K1(r) is the modified
Bessel function of the second kind. The bound-state energy
Eb = −κ2. For 0 � r � rc, the wave function is

ψ<(r) = α
K1(κrc)

u0(rc)
u0(r). (46)
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The normalization constant α is determined by, near resonance
1/a ∼ 0,

1

α2
= 2π

{ ∫ rc

0
drr|ψ<(r)|2 +

∫ ∞

rc

drr|ψ>(r)|2
}

= 2π

κ2r2
c

1(− 1
rc

+ πrc

4a

)2

[
ln

eγE rc/2

R
− πr2

c

4a
+ π2r4

c

64a2

]

+ 2π

κ2
[−1/2 − γE + ln 2 − ln(κrc) + O((κrc)2)]

� −2π [ln(κR) + 1/2]

κ2
. (47)

Here we have used Bethe’s integral formula. Expanding the
wave function when κr 	 1,

|ψ>(r)|2 = α2|K1(κr)|2 (48)

� α2

(
1

κ2r2
+ ln r + · · ·

)
(49)

= − κ2

2π [ln(κR) + 1/2]

(
1

κ2r2
+ ln r + · · ·

)
(50)

at low energy, κR 	 1. We can now read off the contacts from
the above equation:

Ca = −1

ln(κR) + 1/2
> 0, (51)

CR = κ2

ln(κR) + 1/2
< 0. (52)

Using the equation for the bound-state energy (14), one can
verify the adiabatic theorems, namely, that ∂Eb

∂a−1 = −π
2 Ca and

∂Eb

∂ ln R
= CR .

B. Virial expansion

In this section, we calculate the contact parameters at high
temperature by virial expansion [35,36]. The pressure p and
the inverse volume (area) 1/v can be expanded in terms of
powers of fugacity z = eμ/T [37]:

p

T
= 1

λ2

∑
l

blz
l, (53)

1

v
= N/V = 1

λ2

∑
l

lblz
l . (54)

Here T is temperature, λ = √
2π/T (kB = h̄ = 1) is the de

Broglie wavelength, and μ is the chemical potential. The grand
potential is

� = −pV = −T V
1

λ2

∑
l

blz
l . (55)

The equation of state can be obtained by eliminating the
fugacity z,

pv

T
=

∞∑
l=1

al(T )

(
λ2

v

)l−1

, (56)

where al is virial coefficient. For example,

a1 = b1 = 1, a2 = −b2, a3 = 4b2
2 − 2b3,

a4 = −20b3
2 + 18b2b3 − 3b4. (57)

For a 2D ideal Fermi gas, the inverse area 1
v

=
N/V = ∑

k
ze−βk2/2

1+ze−βk2/2
= ln(1+z)

λ2 = 1
λ2

∑
n(−1)n−1 zn

n
, so b0

l =
(−1)l−1/l2. Including the interaction effects, the correction to
the second virial coefficient is given by

�b2 = 4

{ ∑
b

e−Eb/T + 1

π

∫ ∞

0
dk

∂δ1

∂k
e−k2/T

}
. (58)

The summation on the right-hand side includes the effects of
possible bound states, while the integral takes into account
the scattering fermions. The phase shift δ1 was given before
explicitly,

∂δ1(k)

∂k
= − 2

(
1

ak3 + 1
πk

)
1 + (− 1

ak2 + 2 ln(Rk)
π

)2 . (59)

The contacts can be obtained from the thermodynamics
potential �,

∂�

∂(a−1)
= −π

2
Ca = −T V

z2

λ2

∂�b2

∂a−1
, (60)

∂�

∂(lnR)
= CR = −T V

z2

λ2

∂�b2

∂lnR
, (61)

where z can be obtained approximately from the equation of
state for a classical ideal gas, e.g., z = enλ2 − 1 � nλ2. So one
finally obtains

Ca = 2

π
T V n2λ2 ∂�b2

∂a−1
= 2

π
2πNn

∂�b2

∂a−1
, (62)

CR = −T V n2λ2 ∂�b2

∂lnR
= −2πNn

∂�b2

∂lnR
, (63)

where N is the particle number and n is particle density.
Figure 2 shows how the second virial coefficient �b2 and the
contacts Ca and CR change as a function of interaction param-
eters 1/a at fixed R. Because Ca � 0, �b2 is monotonically
increasing with a−1. Generally speaking, close to resonance

−0.1 0 0.1

2

3

4

5

R2/a

Δ
b 2

−0.1 0 0.1

10

30

R2/a

C
a

−0.1 0 0.1
−2

−1

0

1

R2/a

C
R

T = 0.5h̄2/R2

T = h̄2/R2

T = 5h̄2/R2

T = 0.5h̄2/R2

T = h̄2/R2

T = 5h̄2/R2

T = 0.5h̄2/R2

T = h̄2/R2

T = 5h̄2/R2

FIG. 2. The variations of contacts Ca and CR with the interaction
parameter 1/a for different temperatures. Here we use the effective
range R as the fundamental length scale, and the units of Ca and CR

as plotted are 2πNnR2h̄2/M and 2πNnh̄2/M , respectively.
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1/a ∼ 0, the interaction effects �b2 diminish with increasing
temperature. Because the contribution of bound states to the
contact CR is negative, with increasing attractive interaction
(1/a → 0+), the contact CR decreases and eventually becomes
negative.

VI. BREATHING MODE AND CONTACTS

It is known that for scaling-invariant interactions in two
dimensions, U (λρ) = U (ρ)/λ2, where λ is an arbitrary scaling
factor, the system has SO(2,1) symmetry, and the frequency
of the breathing mode in the harmonic trap is exactly twice
the trap frequency 2ω [24]. This applies, for example, for
the cases of delta contact δ2(�r1 − �r2) or the inverse-square
potential 1/|�r1 − �r2|2. However, true interatomic interactions
break the scaling invariance, and this leads to the frequency
shift of breathing modes. In a two-component Fermi gas with
s-wave interactions, one finds that this shift is related to the
contact of the system [38,39], and in particular, at unitarity, the
scaling invariance is regained [40]. However, quite differently
from a single-component Fermi gas with p-wave interaction in
two dimensions, the scaling invariance is also broken even at
resonance when a → ∞ due to the existence of the contact CR .
In the following, we calculate the breathing-mode frequency
shift and relate it to the two p-wave contacts Ca and CR .

The Hamiltonian in a trapped system is given by H =
H0 + Vtrap + Hint, where H0 = 1

2

∑
i p

2
i is the kinetic energy

(recall M = h̄ = 1). We consider the isotropic harmonic trap
in two dimensions,

Vtrap = ω2

2

∑
i

r2
i , (64)

where ω is the trapping frequency. The interaction between
the atoms Hint is of the standard form Hint = ∑

i<j U (�ri − �rj ).
The excited operator of the breathing modes

O ≡
∑

i

r2
i = 2

ω2
Vtrap. (65)

The equation of motion of operator O

i
∂O(t)

∂t
= [O,H ] =

∑
i

[�r2
i , �p2

i /2] = 2iD. (66)

Here D ≡ ∑
i[�ri · �pi + �pi · �ri]/2 is the dilation operator. The

equation of motion of D is given by

i
∂D

∂t
= [D,H ] = [D,H0 + Vtrap + Hint]. (67)

The various commutators can be evaluated explicitly. In
particular, we have

[D,H0] = 2iH0, (68)

[D,Vtrap] = −2iVtrap, (69)

and

[D,Hint] = −i
∑
i<j

[
�rij · ∂

∂�rij

]
U (�ri − �rj ), (70)

where �rij = �ri − �rj . As a result, one finds that

∂2O(t)

∂t2
= 2

∂D

∂t
(71)

= 4H0 − 4Vtrap − 2
∑
i<j

[
�rij · ∂

∂�rij

]
U (�ri − �rj ).

(72)

Using the fact that ρ̂2(�r,t) ≡ 2
∑

i<j δ2[�r(t) − �rij ], we can
write down the equation of motion for the average value of
O as

∂2〈O(t)〉
∂t2

= 4〈H 〉 − 4ω2〈O〉

−
∫

d2�r
[

2U (r) + �r · ∂U (r)

∂�r
]
ρ2(r,t). (73)

In the case of a scaling-invariant potential in two dimensions,
2U (r) + �r · ∂U (r)

∂�r ≡ 0, the interaction effects on the breathing-
mode frequency shift vanish exactly. In the Appendix A, we
show that the interaction correction can be written in terms of
p-wave contacts,∫

d2�r
[

2U (r)+�r · ∂U (r)

∂�r
]
〈ρ̂2(r,t)〉=−2πCa(t)

a
− 2CR(t).

(74)

As a result, the equation of motion for the breathing-mode
operator O is given by, when taking the expectation value of
the many-body state,

∂2〈O(t)〉
∂t2

= 4E − 4ω2〈O(t)〉 + 2πCa(t)

a
+ 2CR(t). (75)

The time dependences of the contacts give rise to the
correction of the breathing-mode frequency. We note that the
average energy E ≡ 〈H 〉 does not depend on time t because
of [H,H ] = 0. In a stationary state, the virial theorem is
recovered:

2Vtrap = E + π

2a
Ca + CR

2
. (76)

When the p-wave contacts are zero, the scaling invariance is
restored, and the frequency of the breathing mode is exactly
2ω. Near the resonance 1/a → 0, although the Ca term
vanishes, CR is still finite, and this breaks the scaling invariance
even at resonance.

In the following, we will investigate the breathing-mode
frequency shift in the high-temperature limit. We write the
density distribution in the trap during the breathing motion of
the cloud in the following scaling form:

n(�r,t) = 1

γ 2(t)
n0

( �r
γ (t)

)
, (77)

where γ (t) = 1 + �γ (t), �γ (t) 	 1 for small oscillations.
Here n0(�r) is the density distribution of the equilibrium,
and the particle number N = ∫

d2�rn0(�r). On the other hand,
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the expectation value of the breathing-mode operator can be
written as

〈O(t)〉 =
∫

d2�rr2n(�r,t) = γ 2(t)
∫

d2�rr2n0(�r) (78)

� [1 + 2�γ ]〈O〉, (79)

where 〈O〉 ≡ ∫
d2�rr2n0(�r) is the average value of O in equi-

librium. Similarly, from the high-temperature virial expansion,
Eqs. (62) and (63), and using the local-density approximation,
we get

Ca(t) = 〈Ca〉
γ 2

, (80)

CR(t) = 〈CR〉
γ 2

. (81)

Here 〈Ca〉 ≡ 2
π
T λ2 ∂�b2

∂a−1

∫
d2�rn2

0(�r) and 〈CR〉 ≡
−T λ2 ∂�b2

∂ ln R

∫
d2�rn2

0(�r) are contact values in equilibrium.

∂2�γ (t)

∂t2
+

[
4ω2 + 2π〈Ca〉/a + 2〈CR〉

〈O〉
]
�γ (t) = 0. (82)

One thus finds that for a small breathing motion of the cloud,
the frequency is given by

ωb =
√

4ω2 + 2π〈Ca〉/a + 2〈CR〉
〈O〉 . (83)

Assuming that the shift is small, one can expand ωb and find

�ω ≡ ωb − 2ω = 1

2ω〈O〉
[
π〈Ca〉

a
+ 〈CR〉

]
. (84)

One can evaluate the frequency shift at high temperature,
where the density distribution can be approximated by the
classic Boltzmann distribution n0(�r) = A exp (−ω2�r2/2T ),
where A = Nω2/(2πT ) and N is the particle number. So the
frequency shift becomes

�ω = Nω3

8T 2

[
2

a

∂�b2

∂a−1
− ∂�b2

∂ ln R

]
. (85)

Near the resonance 1/a → 0, the frequency shift arises only
from the contact of effective range CR . Note that unlike
the p-wave contacts for three dimensions, CR does not
vanish at resonance. Here we take T = 2EF with the Fermi
energy related to the radial trap frequency EF = h̄ω

√
2N

in two dimensions, and the breathing-mode frequency shift
�ω at high temperature T = 0.1/R2 is given in Fig. 3.
Note that it is finite at resonance when 1/a = 0 and can be
negative on the BCS side of the resonance when 1/a < 0.
On the Bose-Einstein condensate side of the resonance
1/a > 0, the frequency shift is always positive and becomes
larger and larger as the attractive interaction becomes strong
(a → 0+).

VII. SUMMARY

In this paper, we have extended the concepts of p-wave
contacts to two dimensions and have derived the related
universal relations. In particular, we have shown how the p-
wave contacts change the breathing-mode frequency from the

FIG. 3. The frequency shift �ω/(2ω) of breathing modes as a
function of R2/a near the resonance.

scaling-invariant result. Specific results were obtained in the
high-temperature limit where the 2D system is more stable. It
would be interesting if further experiments in two dimensions
could be conducted, and in the Appendix B, we consider
realistic trap parameters and show how the effective two-
dimensional scattering parameters depend on the magnetic
field.
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APPENDIX A: DERIVATION OF EQUATION (74)

According to the definition of the p-wave contacts, the
two-body density matrix ρ2(�r1,�r2; �r2,�r1) [≡ ρ2(�r1 − �r2)] in the
short range can be written as

ρ2(r) = Ca

π
u2

0(r) + 2CR

π
u0(r)u1(r), (A1)

where r = |�r1 − �r2|. This gives the possibility of finding two
two-particle distance r apart. So Eq. (73) can be written as

∂2〈O(t)〉
∂t2

= 4〈H 〉 − 4ω2〈O(t)〉 − (A + B), (A2)

where

A = 2Ca

∫
drr

[
2U (r) + r

∂U (r)

∂r

]
u2

0(r), (A3)

B = 2CR

∫
drr

[
2U (r) + r

∂U (r)

∂r

]
2u0(r)u1(r). (A4)

Our task below will be to evaluate the above two expressions.
One useful fact to notice is that since U (r) is a short-range
function, the integrals are effectively cut off at rc because
U (r) = 0 when r � rc. As a result, we can write A, and
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integrating from zero to rc, we find

A = 2Ca

∫
drr

[
2U (r) + r

∂U (r)

∂r

]
u2

0(r)

= −4Ca

∫
drr2U (r)u0(r)

∂u0(r)

∂r
. (A5)

In the above derivation, we have integrated the second term
by parts and used the fact that U (r)r2u2

0(r)|rc

0 = 0. Using a
differential equation for u0(r),[

1

r

∂

∂r

(
r

∂

∂r

)
− 1

r2

]
u0(r) = U (r)u0(r), (A6)

and multiplying both sides by r2u′
0(r) and integrating from

zero to rc, we find, using u0(r = 0) = 0, r ∂u0(r)
∂r

|r=0 = 0, and
Eq. (17),

A = −2Ca

[(
r
∂u0(r)

∂r

)2

− u2
0(r)

]rc

0

= −2Ca

[(
1

rc

+ πrc

4a

)2

−
(

− 1

rc

+ πrc

4a

)2]

= −2π
Ca

a
. (A7)

The calculation of B needs more effort. Let us first consider
the following integral:

2CR

∫
drr

[
2U (r) + r

∂U (r)

∂r

]
R2

k (r), (A8)

where Rk(r) = u0(r) + k2u1(r) is the radial wave function
expanded to second order in k. B is simply given by the
coefficient of k2 in the above integral. Rk(r) obeys the
following differential equation:[

1

r

∂

∂r

(
r

∂

∂r

)
− 1

r2

]
Rk(r) + k2Rk(r) = U (r)Rk(r). (A9)

Multiply both sides by r2R′
k(r) and integrating it by parts, one

finds∫ rc

0
U (r)r2R′

k(r)Rk(r)dr

= k2
∫ rc

0
r2R′

k(r)Rk(r)dr + 1

2

[(
r
∂Rk(r)

∂r

)2

− R2
k (r)

]rc

0

.

(A10)

Like for A, we have∫
drr

[
2U (r) + r

∂U (r)

∂r

]
R2

k (r)

= −2
∫

drr2U (r)Rk(r)
∂Rk(r)

∂r

= −2k2
∫ rc

0
r2R′

k(r)Rk(r)dr −
[(

r
∂Rk(r)

∂r

)2

− R2
k (r)

]rc

0

.

(A11)

The coefficient of k2 in the above expression determines B (up
to a factor 2CR). Now, since {(r ∂Rk(r)

∂r
)2/2 − [R2

k (r)]2/2}|r=0 =

0 and Rk(rc > r0) = u0(rc) + k2u1(rc), the coefficient of k2 is
given as

−4CR

[
1

2
− π2r4

c

64a2
+ ln

rc

R̃
+

∫ rc

0
drr2u0(r)u′

0(r)

]
. (A12)

The integral
∫ rc

0 drr2u0(r)u′
0(r) can be calculated from Bethe’s

integral formula. We first transform the limit of integration
rc → λrc,∫ λrc

0
ru2

0(r)dr = ln
eγE λrc/2

R
− πλ2r2

c

4a
+ π2λ4r4

c

64a2
. (A13)

Then we can change the integral variable r = λx,∫ rc

0
xu2

0(λx)dx = ln
eγE λrc/2

R

/
λ2 − πr2

c

4a
+ π2λ2r4

c

64a2
.

(A14)

Taking the derivative with respect to λ and then setting λ = 1,
we get∫ rc

0
x2u0(x)u′

0(x)dx = − ln
eγE rc/2

R
+ 1

2
+ π2r4

c

64a2
. (A15)

Finally, we obtain

A + B = −2π

a
Ca − 2CR (A16)

and

∂2〈O(t)〉
∂t2

= 4E − 4ω2〈O(t)〉 + 2π

a
Ca(t) + 2CR(t). (A17)

APPENDIX B: THE RELATION BETWEEN THE
EFFECTIVE SCATTERING PARAMETERS (a AND R) IN
TWO DIMENSIONS AND THE THREE-DIMENSIONAL

p-WAVE SCATTERING PARAMETERS

It is suggested that the 2D strongly interacting p-wave
Fermi gas might be more stable than its three-dimensional
(3D) counterpart [41]. The 2D fermion gas may be produced
from 3D fermion gas by using strong harmonic confinement
along the ẑ direction [42,43]. Let us then consider two spinless
fermions moving in a harmonic potential of the form

Vz(x,y,z) = 1
2Mω2

zz
2. (B1)

Thus the potential energy of the two particles is 1
2 (2M)ω2

zZ
2 +

1
2

M
2 z2, where 2Z = z1 + z2 is twice the center-of-mass z

coordinate and z = z1 − z2 gives the relative coordinates.
Since the center-of-mass motion is separated in the harmonic
trap, one can write the Hamiltonian for the relative motion,

Hrel = 1

2μ

(
p2

x + p2
y + p2

z

) + 1

2
μω2

zz
2, (B2)

where μ = M/2 is the effective mass. In the following, we use
units such that M = 1, so 2μ = M = 1. We introduce �ρ ≡
xx̂ + yŷ as the xy-plane projection of the relative coordinate
�r = �r1 − �r2 and ρ =

√
x2 + y2. The free Green’s function for
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the relative motion is given by

G±(�r,�r ′; E) = 〈�r1| 1

E ± iη − Hrel
|�r2〉. (B3)

In the following, we shall shift the reference point of energy
ε ≡ E − ωz/2. We are interested in the scattering of two
fermions in the xy plane, so let us set z1 = z2 = 0 and
introduce a complete set of harmonic oscillator states:

G±(ρ) ≡ 1

V

∑
k,n

ei�k· �ρφn(0)φ∗
n(0)

ε ± iη − (k2
x + k2

y + nωz)
. (B4)

Here �k = (kx,ky) lies in the xy plane. G±(ρ) describes the
outgoing and incoming waves in two dimensions. Harmonic
oscillator wave functions

φn(z) =
[

α√
π2nn!

]1/2

Hn(αz), (B5)

where α = √
μωz/h̄ = √

ωz/2. The scattering wave function
of the relative motion can then be written as

ψ = ∂G−(ρ)

∂ρ
− S

∂G+(ρ)

∂ρ
. (B6)

The stationary scattering wave function of the relative motion
is a superposition of the incoming and the outgoing waves,
the coefficient of which is the diagonalized S-matrix element
S = exp (2iδ1) in terms of the scattering phase shift δ1. In the
following, we consider low-energy scattering when 0 < ε <

ωz. To proceed further, we split the summation over n into
two parts, one with n = 0 and another with n > 0, G±(ρ) ≡
G±

1 (ρ) + G±
2 (ρ), with

G±
1 (ρ) ≡ 1

V

∑
k

ei�k· �ρφ0(0)φ∗
0 (0)

ε ± iη − (
k2
x + k2

y

) , (B7)

G±
2 (ρ) ≡ 1

V

∑
k,n>0

ei�k· �ρφn(0)φ∗
n(0)

ε ± iη − (
k2
x + k2

y + nωz

) . (B8)

Using the form of φn(0) and carrying out integrations, one
finds

G±
1 (ρ) =

√
ωz

2π

∓i[J0(
√

ερ) ± iN0(
√

ερ)]

4
, (B9)

G±
2 (ρ) = −

√
ωz

2π

1

4π

∫ ∞

0

dt

t
exp

[−ωzρ
2

2t
+ εt

2ωz

]

×
[

1√
1 − e−t

− 1

]
. (B10)

Note that for G±
2 , it is independent of the sign of the

infinitesimal imaginary part in the denominator, and we shall
denote it as simply G2 in the following. Let G̃2 = ∂G2/∂ρ,

G̃2(ρ) =
√

ωz

2π

ωzρ

4π

∫ ∞

0

dt

t2
exp

[−ωzρ
2

2t
+ εt

2ωz

]

×
[

1√
1 − e−t

− 1

]
. (B11)

Then the wave function can be written as

ψ =
√

ωz

2π

−i
√

ε[J1(
√

ερ) − iN1(
√

ερ)]

4
+ G̃2

− S

[√
ωz

2π

i
√

ε[J1(
√

ερ) + iN1(
√

ερ)]

4
+ G̃2

]

∝ J1(
√

ερ) − tan δ1N1(
√

ερ) + tan δ1

A
G̃2. (B12)

Here A ≡
√

ωz

2π

√
ε

4 . In the following, we set k ≡ √
ε. When

ρ2ωz 	 1, the wave function looks like a 3D p-wave function.

ψ ∝ j1(pρ) − tan(δ3D)n1(pρ)

∝ cot(δ3D)j1(pρ) − n1(pρ)

∝
[
− 1

3V 3D
− p2

3R3D

]
(ρ + · · · ) +

[
1

ρ2
+ · · ·

]
. (B13)

Here V 3D and R3D are the p-wave scattering volume and
effective range in three dimensions, respectively [17]. The
energy E = p2 = k2 + ωz/2. In the above equation, the effec-
tive expansion for the 3D p-wave phase shift p3 cot(δ3D) =
−1/V 3D − p2/R3D has been used. j1 and n1 are spherical
Bessel functions. At small ρ, we need to calculate the
coefficients of ρ and ρ−2 from J1, N1, and G̃2 and then
compare the above two formulas to get the effective 2D p-wave
interaction parameters in terms of 3D p-wave parameters V 3D

and R3D . As ρ → 0, the most divergent term is proportional
to 1/ρ2, which comes from

G̃2 ∼
√

ωz

2π

ωzρ

4π

∫ ∞

0

dt

t2
exp

[−ωzρ
2

2t
+ εt

2ωz

]√
1

t

∼ 1

4πρ2
. (B14)

As a result, the coefficient of 1/ρ2 is tan δ1
4πA

in Eq. (B12).
Next, we calculate the coefficient of ρ. There exist ρ ln ρ

and 1/ρ terms in the expansion of Bessel’s function N1(kρ)
near the origin. However, there are no such terms (ρ ln ρ and
1/ρ) in the 3D scattering wave function (j1 and n1). In fact,
it can be shown that these singular terms from N1(kr) are
exactly canceled by those from G̃2. Here we need to isolate
these singular terms with a formula:

�G̃2 = G̃2 − g2

=
√

ωz

2π

ωzρ

4π

∫ ∞

0

dt

t2
exp

[−ωzρ
2

2t
+ k2t

2ωz

][
1√

1 − e−t

− 1 − e−t

√
t

+ e−t − 5
√

te−t

4
+ te−t

]
. (B15)

Here g2 gives all the mainly singular terms, e.g.,
1/ρ2,1/ρ,ρ ln ρ, occurring in G̃2 as ρ → 0. Then �G̃2 is
not singular compared with the linear term ρ as ρ → 0, e.g.,
�G̃2/ρ ∼ O(1). When ρ → 0, we have

�G̃2 =
√

ωz

2π

ωz

4π
β(k2/ωz)ρ (B16)
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and

β(k2/ωz) ≡
∫ ∞

0

dt

t2
exp

[
k2t

2ωz

][
1√

1 − e−t
− 1

− e−t

√
t

+ e−t − 5
√

te−t

4
+ te−t

]
. (B17)

Collecting all the linear terms of ρ from J1,N1,g2, and �G̃2

and comparing the coefficients of ρ and 1/ρ2 in Eqs. (B12) and
(B13), we can get the effective p-wave interaction parameters
a and R in two dimensions in terms of V 3D and R3D:

a = 3πV 3D

2
√

2πlz +
√

2πV 3D

R3Dlz
+ V 3D

l2
z

[6 − 7
√

π + 6β(0)]
, (B18)

R = e
3
√

π

8 − γ

2√
2

e
−

√
2πlz

3R3D lz, (B19)

where lz = √
h̄/Mωz and β(0) ≈ 1.01353. The coefficient γ

is given by

γ ≡
∫ ∞

0

dt

t

[
1√

1 − e−t
− 1 − e−t

√
t

+ e−t

− 5
√

te−t

4
+ te−t

]
, (B20)

which is approximately 0.3915.
In the following, one can choose the parameters which are

experimentally accessible in 40K [11]. Consider a harmonic
trap with frequency of the order of ωz = 2π × 120 kHz, and
then use

V 3D = Vbg

(
1 − �V

δB

)
, (B21)

FIG. 4. The scattering area a as a function of magnetic field δB

(relative to 3D resonance point). The inset shows the variations of
effective range R with magnetic field δB.

where the (magnetic) width of the resonance is �V = 20 G.
Vbg = (100a0)3 is the background scattering volume. a0 is the
Bohr radius. For the effective range, we have

1

R3D
= 1

Rbg

(
1 + δB

�R

)
, (B22)

where �R = −20 G and Rbg = 50a0. The above experimental
parameters can realize a quasi-2D Fermi gas which satisfies
R3D 	 lz 	 1/kF [44]. In order to realize a true 2D Fermi
gas where R3D ∼ lz 	 1/kF one needs a trap frequency of
the order of ωz ∼ 10 MHz. In Fig. 4, for ωz = 10 MHz, we
show the variations of the effective 2D scattering area a and
the effective range R when magnetic field δB (relative to the
3D resonance point) varies. Note that the resonance position
is shifted by the external trap potential.
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Wave Interactions in Low-Dimensional Fermionic Gases, Phys.
Rev. Lett. 95, 230401 (2005).

[5] C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach,
W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S.
Julienne, Feshbach resonances in fermionic 6Li, Phys. Rev. A
71, 045601 (2005).

[6] J. P. Gaebler, J. T. Stewart, J. L. Bohn, and D. S. Jin, p-Wave
Feshbach Molecules, Phys. Rev. Lett. 98, 200403 (2007).

[7] Y. Inada, M. Horikoshi, S. Nakajima, M. Kuwata-Gonokami,
M. Ueda, and T. Mukaiyama, Collisional Properties of p-Wave
Feshbach Molecules, Phys. Rev. Lett. 101, 100401 (2008).

[8] J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W.
Rowlands, P. Hannaford, and C. J. Vale, Binding energies of
6Li p-wave Feshbach molecules, Phys. Rev. A 77, 053616
(2008).

[9] T. Nakasuji, J. Yoshida, and T. Mukaiyama, Experimental
determination of p-wave scattering parameters in ultracold 6Li
atoms, Phys. Rev. A 88, 012710 (2013).

[10] M. Waseem, Z. Zhang, J. Yoshida, K. Hattori, T. Saito, and
T. Mukaiyama, Creation of p-wave Feshbach molecules in
the selected angular momentum states using an optical lattice,
J. Phys. B 49, 204001 (2016).

[11] C. Luciuk, S. Trotzky, S. Smale, Z. Yu, S. Zhang, and
J. H. Thywissen, Evidence for universal relations describ-
ing a gas with p-wave interactions, Nat. Phys. 12, 599
(2016).

[12] S. Tan, Energetics of a strongly correlated Fermi gas, Ann. Phys.
(NY) 323, 2952 (2008).

[13] E. Braaten and L. Platter, Exact Relations for a Strongly
Interacting Fermi Gas from the Operator Product Expansion,
Phys. Rev. Lett. 100, 205301 (2008).

[14] S. Zhang and A. J. Leggett, Universal properties of the ultracold
Fermi gas, Phys. Rev. A 79, 023601 (2009).

023603-10

https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevLett.95.230401
https://doi.org/10.1103/PhysRevLett.95.230401
https://doi.org/10.1103/PhysRevLett.95.230401
https://doi.org/10.1103/PhysRevLett.95.230401
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevLett.98.200403
https://doi.org/10.1103/PhysRevLett.98.200403
https://doi.org/10.1103/PhysRevLett.98.200403
https://doi.org/10.1103/PhysRevLett.98.200403
https://doi.org/10.1103/PhysRevLett.101.100401
https://doi.org/10.1103/PhysRevLett.101.100401
https://doi.org/10.1103/PhysRevLett.101.100401
https://doi.org/10.1103/PhysRevLett.101.100401
https://doi.org/10.1103/PhysRevA.77.053616
https://doi.org/10.1103/PhysRevA.77.053616
https://doi.org/10.1103/PhysRevA.77.053616
https://doi.org/10.1103/PhysRevA.77.053616
https://doi.org/10.1103/PhysRevA.88.012710
https://doi.org/10.1103/PhysRevA.88.012710
https://doi.org/10.1103/PhysRevA.88.012710
https://doi.org/10.1103/PhysRevA.88.012710
https://doi.org/10.1088/0953-4075/49/20/204001
https://doi.org/10.1088/0953-4075/49/20/204001
https://doi.org/10.1088/0953-4075/49/20/204001
https://doi.org/10.1088/0953-4075/49/20/204001
https://doi.org/10.1038/nphys3670
https://doi.org/10.1038/nphys3670
https://doi.org/10.1038/nphys3670
https://doi.org/10.1038/nphys3670
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1016/j.aop.2008.03.004
https://doi.org/10.1103/PhysRevLett.100.205301
https://doi.org/10.1103/PhysRevLett.100.205301
https://doi.org/10.1103/PhysRevLett.100.205301
https://doi.org/10.1103/PhysRevLett.100.205301
https://doi.org/10.1103/PhysRevA.79.023601
https://doi.org/10.1103/PhysRevA.79.023601
https://doi.org/10.1103/PhysRevA.79.023601
https://doi.org/10.1103/PhysRevA.79.023601


STRONGLY INTERACTING p-WAVE FERMI GAS IN . . . PHYSICAL REVIEW A 95, 023603 (2017)

[15] F. Werner, L. Tarruell, and Y. Castin, Number of closed-channel
molecules in the BEC-BCS crossover, Eur. Phys. J. B 68, 401
(2009).

[16] S. M. Yoshida and M. Ueda, Universal High-Momentum
Asymptote and Thermodynamic Relations in a Spinless Fermi
Gas with a Resonant p-Wave Interaction, Phys. Rev. Lett. 115,
135303 (2015).

[17] Z. Yu, J. H. Thywissen, and S. Zhang, Universal Relations for
a Fermi Gas Close to a p-Wave Interaction Resonance, Phys.
Rev. Lett. 115, 135304 (2015).

[18] M.-Y. He, S.-L. Zhang, H. M. Chan, and Q. Zhou, Concept of
Contact Spectrum and Its Applications in Atomic Quantum Hall
States, Phys. Rev. Lett. 116, 045301 (2016).

[19] S.-L. Zhang, M. He, and Q. Zhou, Contact matrix in dilute
quantum systems, arXiv:1606.05176.

[20] S. M. Yoshida and M. Ueda, p-wave contact tensor: Universal
properties of axisymmetry-broken p-wave Fermi gases, Phys.
Rev. A 94, 033611 (2016).

[21] S.-G. Peng, X.-J. Liu, and H. Hu, Large-momentum distribution
of a polarized Fermi gas and p-wave contacts, Phys. Rev. A 94,
063651 (2016).

[22] X. Cui and H. Dong, High-momentum distribution with a
subleading k−3 tail in the odd-wave interacting one-dimensional
Fermi gases, Phys. Rev. A 94, 063650 (2016).

[23] J. Yao and S. Zhang, Normal state properties of a resonantly
interacting p-wave Fermi Gas, arXiv:1609.06476.

[24] L. P. Pitaevskii and A. Rosch, Breathing modes and hidden
symmetry of trapped atoms in two dimensions, Phys. Rev. A 55,
853(R) (1997).

[25] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Superconductivity in
a two-dimensional Fermi gas: Evolution from Cooper pairing to
Bose condensation, Phys. Rev. B 41, 327 (1990).

[26] H.-W. Hammer and D. Lee, Causality and universality in
low-energy quantum scattering, Phys. Lett. B 681, 500
(2009).

[27] H.-W. Hammer and D. Lee, Causality and the effective range
expansion, Ann. Phys. (NY) 325, 2212 (2010).

[28] S. A. Rakityansky and N. Elander, Analytic structure and power
series expansion of the Jost function for the two-dimensional
problem, J. Phys. A 45, 135209 (2012).

[29] H. A. Bethe, Theory of the Effective Range in Nuclear
Scattering, Phys. Rev. 76, 38 (1949).

[30] L. B. Madsen, Effective range theory, Am. J. Phys. 70, 811
(2002).

[31] Y. Nishida, S. Moroz, and D. T. Son, Super Efimov Effect of
Resonantly Interacting Fermions in Two Dimensions, Phys. Rev.
Lett. 110, 235301 (2013).

[32] A. G. Volosniev, D. V. Fedorov, A. S. Jensen, and N. T. Zinner,
Borromean ground state of fermions in two dimensions, J. Phys.
B 47, 185302 (2014).

[33] C. Gao, J. Wang, and Z. Yu, Revealing the origin of super-Efimov
states in the hyperspherical formalism, Phys. Rev. A 92, 020504
(2015).

[34] P. Zhang and Z. Yu, Sigature of the universal super Efimov
Effect: Three-body contact in two dimensional Fermi gases,
arXiv:1611.09454.

[35] T.-L. Ho and E. J. Mueller, High Temperature Expansion
Applied to Fermions near Feshbach Resonance, Phys. Rev. Lett.
92, 160404 (2004).

[36] X.-J. Liu, H. Hu, and P. D. Drummond, Virial Expansion for a
Strongly Correlated Fermi Gas, Phys. Rev. Lett. 102, 160401
(2009).

[37] K. Huang, Statistical Mechanics 2nd ed. (Wiley, New York,
1987).

[38] J. Hofmann, Quantum Anomaly, Universal Relations, and
Breathing Mode of a Two-Dimensional Fermi Gas, Phys. Rev.
Lett. 108, 185303 (2012).

[39] C. Gao and Z. Yu, Breathing mode of two-dimensional atomic
Fermi gases in harmonic traps, Phys. Rev. A 86, 043609 (2012).

[40] E. Taylor and M. Randeria, Apparent Low-Energy Scale
Invariance in Two-Dimensional Fermi Gases, Phys. Rev. Lett.
109, 135301 (2012).

[41] J. Levinsen, Stability of fermionic gases close to a p-wave
Feshbach resonance, Phys. Rev. A 78, 063616 (2008).

[42] Z. Idziaszek and T. Calarco, Pseudopotential Method for Higher
Partial Wave Scattering, Phys. Rev. Lett. 96, 013201 (2006).

[43] S.-G. Peng, S. Tan, and K. Jiang, Manipulation of p-Wave
Scattering of Cold Atoms in Low Dimensions Using the
Magnetic Field Vector, Phys. Rev. Lett. 112, 250401 (2014).

[44] J. H. Thywissen (private communication).

023603-11

https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1140/epjb/e2009-00040-8
https://doi.org/10.1103/PhysRevLett.115.135303
https://doi.org/10.1103/PhysRevLett.115.135303
https://doi.org/10.1103/PhysRevLett.115.135303
https://doi.org/10.1103/PhysRevLett.115.135303
https://doi.org/10.1103/PhysRevLett.115.135304
https://doi.org/10.1103/PhysRevLett.115.135304
https://doi.org/10.1103/PhysRevLett.115.135304
https://doi.org/10.1103/PhysRevLett.115.135304
https://doi.org/10.1103/PhysRevLett.116.045301
https://doi.org/10.1103/PhysRevLett.116.045301
https://doi.org/10.1103/PhysRevLett.116.045301
https://doi.org/10.1103/PhysRevLett.116.045301
http://arxiv.org/abs/arXiv:1606.05176
https://doi.org/10.1103/PhysRevA.94.033611
https://doi.org/10.1103/PhysRevA.94.033611
https://doi.org/10.1103/PhysRevA.94.033611
https://doi.org/10.1103/PhysRevA.94.033611
https://doi.org/10.1103/PhysRevA.94.063651
https://doi.org/10.1103/PhysRevA.94.063651
https://doi.org/10.1103/PhysRevA.94.063651
https://doi.org/10.1103/PhysRevA.94.063651
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.94.063650
https://doi.org/10.1103/PhysRevA.94.063650
http://arxiv.org/abs/arXiv:1609.06476
https://doi.org/10.1103/PhysRevA.55.R853
https://doi.org/10.1103/PhysRevA.55.R853
https://doi.org/10.1103/PhysRevA.55.R853
https://doi.org/10.1103/PhysRevA.55.R853
https://doi.org/10.1103/PhysRevB.41.327
https://doi.org/10.1103/PhysRevB.41.327
https://doi.org/10.1103/PhysRevB.41.327
https://doi.org/10.1103/PhysRevB.41.327
https://doi.org/10.1016/j.physletb.2009.10.033
https://doi.org/10.1016/j.physletb.2009.10.033
https://doi.org/10.1016/j.physletb.2009.10.033
https://doi.org/10.1016/j.physletb.2009.10.033
https://doi.org/10.1016/j.aop.2010.06.006
https://doi.org/10.1016/j.aop.2010.06.006
https://doi.org/10.1016/j.aop.2010.06.006
https://doi.org/10.1016/j.aop.2010.06.006
https://doi.org/10.1088/1751-8113/45/13/135209
https://doi.org/10.1088/1751-8113/45/13/135209
https://doi.org/10.1088/1751-8113/45/13/135209
https://doi.org/10.1088/1751-8113/45/13/135209
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1103/PhysRev.76.38
https://doi.org/10.1119/1.1473644
https://doi.org/10.1119/1.1473644
https://doi.org/10.1119/1.1473644
https://doi.org/10.1119/1.1473644
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1103/PhysRevLett.110.235301
https://doi.org/10.1088/0953-4075/47/18/185302
https://doi.org/10.1088/0953-4075/47/18/185302
https://doi.org/10.1088/0953-4075/47/18/185302
https://doi.org/10.1088/0953-4075/47/18/185302
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1103/PhysRevA.92.020504
https://doi.org/10.1103/PhysRevA.92.020504
http://arxiv.org/abs/arXiv:1611.09454
https://doi.org/10.1103/PhysRevLett.92.160404
https://doi.org/10.1103/PhysRevLett.92.160404
https://doi.org/10.1103/PhysRevLett.92.160404
https://doi.org/10.1103/PhysRevLett.92.160404
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.102.160401
https://doi.org/10.1103/PhysRevLett.108.185303
https://doi.org/10.1103/PhysRevLett.108.185303
https://doi.org/10.1103/PhysRevLett.108.185303
https://doi.org/10.1103/PhysRevLett.108.185303
https://doi.org/10.1103/PhysRevA.86.043609
https://doi.org/10.1103/PhysRevA.86.043609
https://doi.org/10.1103/PhysRevA.86.043609
https://doi.org/10.1103/PhysRevA.86.043609
https://doi.org/10.1103/PhysRevLett.109.135301
https://doi.org/10.1103/PhysRevLett.109.135301
https://doi.org/10.1103/PhysRevLett.109.135301
https://doi.org/10.1103/PhysRevLett.109.135301
https://doi.org/10.1103/PhysRevA.78.063616
https://doi.org/10.1103/PhysRevA.78.063616
https://doi.org/10.1103/PhysRevA.78.063616
https://doi.org/10.1103/PhysRevA.78.063616
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.96.013201
https://doi.org/10.1103/PhysRevLett.112.250401
https://doi.org/10.1103/PhysRevLett.112.250401
https://doi.org/10.1103/PhysRevLett.112.250401
https://doi.org/10.1103/PhysRevLett.112.250401



