<table>
<thead>
<tr>
<th>Title</th>
<th>Negative capacitance transistors with monolayer black phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Liu, F; Zhou, Y; Wang, YJ; Liu, XY; Wang, J; Guo, H</td>
</tr>
<tr>
<td>Citation</td>
<td>npj Quantum Materials, 2016, v. 2016, p. 16004:1-6</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/238698</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Quantum transport properties of negative capacitance transistors (NC-FETs) with monolayer black phosphorus (ML-BP) are theoretically studied. Our calculations show that atomistic thin ML-BP can enhance the amplification effect of the ferroelectric layer, and subthreshold swing is effectively reduced to 27 mV per decade in ML-BP NC-FETs. Device performance can be further improved by increasing the thickness of ferroelectric layer and using thinner or high-k insulator layer. Due to the temperature dependence of ferroelectric layer ML-BP NC-FETs have higher on-state current at low temperature, which is different from that of MOSFETs. By considering the metal–ferroelectric interface layer, our calculations show that the device performance is degraded by the interface. Compared with the International Technology Roadmap (ITRS) 2013 requirements, ML-BP NC-FETs can fulfil the ITRS requirements for high-performance logic with a reduced supply voltage. The new device can achieve very low power delay product per device width at $V_D = 0.3$ V, which is just 44% of that in ML-BP FETs.

npj Quantum Materials (2016) 1, 16004; doi:10.1038/npjquantmats.2016.4; published online 27 July 2016

INTRODUCTION

The development of complementary metal-oxide-semiconductor (CMOS) technology in the past half century has followed the Moore’s law to a very good extent. This path is however reaching the physical limit where power dissipation in circuits has become the game-breaker. Even though various technologies have been applied to improve device performance in CMOS—strained silicon, high-k metal gate, FinFET, etc.—these do not change the operation principle of metal oxide semiconductor field effect transistor (MOSFET) in which the current is controlled by modulating the thermionic carriers over the potential barrier of the transistor channel. A consequence is that the subthreshold swing (SS) can not be made smaller than the thermal limit of 60 mV per decade, which is a limit dictated by the fundamental physics of the Boltzmann distribution. On the other hand, if somehow SS could break this limit, one would be able to reduce the external voltages for the transistor operation, thereby reducing power dissipation and prolonging the Moore’s law scaling. The economic impact of such a scenario would be enormous.

To this end, an extremely interesting idea is the negative capacitance field effect transistor (NC-FET), which was theoretically proposed to achieve SS below the 60 mV per decade limit. In NC-FETs, a ferroelectric (FE) gate layer is applied and couples with a positive capacitor to realise a bistable state. The combination of the external electric field and the polarisation in the FE material gives rise to a negative voltage drop through the FE layer and, in effect, results in a ‘voltage amplification’ that improves the subthreshold characteristics. This possibility of achieving sub 60-mV per decade has excited great interests on NC-FETs. Experimentally, a sub-60 mV per decade has been achieved in polymer FE MOSFETs and the capacitance of FE-dielectric bilayer has been enhanced due to the negative capacitance effect. Very recently, a direct measurement of negative differential capacitance has been achieved, and negative capacitance FinFETs have been realised to achieve extremely low-steep swings.

In this work, we show that the voltage amplification effect in NC-FETs can be further enhanced if the transistor channel is made of two-dimensional (2D) materials because 2D channels have better gate control to begin with. More importantly, it turns out that SS can be expressed by a transport factor multiplying a body-factor, and the use of 2D materials decreases the latter (see below) thus reduces the SS. From the practical point of view, the thin layer of 2D materials makes them a natural choice for producing flexible structures due to their out-of-plane flexibility and, for flexible and wearable consumer electronics. Therefore, in this work we propose and theoretically investigate the interesting device physics of a new class of emerging nanoelectronics where FE is combined with 2D materials leading to the 2D NC-FETs.

To be more specific but without losing generality, we consider the newly discovered monolayer (ML) black phosphorus (BP) as the channel material. ML-BP is a direct gap semiconductor and has a relatively high mobility. Therefore, higher on-state current and faster switching speed can be achieved in ML-BP devices compared with monolayer transition metal dichalcogenides (TMDCs) FETs. We predict that the proposed device has a good gate control and can achieve low-power performance at the drain voltage $V_D = 0.3$ V, which is much smaller than that of Si FETs. The power delay product per device width is predicted to be much smaller than the requirement of the International Technology Roadmap (ITRS) 2013 for high-performance (HP) applications in the 2024 horizon. We present design
RESULTS

We consider a device with a 400 nm FE layer, 3 nm equivalent oxide thickness (EOT) layer and 20 nm thickness substrate as shown in Figure 1a. We first compared the device characteristics of FETs and NC-FETs. The drain current I_D versus V_G characteristic is presented in Figure 2a. From the figure, we can clearly see that the device performance is greatly improved in NC-FETs. When the FE layer is applied, the SS is reduced from 130 to 72 mV per decade and the current at $V_G=0.5$ V is increased by 713 times as demonstrated in Figure 2a. Even though the SS is improved, it is still greater than the thermal limit. For Equation (2), there are three different ways to further improve device performance: decreasing C_{FE} and increasing C_{GS1} or C_P. We first analyse the effects of the FE layer thickness. Increasing the thickness, the device performance is improved as shown in Figure 2b. With a fixed I_{ON}/I_{OFF} ratio, higher I_{ON} can be obtained in NC-FETs with thicker FE layer. Here, on-state and off-state currents are calculated with a fixed V_G window equal to the supply voltage V_D of 0.5 V. Another improvement of device performance is achieved by increasing the capacitance of the insulator layer. Here different EOT and gate oxide layer materials are applied. When the thickness of FE layer reaches 700 nm, SS smaller than 60 mV per decade is obtained in NC-FETs with 3 nm EOT as shown in Figure 2c. It is also found that the performance of NC-FETs can be improved by using high-k gate oxide layer. Seven different gate oxide materials are applied and smaller SS can be achieved at the same I_{ON} current in NC-FETs with high-k gate oxide layer as shown in Figure 2d.

Regarding the design guidelines of NC-FETs as low power devices, the temperature effect on device performance is studied. It is well known that the polarisation of FE layer greatly depends on the temperature and the state of transistor is modulated by controlling the thermionic carrier over the barrier. Therefore, the temperature has a great impact on the performance of NC-FETs. The dynamic of FE polarisation can be described by the Landau–Khalatnikov (LK) equation

$$\rho \frac{dP}{dt} + V_{ext}P = 0$$

where the free energy of FE material is the function of a series expansion of polarisation:

$$U = \alpha P^2 + \beta P^4 + \gamma P^6 - E_{ext} \cdot P$$

where α, β and γ are laudau coefficients and P is the polarisation.

![Figure 1](image1.png)

Figure 1. The negative capacitance (NC) transistor (FET) based on monolayer black phosphorus (ML-BP). (a) Sketch of the simulated ML-BP NC-FET. Transport direction is assumed to be the armchair direction of ML-BP. (b) Equivalent capacitor divider model of ML-BP NC-FETs.

![Figure 2](image2.png)

With the model, the interface impact on device performance can be simulated as illustrated in Figure 4. The figure presents the SS with different interface thicknesses. It can be seen that the SS
increases linearly with the thickness of the interface layer. Due to the existence of the interface layer, the effective thickness of FE layer is reduced and the amplification of FE layer is degraded. So, it is important to reduce the thickness of the interface layer to realise NC-FETs experimentally.

At last, we studied the scaling behaviour of NC-FETs and estimated the device performance for HP applications from ITRS 2013. The simulated channel length ranges from 5 to 15 nm. Figure 5a,b shows drain current of ML-BP FETs and ML-BP NC-FETs as a function of the gate voltage with a fixed $V_D = 0.5$ V,
respectively. I_D decreases with the increasing channel length L_C for the two kinds of devices, and for NC-FETs current becomes nearly independent of channel length for $V_G > 0.7$ V. SS decreases fast when the channel length increases as shown in Figure 5c and SS of ML-BP NC-FETs can be smaller than the 60 mV per decade limit. It has been shown that the ballistic performance of ML-BP FETs can meet the ITRS requirements for HP logic applications in 10 years horizon. In ideal conditions, NC-FETs have better gate control compared with the FETs due to the amplification of FE layer. Hence, ML-BP NC-FETs are also suitable for logic applications. For lower-power consumption, reducing the supply voltage is critical, which determines the dynamic and static power dissipation. Figure 6 shows I_D–V_G characteristics for ML-BP NC-FETs and ML-BP FETs at different supply voltages. For ML-BP FETs, when V_D decreases from 0.69 to 0.3 V, the drain current drops clearly. Therefore, in FETs lowering the supply voltage is not an effective method to reduce the power dissipation because a reasonable-driven current cannot be kept. In NC-FETs, the control voltage can be amplified by the FE layer. Even though the supply voltage is reduced to 0.3 V, ML-BP NC-FETs can obtain good device performance than ML-BP FETs as shown in Figure 6. SS reaches 53 mV per decade in NC-FETs with 400 nm FE layer and can be further reduced to 27 mV per decade in NC-FETs with 600 nm FE layer. In Table 1, performance metrics of ML-BP NC-FETs with 400 nm FE layer and ML-BP FETs are compared with the requirements of ITRS 2013 for HP applications.21 The off-state current is fixed at 0.1 μA/um and the gate voltage windows are set to be equal to the value of bias voltage: $V_{ON}^{NN}=V_D$. The intrinsic delay is computed as $\tau = (Q_{ON}-Q_{OFF})/I_D$ and the power delay product (PDP) per device width is calculated as $PDP = (Q_{ON}-Q_{OFF})V_D$. The two compared devices can meet technique requirements for HP applications of ITRS 2013 for the year 2024. In NC-FETs, PDP is effectively reduced and only 44% of that of FETs. Due to the low on-state current, the intrinsic delay is longer than that of ML BP FETs but still lower than the requirement of ITRS 2013.

DISCUSSION

Compared with the classical FETs, the NC-FETs have an additional FE layer deposited on the metal gate as shown in Figure 1a. Therefore, the transport mechanism of NC-FETs is the same as that of FETs, and the NC-FET device can be viewed as a FET connected to a gate voltage ‘amplifier’. The electrostatics due to the gate of NC-FETs can be roughly described by the capacitor divider model4 of Figure 1b where C_{FE}, C_{INS1} and C_B are capacitors due to the FE layer, the insulator layer and the body structure that includes the channel and the

Figure 4. SS as a function of interface layer thickness (T_{IN}) for 15 nm ML-BP NC-FETs with 3 nm HfO$_2$ insulator layer and 400 nm ferroelectric layer at $V_D = 0.5$ V. $T_{INFE} = T_{IN} + T_{FE}$, where T_{FE} is effective ferroelectric layer thickness.

Figure 5. The scaling behaviour of NC-FETs. (a) I_D–V_G for ML-BP FETs with 3 nm HfO$_2$ insulator layer and different channel lengths (L_C) at $V_D = 0.5$ V and $T = 300$ K. (b) I_D–V_G for ML-BP NC-FETs with 400 nm ferroelectric layer, 3 nm HfO$_2$ insulator layer and different channel lengths at $V_D = 0.5$ V and $T = 300$ K. (c) SS as a function of channel length of 15 nm ML-BP FETs and ML-BP NC-FETs with 400 nm ferroelectric layer at $V_D = 0.5$ V and $T = 300$ K.

Figure 6. I_D–V_D for ML-BP NC-FETs and ML-BP FETs with 3 nm HfO$_2$ insulator layer and 7.3 nm channel. NC-FETs I and NC- FETs II have 400 and 600 nm ferroelectric layer, respectively.
been proposed to keep a clean BP film, such as encapsulation by
AON layers, covering by copolymer capping layer,28 graphene and
hexagonal boron nitride.29 It is theoretically predicted that
monolayer BP can be well maintained on the HfO2 (111) surface30
and H-passivated Al2O3.31 Further progress should make it feasible
to manage the degradation of BP film for real device applications.
The device performance of NC-FETs greatly depends on properties
of the channel material and FE layer as well as the device
structure. 2D materials with high carrier mobility and reasonable
band gap are beneficial for achieving higher on-current and on/off
current ratio of NC-FETs. The amplification effect of FE layer can be
oprimed by adjusting the FE material parameters such as
increasing the FE layer thickness and coercive voltage, and
decreasing the remnant polarisation.32

CONCLUSION

Negative capacitance transistor based on 2D material—monolayer
black phosphorus is proposed, which combines 2D material—ML-BP
with sub-60 mV per decade operation. By using 2D material
amplification effect of FE layer can be enhanced. We show that
the combination of ML-BP and negative capacitance transistor can
effectively reduce subthreshold swing due to the atomic thin
structure and the amplification effect of the FE layer. The new device
can achieve a subthreshold swing as small as 27 mV per decade at
VGS = 0.3 V. Device performance of ML-BP NC-FETs can be optimised
by increasing the thickness of FE layer and using thinner or high-k
insulating layer. ML-BP NC-FETs show different temperature
dependence from MOSFET and can reach higher on current at low
temperature due to the polarisation of FE layer. By considering the
metal–FE interface layer, our calculation shows that the device
performance is degraded by the interface. Compared with the ITRS 2013
requirements, ML-BP NC-FETs can fulfil the ITRS requirements for
HP applications in 2024 and the power delay product per device
width can be effectively reduced. Therefore, the proposed ML-BP
NC-FETs should be very helpful for designing low-power circuits.

MATERIALS AND METHODS

Figure 1 schematically shows the device structure of ML-BP NC-FETs.
A SrBi2Nb2O9 FE layer is deposited on the metallic gate of the underlying
transistor. In our simulation hysteretic effect is neglected, corresponding
to a relatively thick FE. In the underlying MOSFET, ML-BP is used
as the channel material. The source/drain of FE is n-type doped with
a density of 7.0 × 1011 cm−2, and the channel under the gate is intrinsic.
The length of source or drain is 10 nm and the channel length ranges from 5
to 15 nm. The ballistic transport of ML-BP is calculated by self-consistently
solving the Schrodinger and Poisson equations within nonequilibrium
Green’s function formalism. A four band tight binding Hamiltonian is used
to describe the ML-BP material and can well fit the low-energy band
structures.33 The amplifying effect of the FE layer is calculated by solving the
1D Landau model.34 Landau parameters of SrBi2Nb2O9 and temperature
dependence model are taken from ref. 22 The effect of the electrode–FE
interface is described by the interface capacitance model,26 which is coupled
with the 1D Landau model to study interface effect in ML-BP NC-FETs.

ACKNOWLEDGEMENTS

This work was supported by the University Grant Council (contract no. AoE/P-04/08)
of the Government of Hong Kong Special Administrative Region, National Natural
Science Foundation of China with no.11374246 (J.W.) and NSERC of Canada (H.G.).

CONTRIBUTIONS

F.L. and Y.Z. conceived and designed the research. F.L. and Y.Z. contributed to
this work equally. Y.Z. developed the capacitor model. F.L. performed the
calculations. Y.W. and X.L. assisted in simulation and physical analysis. J.W. and
H.G. participated in the explanation of results. F.L., Y.Z., J.W. and H.G. wrote the
manuscript.
COMPETING INTERESTS
The authors declare no conflict of interest.

REFERENCES
11. Khan, A. I. & Alam, M. A. Stability constraints de...