<table>
<thead>
<tr>
<th>Title</th>
<th>Roughness-sublayer correction for the profiles of mean velocity and turbulence over urban areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ho, YK; Liu, CH</td>
</tr>
<tr>
<td>Citation</td>
<td>The Croucher Advanced Study Institute (ASI) Programme 2015-2016: Changing Urban Climate & the Impact on Urban Thermal Environment and Urban Living, The Chinese University of Hong Kong, Hong Kong, 7-11 December 2015.</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/235025</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Roughness-sublayer correction for the profiles of mean velocity and turbulence over urban areas

Yat-Kiu HO | Chun-Ho LIU

Background

- Monin-Obukhov similarity theory (MOST) applies in inertial sub-layer (ISL) but fails in roughness sub-layer (RSL) because the flow structure in RSL is highly inhomogeneous.
- Extrapolation of the conventional logarithmic law of wall into the RSL likely overlooks the inhomogeneity.
- Need for an analytical expression for mean velocity profile and ventilation estimate, including a new RSL correction, that is applicable over the urban boundary layer.

Analytical Expression for RSL flow correction

Assumptions:

- $\Phi_m = \phi \Phi_m$ is a generalised similarity function of ISL & RSL
- Flows above urban canopy in neutral stratification ($\phi_m = 1$)
- Φ_m is a function of the roughness elements that is independent from the MOST length scale L.

$\Phi_m = \phi \Phi_m = \phi \left(\frac{z}{z_o} \right)$

z is the elevation & z_o the RSL height.

The gradient of the wind profile in dimensionless form is,

$\frac{d\phi}{dz} = \frac{u^*}{\kappa} \frac{z}{z_o}$

u is the wind speed, u^* the friction velocity & $\kappa \approx 0.41$ the von Kármán constant.

Rearrange & integrate yields,

$\kappa \int u \phi dz = - \ln \left(\frac{z}{z_o} \right) + \int \frac{1 - \phi}{z_o} \frac{z}{z_o} \phi dz$,

d is the displacement height & z_o the roughness length scale.

We employ the (continuous) function of ϕ_m,

$\phi_m = 1 - e^{-\mu (z/z_o)}$,

μ is an empirical constant.

Use series expansion to calculate the exponential integral, an analytical expression for the urban RSL effects is formulated

$\frac{\Phi_m}{u^* \phi_m} = \frac{1}{\kappa} \ln \left(\frac{z}{z_o} \right) - \ln \left(\frac{z}{z} - \frac{d}{z_o} \right) - \sum_{n=1}^{\infty} \frac{(-1)^n \mu (z - d)}{n \cdot n!} \cdot \frac{z}{z_o}$

$\gamma \approx 0.57721$; Euler constant.

Wind Tunnel Measurements

- The open-circuit type wind tunnel at the Department of ME, HKU was used with neutral stratification and a reference wind speed of 9 m s$^{-1}$
- Idealised 2D-roughness elements with different aspect ratio (AR = h/b) were used to simulate the urban areas.
- Cross-wise hot-wire measurements were performed

Flows and Ventilation Estimates over Idealised Urban Areas

- Flow inhomogeneity over idealised urban areas is revealed (Fig. 3a)
- RSL & ISL are clearly identified
- The newly proposed analytical expression performs well in both RSL & ISL for the prediction of velocity profiles over a wide range of aspect ratios, 0.5 < AR < 0.083 (Fig. 3c)
- Friction factor f & vertical velocity scale \bar{w} are used to parameterise ventilation performance over urban areas with RSL corrections (Fig. 3b)

Next steps

- Tests with additional roughness elements of different forms using wind tunnel experiments, i.e. cube roughness, building height variability or realistic city models.
- Quantify the effect of aerodynamic roughness on RSL flows.
- Examine the RSL turbulence using mixing length models.

*Corresponding Author: Chun-Ho LIU; Department of Mechanical Engineering, 7/F Haking Wong Building, The University of Hong Kong, Pokfulam Road, HONG KONG; liuchunho@graduate.hku.hk; Tel: +852 2859 7901; Fax: +852 2858 5415.