<table>
<thead>
<tr>
<th>Title</th>
<th>Improving the distances of post-AGB objects in the Milky Way</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Vickers, SB; Frew, DJ; Owers, MS; Parker, QA; Bojicic, IS</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/237688</td>
</tr>
<tr>
<td>Rights</td>
<td>Copyright © Institute of Physics Publishing.; This is an author-created, un-copyedited version of an article published in [insert name of journal]. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/[insert DOI].; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Improving the distances of post-AGB objects in the Milky Way

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2016 J. Phys.: Conf. Ser. 728 072013
(http://iopscience.iop.org/1742-6596/728/7/072013)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 147.8.230.84
This content was downloaded on 19/01/2017 at 03:38

Please note that terms and conditions apply.

You may also be interested in:

An ALMA view of the post-AGB object HD 101584
H. Olofsson, W. Vlemmings, M. Maercker et al.

AGB and Post-AGB Objects. II.
Maartje N. Sevenster

AGB and Post-AGB Objects. I.
Maartje N. Sevenster

OBSERVATIONS OF SiO J = 3--2 AND J = 2--1 EMISSION. II.
Se-Hyung Cho, Hyun-Soo Chung, Hyun-Goo Kim et al.

MOLECULAR SURVIVAL IN EVOLVED PLANETARY NEBULAE
E. D. Tenenbaum, S. N. Milam, N. J. Woolf et al.

Collimation of Astrophysical Jets
Kazimierz
J. Borkowski, John

Observations of High Rotational CO Lines
Patrick Harrington
M. Tielens, C.
J. Skinner et al.
Improving the distances of post-AGB objects in the Milky Way

Shane B Vickers¹, David J Frew², Matt S Owers¹,³, Quentin A Parker²,³, and Ivan S Bojičić²

¹Department of Physics and Astronomy, Macquarie University, NSW 2109, Australia
²Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, China
³Australian Astronomical Observatory, PO Box 915, North Ryde, NSW 1670, Australia

E-mail: ¹ shane.vickers@students.mq.edu.au

Abstract.

Post-AGB (PAGB) stars are short-lived, low-intermediate mass objects transitioning from the asymptotic giant branch (AGB) to the white dwarf (WD) phase. These objects are characterised by a constant, core-mass dependent luminosity and a large infrared excess from the dusty envelope ejected at the top of the AGB. PAGB stars provide insights into the evolution of their direct descendants, planetary nebulae (PNe). Calculation of physical characteristics of PAGB are dependent on accurately determined distances scarcely available in the literature. Using the Torun catalogue for PAGB objects, supplemented with archival data, we have determined distances to the known population of Galactic PAGB stars. This is by modelling their spectral energy distributions (SED) with black bodies and numerically integrating over the entire wavelength range to determine the total integrated object flux. For most PAGB stars we assumed their luminosities are based on their positional characteristics and stellar evolution models. R V Tauri stars however are known to follow a period-luminosity relation (PLR) reminiscent of type-2 Cepheids. For these variable PAGB stars we determined their luminosities via the PLR and hence their distances. This allows us to overcome the biggest obstacle to characterising these poorly understood objects that play a vital part in Galactic chemical enrichment.

1. Introduction

Pre-planetary nebulae (PPNe) are a very brief phase in the late-stage evolution of mid-mass stars (∼1 – 8 M☉) between the asymptotic giant branch (AGB) and the PN phase. The tenuous envelope ejection in the final superwind of AGB evolution reaches rates of 10⁻⁴ M☉ yr⁻¹, and increases the effective temperature of the central star. The rate of increase is a strong function of core mass [1,2]. RV Tauri stars are F to K type variable stars with alternating deep and shallow minima and are believed to be luminous population II Cepheids that follow a period-luminosity relationship similar to type-2 Cepheids [3]. Understanding these objects depends on accurate distances that are not yet available for the more poorly-quantified objects. We aim to rectify this by determining accurate distances to the known Galactic PAGB star population [6].

2. Sample

We use the Toruń catalogue of PAGB and related objects [4,5] and flux data for known Galactic objects that includes 209 likely PPN, 112 RV Tauri, 72 R CrB/eHe/LTP and 87 possible PAGB
3. Method
We use the SED fitting method described in [6], with the luminosity calculation for RV Tauri stars described as follows. Using the data from [4,5] as well as publicly available photometry, we build an SED that is fit with a number of black body functions to calculate the total bolometric flux. This is used with the luminosity to determine the distance. Light curves and photometry from [7,8] are used to define a new period-luminosity relation for RV Tauri stars in both the LMC and the SMC to determine luminosities for their Galactic counterparts. Using these data we have defined a new period luminosity relations for RV Tauri stars in multiple wavebands the I-band PLR is shown in Figure 1.

4. Summary and future work
With a new catalogue of distances to the different PAGB objects we can work on determining the progenitors, amongst other physical parameters, for the different classes. With distances we can compare the z-heights for the different object classes, shining light on their progenitors. This will help uncover the shaping mechanisms responsible for the observed complex morphologies. This is the first ever distance catalogue for these objects.

References