<table>
<thead>
<tr>
<th>Title</th>
<th>Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tang, Y; Hong, YZ; Bai, HJ; Wu, Q; Chen, DG; Lang, JY; Boheler, KR; Yang, HT</td>
</tr>
<tr>
<td>Citation</td>
<td>Stem Cells, 2016, v. 34 n. 6, p. 1527-1540</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/234850</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Plant Homeo Domain Finger Protein 8 Regulates Mesodermal and Cardiac Differentiation of Embryonic Stem Cells Through Mediating the Histone Demethylation of pmaip1

YAN TANG,a YA-ZHEN HONG,a HUA-JUN BAI,a QIANG WU,a CHARLIE DEGUI CHEN,b JING-YU LANG,a KENNETH R. BOHELER,a HUANG-TIAN YANGa,d

Key Words. Plant homeodomain finger protein 8 • Embryonic stem cells • Mesodermal and cardiac differentiation • Apoptosis • Histone demethylases • Phorbol-12-myristate-13-acetate-induced protein 1

ABSTRACT
Histone demethylases have emerged as key regulators of biological processes. The H3K9me2 demethylase plant homeodomain finger protein 8 (PHF8), for example, is involved in neuronal differentiation, but its potential function in the differentiation of embryonic stem cells (ESCs) to cardiomyocytes is poorly understood. Here, we explored the role of PHF8 during mesodermal and cardiac lineage commitment of mouse ESCs (mESCs). Using a phf8 knockout (phf8$^{-/-}$) model, we found that deletion of phf8 in ESCs did not affect self-renewal, proliferation or early ectodermal/endothelial differentiation, but it did promote the mesodermal lineage commitment with the enhanced cardiomyocyte differentiation. The effects were accompanied by a reduction in apoptosis through a caspase 3-independent pathway during early ESC differentiation, without significant differences between differentiating wide-type (phf8$^{+/+}$) and phf8$^{-/-}$ ESCs in cell cycle progression or proliferation. Functionally, PHF8 promoted the loss of a repressive mark H3K9me2 from the transcription start site of a proapoptotic gene pmaip1 and activated its transcription. Furthermore, knockout of pmaip1 mimicked the phenotype of phf8$^{-/-}$ by showing the decreased apoptosis during early differentiation of ESCs and promoted mesodermal and cardiac commitment, while overexpression of pmaip1 or phf8 rescued the phenotype of phf8$^{-/-}$ ESCs by increasing the apoptosis and weakening the mesodermal and cardiac differentiation. These results reveal that the histone demethylase PHF8 regulates mesodermal lineage and cell fate decisions in differentiating mESCs through epigenetic control of the gene critical to programmed cell death pathways.

STEM CELLS 2016;34:1527–1540

SIGNIFICANCE STATEMENT
Embryonic stem cells (ESCs) have the unique ability to differentiate into derivatives of all three germ layers both in vitro and in vivo. Thus, ESCs provide a unique model for the study of early embryonic development. We report here previously unrecognized effects of histone demethylase plant homeodomain finger protein 8 (PHF8) on mesodermal and early cardiac differentiation. This effect is resulted from the regulation of PHF8 on apoptosis through activating the transcription of pro-apoptotic gene pmaip1. These findings extend the knowledge in understanding of the epigenetic modification in apoptosis during ESC differentiation and of the link between apoptosis and cell lineage decision as well as cardiogenesis.

INTRODUCTION
Embryonic stem cells (ESCs) have the unique ability to differentiate into derivatives of all three germ layers both in vitro and in vivo. Due to this plasticity, mechanisms controlling cell autonomous and regulatory events critical to in vivo mammalian development have benefited from the in vitro study of differentiating ESCs [1, 2]. Early embryogenesis and cavity formation as well as early ESC differentiation, for example, are accompanied by a reduction in proliferation and increased apoptosis [3–5]. Withdrawal of leukemia inhibitory factor (LIF) from mouse embryonic stem cells (mESCs) cultivated in vitro causes approximately 20%-30% of the cells to die by spontaneous (constitutive) apoptosis [4, 5]. This
occurs secondary to the induction of cleaved caspase 3 [3] and apoptosis-inducing factor (AIF)-complex proteins [6]. Blockade of spontaneous apoptosis in vitro by a p38 mitogen-activated protein kinase (MAPK) inhibitor alters the differentiation markers and increases the abundance of both antiapoptotic proteins (Bcl-2, Bcl-XL) and Ca\(^{2+}\)-binding proteins [4, 7]. In addition, Ca\(^{2+}\) released from type 3 inositol 1, 4, 5-trisphosphate receptors (IP\(_3\)R3) negatively regulates this apoptotic response, which in turn modulates the mesodermal lineage commitment of early differentiating mESCs [5]. These findings explain, in part, how apoptosis contributes to specific lineage commitment during early development. However, in contrast to the relatively advanced knowledge of signaling pathways [8], little is known about the contribution of epigenetic regulators, especially, histone lysine demethylases (KDMs), in the regulation of apoptosis during ESC differentiation and how the affected programmed cell death by KDMs contributes to the lineage commitment.

Epigenetic regulators and dynamic histone modifications by KDMs are emerging as important players in ESC fate decisions [9]. Histone modifications coordinate transient changes in gene transcription and help maintaining differential patterns of gene expression during differentiation [10–13]. The molecular and biological functions of many KDMs, however, remain enigmatic during ESC differentiation. PHF8, an X-linked gene encoding an evolutionarily conserved histone demethylase harboring an N-terminal plant homeodomain (PHD) and an active jumonji-C domain (JmjC), is able to catalyze demethylation from histones [14, 15]. It is actively recruited to and enriched in the promoters of transcriptionally active genes [14], and it functions to maintain the active state of rRNA through the removal of the repressive H3K9me2 methylation mark at the active rRNA promoters. Mutation of PHF8 is associated with X-linked mental retardation with cleft lip/cleft palate (type Y1–Y) [19]. Here, we report previously unrecognized effects of the PHF8 histone demethylase on germ layer commitment and turns modulates the mesodermal lineage commitment of early differentiating mESCs. The results are based on an assessment of early steps of differentiation to mesodermal lineages and cardiomyocytes using phf8 knockout (phf8\(^{-/-}\)) and wild-type (phf8\(^{+/+}\)) mESCs. The data show that PHF8 regulates gene transcription of a proapoptotic gene pmaip1 (also named Noxa) [21]. Activation or repression of pmaip1 controlled by PHF8 ultimately determines mESC lineage commitment through the regulation of caspase 3-independent apoptosis during mesodermal and cardiac differentiation. Our data reveal that PHF8-mediated the demethylation of histone proteins coordinates ESC lineage commitment through the regulation of apoptosis in early differentiating ESCs.

Materials and Methods

ESC Culture and In Vitro Differentiation

Undifferentiated Phf8\(^{-/-}\) and Phf8\(^{+/+}\) mESCs were maintained on mitomycin C-inactivated mouse embryonic fibroblast (MEF) feeder layers in the presence of LIF (Millipore, Temecula, CA, 1,000 U/ml). The mESC differentiation was performed using a hanging drop method as previously described [5, 22]. Specific ectodermal [23] and endodermal [24] differentiation of mESCs was performed as previously reported.

Generation of phf8 Knockout mESCs

To generate Phf8 knockout mESCs, the targeting vector carrying a FRT-flanked neomycin resistant gene and loxP-flanked exons 7 and 8 of Phf8 as well as an HSV-TK cassette was constructed as shown in Supporting Information Figure S1A. The vector was electroporated into SCR012 mESCs. The mESCs with the FRT sites were selected by G418 followed by Cre mediated recombination of loxP sites to generate the Phf8\(^{-/-}\) mESCs with deleted exons 7 and 8 in the X-chromosome (Supporting Information Fig. S1A).

Generation of phf8 and pmaip1 Overexpressing mESC Lines

Full-length mouse pmaip1 cDNA was generated from mESC RNA by RT-PCR. A cDNA of human PHF8 (hPHF8) was amplified from a plasmid encoding hPHF8 isoform 1 [19]. Both were cloned into the pCDH-EF1-MCS-T2A-Puro lentiviral vectors, respectively (System Biosciences, CA). The viral packaging was performed in 293FT cells after transfection with lipofectamine3000 according to the manufacture’s protocol (Invitrogen). A wild-type pCDH-EF1-MCS-T2A-Puro vector was used as a negative control (NC). For viral infections, phf8\(^{-/-}\) mESCs were infected with lentiviruses for 6 hours. After 48 hours, infected cells were selected with puromycin for 1 week to generate the stable pmaip1-overexpressing phf8\(^{-/-}\) mESCs (phf8\(^{-/-}\)-pmaip1\(^{+/+}\) mESCs), hPHF8-overexpressing phf8\(^{-/-}\) mESCs (phf8\(^{-/-}\)-hPHF8\(^{+/+}\) mESCs), and NC phf8\(^{-/-}\) mESCs (phf8\(^{-/-}\)-NC\(^{+/+}\) mESCs). All plasmids were verified by DNA sequencing.

Cell Transfection of Small Interfering RNA

Negative control (si-NC) and pmaip1 small interfering RNAs (siRNAs) (si-Pmaip1) were synthesized by Gene Pharma (si-NC, 5'-UUCUCGAAACUGUCAGUTT-3' and 5'-ACGUAC-ACAGUUGGAAACUAGUA-T-3' and 5'-UUCACUUGUGUACAUTCCT-3'). si-Pmaip1 and si-NC were transfected into ESCs using DharmaFECT1 (Thermo-fisher, Waltham, MA) according to the manufacturer’s instructions.

Immunocytochemical Staining

Undifferentiated mESCs were stained using an ALP substrate kit III (Vector Laboratories, Burlingame, CA) according to the manufacturer’s instructions. Immunofluorescence assays were performed as described previously [25]. Briefly, attached cells and embryoid bodies (EBs) were harvested at indicated stages, fixed with 4% paraformaldehyde, permeabilized in 0.3% Triton X-100 (Sigma-Aldrich, St. Louis, MO), blocked in 10% normal goat serum (Vector Laboratories), and then stained with antibodies to stage-specific embryonic antigen 1 (SSEA-1) (Cat No. 13-8813-82, eBioscience, San Diego, CA, 1:200), SRY (sex determining region Y)-box 2 (SOX2) (Cat No. MAB2018, R&D, Minneapolis, MN, 1:200), a-actin (Cat No. A7732, Sigma-Aldrich, 1:200), cardiac troponin T (TNNT2) (Cat No. ab8295, Abcam, La Jolla, CA, 1:300), or H3K9me2 (Cat No. ab1220, Abcam, 1:200). Antibody labeling was visualized using Alexa Fluor 594 goat anti-mouse IgM (Cat No. A-24921, Invitrogen, Carlsbad, CA, 1:1000),
and DyLight 488- or DyLight 549-conjugated secondary antibodies (all from Jackson ImmunoResearch, West Grove, PA, 1:1,000). Nuclei were counterstained with Hoechst 33258 (Sigma-Aldrich, 1:2,000), and cells were analyzed using a Nikon T2 2000 fluorescence microscope. EBs in suspension culture were fixed in 4% paraformaldehyde, embedded in OCT and taken at 20-25 μm thicknesses. The immunostained slices were imaged using a Leica TCS SP2 confocal laser-scanning microscope.

Flow Cytometry Analysis
Tripinized undifferentiated or differentiating cells were prepared as described [26], and incubated with antibodies to FLK-1 (Cat No. 560070, BD Biosciences, Bedford, MA, 1:200), NESTIN (Cat No. 556309, BD Biosciences, 1:50), SOX17 (Cat No. MAB1924, R&D, 1:25), cardiac troponin T (TNNT2) (Cat No. ab8295, Abcam, 1:200), or α- myosin heavy chain (MYH6) (Cat No. ab50967, Abcam, 1:200). The antibody labeling was visualized using anti-mouse IgG-PE or IgG-Pecy7 (eBioscience, both 1:200). Cells were then analyzed by flow cytometry (FACStar Plus Flow Cytometer, Becton-Dickinson, San Jose, CA).

Cell Viability Assays
A total of 1,000 cells/well were planted in 96-well plates and cultured for 7 days in the presence or absence of LIF and MEF. At indicated times, 10μl of 5 mg/ml MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide, Sangon Biotech, Shanghai, China) solution was added and incubated for 4 hours. DMSO (Sigma-Aldrich) was then added to solubilize the formazan product and the absorbance was measured at 570 nm.

Cell Proliferation Assays
For bromodeoxyuridine (BrdU) analysis, ESCs were dissociated into single cells and incubated with 100μM BrdU (Sigma-Aldrich) for 30 minutes. BrdU positive cells were analyzed by flow cytometry (FACStar Plus Flow Cytometer, Becton-Dickinson) using an anti-BrdU APC-conjugated antibody (Cat No. 552598, BD Biosciences, 1:200) according to the manufacturer’s instructions.

Cell Cycle Analysis
ESCs were dissociated into single cells, fixed with 70% ethanol and stained with 50 μg/ml propidium iodide (PI) containing 0.1 mg/ml RNase A (both from Sigma-Aldrich). The cells were then analyzed by flow cytometry (FACStar Plus Flow Cytometer, Becton-Dickinson) to detect the cell cycle distribution of G1, S, and G2/M phases.

Apoptosis Assays
Cells were harvested at the indicated times and stained with an Annexin V-FITC Apoptosis Detection Kit (BD Bioscience) to detect early apoptotic cells according to the manufacturer’s instructions. Terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay was used to monitor late stage apoptosis with the in situ Cell Death Detection Kit (Roche, Mannheim, Germany), according to the manufacturer’s instructions. Annexin V signal and TUNEL signal were analyzed by flow cytometry (FACStar Plus Flow Cytometer, Becton-Dickinson). DNA Laddering assay was performed using the Apopotic DNA Ladder Kit (Applygen, Beijing, China) and analyzed on 1.5% agarose gels.

RNA Extraction, Reverse Transcription-PCR and Quantitative RT-PCR
Total RNA was isolated using Trizol (Invitrogen) and analyzed by reverse transcription-PCR (RT-PCR) and quantitative RT-PCR (qRT-PCR) as described [26]. The transcripts of m28s and gapdh were used for internal controls. The RT-PCR primers are listed in Supporting Information Table S1, and the qRT-PCR primers are listed in Supporting Information Table S2.

Western Blot Assay
Experiments were performed as described [5]. Briefly, cells were lysed in a lysis buffer and 30 μg of protein extract supernatant was used for Western blots. Blots were incubated with the primary antibody against H3K9me2 (Cat No. ab1220, Abcam, 1:1,000), PHF8 (Cat No. ab36068, Abcam, 1:500), β-actin (Cat No. BM0627, Boster, Wuhan, China, 1:4,000), caspase 3 (Cat No. 9662, Cell Signaling Technology, Beverly, MA, 1:500), H3 histone (Cat No. 4620, Cell Signaling Technology, 1:2,000), or Poly (ADP-ribose) polymerase 1 (PARP1) (Cat No. 9542, Cell Signaling Technology, 1:1,000). The membranes were then incubated with IRDye 800LT Donkey anti-Rabbit IgG (Cat No. 926-68023, Li-COR Biosciences, Lincoln, NE) or IRDye 800LT Donkey anti-Mouse IgG (Cat No. 926-32212, Li-COR Biosciences) as secondary antibodies and visualized on an Odyssey Infrared Imager (Li-COR Biosciences).

mRNA Microarray Analysis
Three replicates from either phf8+/y or phf8−/y ESCs were used for RNA extraction. Quality-assessed RNA samples were supplied for a whole mouse gene expression microarray using GeneChip Mouse Genome 430 2.0 (Affymetrix, Santa Clara, CA). Eighteen raw data files generated by the Affymetrix scanner passed data quality control were further performed with RNA normalization through the Affymetrix expression console. Further analysis was performed using SAM (significance analysis of microarrays) software [27], and the hierarchical average linkage clustering was performed using Cluster version 3.

Chromatin Immunoprecipitation Assay
Chromatin immunoprecipitation (ChIP) experiments were performed using a Simple ChiP™ Enzymatic Chromatin IP Kit (Cell Signaling Technology) according to the manufacturer’s instructions. Protein-DNA complexes were immunoprecipitated with antibodies against PHF8 (Cat No. ab36068, Abcam), H3K9me2 (Cat No. ab1220, Abcam), and normal rabbit IgG (Cat No. 2729, Cell Signaling Technology). The purified DNA was quantified by qRT-PCR with SYBR Green PCR reagents (Toyobo, Osaka, Japan) to detect the enrichment of pmaip1 with the specific primers 5’-GTCCCGATAAATGGGAGAG-3’ (forward) and 5’-GGGAGACTA-AGGTCCCAAT-3’ (reverse), and normalized to the total input control.

Statistical Analysis
Data analysis was performed using Microsoft GraphPad Prism 5 (GraphPad Software, LA Jolla, CA). The data were shown as mean ± SEM. The statistical significance of differences was estimated by ANOVA or Student’s t test as appropriate. p < .05 was considered to be statistically significant.
RESULTS

Deletion of phf8 Promotes Mesodermal and Cardiac Lineage Commitment

The PHF8 protein was detectable in undifferentiated ESCs, but its abundance significantly increased within one day of LIF withdrawal. Then it gradually decreased to a level at day 5 lower than that observed in the undifferentiated ESCs (Fig. 1A).

To determine the significance of phf8 gene expression on ESC fate decision, we knocked out the X-chromosome-encoded phf8 gene in one allele of male SCRO12 ESCs by deletion of exons 7 and 8 through Cre-mediated recombination (Supporting Information Fig. S1A). Gene inactivation was confirmed by the lack of Phf8 mRNA and PHF8 protein expression in these targeted ESCs (Supporting Information Fig. S1B). Transcripts for pluripotency marker genes nanog, rex1 (zfp42), sox2, and oct4 (pou5f1) were not significantly different between phf8+/− and phf8/− ESCs (Fig. 1B). No significant difference was observed in cell morphology (Supporting Information Fig. S1C) of undifferentiated phf8−/+ and phf8−/− ESCs or in alkaline phosphatase activity (Supporting Information Fig. S1D). Immunofluorescence staining confirmed that the expression of pluripotency marker Sox2 and SSEA-1 did not differ between the phf8−/+ and phf8−/− ESCs (Supporting Information Fig. S1E). These results indicate that phf8 may be dispensable for normal growth and maintenance of mESCs.

We then analyzed the role of PHF8 in the mesodermal and cardiac lineage commitment. By microarray analysis of differentiating phf8−/+ and phf8−/− cells from days 0, 1, to 3.5, we found a significant decrease in transcripts for pluripotency markers, accompanied by a significant increase in transcripts for ectoderm, mesoderm and endoderm, while in phf8−/− cells some transcripts for mesodermal and cardiac lineage commitment were significantly enhanced compared with those in phf8−/+ cells (Supporting Information Fig. S2A). These differentiation-dependent changes in transcript abundance were confirmed by qRT-PCR for early mesodermal markers brachyury (T) [28], goosecoid (gsc), eomes [29], and mesp1 [30], cardiovascular progenitor marker flk-1 [31, 32] and neurepilin 1 (nrlp1) [33]. Early cardiac transcription factors, including myocyte enhancer factor 2C (mef2c) [34], hand1 [35], and tbx5 [36, 37] were also up-regulated in phf8−/− cells at differentiation day 5, while no difference in the expression levels of pluripotency markers oct4 (Fig. 1C), rex1, and nanog (Supporting Information Fig. S2B) were detected between phf8−/+ and phf8−/− cells at the time points examined.

Because mESCs can differentiate into all three germ layers, we also examined whether phf8 affected ectodermal and endodermal differentiation. qRT-PCR analysis did not show any significant difference in the expression of early ectodermal markers nestin and fgf5 between the phf8−/+ and phf8−/− cells (Fig. 1D). Moreover, in the induced early ectodermal differentiation system [23], the expression of ectodermal markers nestin, fgf5, and pax6 were comparable between the phf8−/+ and phf8−/− cells (Supporting Information Fig. S3A). Besides, the expression of endodermal markers afp, foxa2, sox17, and gata4 were not significantly different between the phf8−/+ and phf8−/− cells (Fig. 1E). Consistently, the expression of endodermal markers foxa2, sox17, and gata4 were comparable during induced endodermal differentiation [24] between the phf8−/+ and phf8−/− cells (Supporting Information Fig. S3B). Thus, phf8 appears not to affect early ectodermal and endodermal differentiation.

The increased mesodermal and cardiac marker expressions were associated with a significant increase in the total number of cardiac progenitors and cardiomyocytes in differentiating phf8−/− cells. By flow cytometry analysis, marked increases in the population of FLK-1 positive (FLK-1+) cells were detected in phf8−/− cells at differentiation day 3 and day 4 (Fig. 2A). Consistently, the percentage of contracting EBs was higher in phf8−/− cells than in phf8−/+ cells (Fig. 2B). The transcripts for progenitor marker nrlp1, early cardiac transcription factor tbx5, and cardiac specific genes tnnt2, myh6, myl2, and gja1 were higher in phf8−/− EBs than those in phf8−/+ ones (Fig. 2C). The areas of immunostained EBs positive for the cardiac cytoskeletal and myofilamental proteins α-actinin and TNNT2 were also greater in phf8−/− than in phf8−/+ EBs (Fig. 2D). Flow cytometry analysis of MYH6+ (Fig. 2E) and TNNT2+ (Fig. 2F) cells at differentiation day 9 further confirmed the increase of cardiomyocytes in phf8−/− cells. Taken together, these data indicate that the phf8 deletion facilitates the differentiation of mesodermal and cardiac lineage commitment.

PHF8 Inactivation Increases Cell Viability but not Proliferation of the Differentiating ESCs

Differentiation of both phf8−/+ and phf8−/− ESCs via EB formation produced normal round shaped EBs but, by day 3, phf8−/− EBs were larger than those generated from phf8−/+ ESCs, and the size differences were visibly obvious at differentiation days 5 and 7 (Fig. 3A). Although no significant differences in cell viability could be demonstrated between undifferentiated phf8−/+ and phf8−/− ESCs (Fig. 3B), the viability of phf8−/− cells was significantly greater than that in phf8−/+ cells at differentiation days 3 to 7 (Fig. 3C). However, no significant change in BrdU staining was detected by flow cytometry between phf8−/+ and phf8−/− ESCs at differentiation days 0, 3, or 5 (Fig. 3D). Moreover, no significant difference in the cell cycle distribution between the differentiating Phf8−/+ and Phf8−/− ESCs was detected, although the percentage of cells in S phase gradually decreased while those in G1 phase increased upon differentiation (Fig. 3E). Knockout of phf8 thus increases cell numbers in the early differentiating ESCs through the improvement of cell viability without changes in cell proliferation or cell cycle progression.

PHF8 Regulates Apoptosis During the Early Stage of Cardiac Lineage Commitment

We then examined whether cell death might account for the differences in the cell viability observed between the differentiating phf8−/+ and phf8−/− ESCs. In undifferentiated ESCs, no significant difference was demonstrated with Annexin V (an early apoptosis marker) staining, TUNEL assay, total DNA fragmentation or caspase 3 protein cleavage between phf8−/+ and phf8−/− cells (Fig. 4A–4C, 4E). In contrast, Annexin V staining (Fig. 4A) and TUNEL assay (Fig. 4B) showed significant decreases in the number of apoptotic cells in phf8−/− ESCs at differentiation days 3 and 5 compared with those in phf8−/+ cells. Genomic DNA fragmentation with a pattern typical for apoptosis was detected in phf8−/− cells at differentiation days 3 and 5, but it was reduced in phf8−/− cells at the same time.
Figure 1. Plant homeo domain finger protein 8 (PHF8) regulates the mesodermal and early cardiac differentiation of mouse embryonic stem cells (mESCs). (A): Western blot analysis of PHF8 expression in undifferentiated and differentiating ESCs. n = 3. (B): quantitative RT-PCR (qRT-PCR) analysis of pluripotency markers nanog, rex1, sox2, and oct4. n = 8. (C): qRT-PCR analysis of gene expression of pluripotency marker oct4; early mesodermal markers brachyury (T), gsc, eomes, and mesp1; cardiovascular progenitor markers flk-1 and nrp1; and the cardiac transcription factors hand1, tbx5, and mef2c during ESC differentiation. n = 5. (D): qRT-PCR analysis of the early ectodermal markers nestin and fgf5 during ESC differentiation. n = 3. (E): qRT-PCR analysis of early endodermal markers afp, foxa2, sox17, and gata4 during ESC differentiation. n = 3. Data are presented as mean ± SEM *, p < .05; **, p < .01; ***, p < .001 compared with the corresponding phf8+/Y value.
Figure 2. *phf8* deletion promotes cardiac differentiation of mouse embryonic stem cells (mESCs). (A): Left, representative flow cytometry plots showing FLK-1 expression at differentiation day 3 \((n = 6) \), day 4 and day 5 \((n = 3 \) each). Right, the quantification of flow cytometry data. \(n = 6 \). (B): Differentiation profile of cardiomyocytes during embryoid bodies (EB) outgrowth. \(n = 6 \). (C): qRT-PCR analysis of mESCs for the expression of cardiac markers at differentiation day 14. \(n = 3 \). (D): Immunofluorescence analysis of TNNT2 and \(\alpha \)-actinin in day 14 EBs. Scale bars = 400 \(\mu \)m. (E) Flow cytometry analysis of MYH6 positive cells and (F) TNNT2 positive cells in day 9 EBs. \(n = 3 \) each. Data are presented as mean ± SEM *, \(p < .05 \); **, \(p < .01 \); ***, \(p < .001 \) compared with the corresponding *phf8*\(^{+/+}\) value.
points (Fig. 4C). Moreover, approximately 35% of Annexin V⁺ cells were present in FLK-1^{+/phf8^{+/Y}} cells at differentiation day 4, whereas only 9% of the cells were Annexin V⁺ in FLK-1^{-/phf8^{-/Y}} cells (Fig. 4D). The ratio of TUNEL⁺ to either NESTIN⁺ (ectoderm) or SOX17⁺ (endoderm) cells did not differ between the phf8^{+/Y} and phf8^{-/Y} cells (Supporting Information Fig. S3C, S3D). In addition, phf8^{+/Y} ESCs at differentiation days 3 and 5 increased the caspase 3 cleavage (Fig. 4E, upper and lower left panels) and the ratio of cleaved caspase 3 to total caspase 3 protein (Fig. 4E, lower right panel). Unexpectedly, the ratio of cleaved caspase 3 to total caspase 3 in phf8^{+/Y} ESCs did not significantly differ from that observed in phf8^{-/Y} ones. Consistently, a significant enhancement of the downstream target PARP1 cleavage [38, 39] was observed at differentiation days 3 and 5, but it was comparable between the phf8^{+/Y} and phf8^{-/Y} cells (Fig. 4F). These data suggest that the cell death associated with phf8 function does not operate through the conventional caspase 3-mediated apoptosis.

Figure 3. phf8 deletion increases cell viability in differentiating mouse embryonic stem cells (mESCs) without affecting cell proliferation. (A): Left, phase-contrast images of embryoid bodies (EB) morphology during EB formation from ESCs. Scale bar = 200 μm. Right, the diameter of EB formed from ESCs. (B): Cell viability of undifferentiated and (C): differentiating ESCs analyzed by MTT assay for seven consecutive days. n = 3. (D): Flow cytometry analysis of BrdU positive proportion of undifferentiated (n = 4) and differentiating ESCs at day 3 and day 5. n = 5 each. (E): Flow cytometry analysis of cell cycle distribution by propidium iodide (PI) staining at differentiation day 3 (n = 6) and day 5 (n = 3). Data are presented as mean ± SEM *, p < .05; ***, p < .001 compared with the corresponding phf8^{-/Y} value.
Figure 4. Plant homeo domain finger protein 8 (PHF8) regulates apoptosis during the early mouse embryonic stem cells (mESC) differentiation. (A): Left, representative flow cytometry plots showing Annexin V (x-axis), and PI (y-axis) staining in ECSs at differentiation day 0 (n = 4), day 3 (n = 3) and day 5 (n = 7). Right, the quantification of flow cytometry data. (B): Flow cytometry detection of apoptotic responses of TUNEL positive cells at differentiation day 0 (n = 3), day 3 (n = 4), and day 5 (n = 4). (C): DNA laddering analysis at differentiation days 0, 3, and 5. n = 6 each. (D): Cells double stained with FLK-1 and Annexin V were analyzed by flow cytometry at differentiation day 4. n = 3. (E): Western blot analysis of caspase 3 during the mESC differentiation. β-actin was used as a loading control. n = 4. (F): Western blot analysis of PARP1 expression during the differentiation. β-actin was used as a loading control. n = 4. Data are presented as mean ± SEM * p < .05; ** p < .01 compared with the corresponding phf8+/Y value; *** p < .001 compared with the corresponding d0 value.
pmaip1 is a Direct Target Gene of PHF8 in the Early Differentiating ESCs

To understand how PHF8 might regulate apoptosis during early ESC differentiation, we compared the profiles of apoptosis-related gene transcripts in undifferentiated and early differentiating **phf8**-/Y and **phf8**/Y ESCs using gene expression microarrays. Among the apoptosis-related genes, the transcript to **pmaip1**, a proapoptotic Bcl-2 family member crucial in fine-turning the cell death decision [21, 40–42], was downregulated at differentiation day 0 and day 1 in **phf8**-/Y cells but it was reduced in **phf8**/Y cells at differentiation days 1 and 3.5 (Fig. 5A). These expression patterns were confirmed by qRT-PCR during cardiac differentiation (Fig. 5B), and the results were consistent with the apoptotic pattern observed during the early ESC differentiation (Fig. 4A–4C). In addition, qRT-PCR analysis showed that the expression of **pmaip1** did not show any significant difference between the **phf8**-/Y and **phf8**/Y cells during the induced ectodermal (Supporting Information Fig. S3E) or endodermal (Supporting Information Fig. S3F) differentiation.

A direct link between the PHF8 and **pmaip1** was then confirmed by ChIP analysis. We detected the endogenous binding of PHF8 at the transcription start site (TSS, from −45 bp to 104 bp) of **pmaip1** in **phf8**-/Y ESCs and determined that binding was enhanced at differentiation day 3. The binding of PHF8 was not detectable above the IgG control levels in **phf8**/Y cells (Fig. 5C). Global methylation (H3K9me2 normalized to H3) was unchanged at differentiation days 3 and 5, but it was significantly enhanced at differentiation day 1 in **phf8**/Y cells (Fig. 5D). The augmentation of H3K9me2 methylation in **phf8**/Y ESCs was then confirmed by immunostaining at differentiation day 1 (Fig. 5E). An increase in the repressive mark of H3K9me2 was also observed at the TSS of **pmaip1** in the early differentiating **phf8**/Y ESCs (Fig. 5F), indicating that the PHF8 demethylase activity is actively involved in the regulation of **pmaip1** gene.

Transient Knockdown of pmaip1 Decreases Apoptosis and Promotes Mesodermal and Cardiac Differentiation

To clarify the role of **pmaip1** in mESC differentiation, we transfected specific siRNAs against **pmaip1** (si-Pmaip1) into **phf8**-/Y ESCs followed by EB formation. The negative control siRNA (si-NC) did not alter **pmaip1** transcript levels compared with untreated (NT) cells, while si-Pmaip1 significantly inhibited **pmaip1** transcripts by 74%-76% at differentiation days 0 and 1 (Fig. 6A-a). si-Pmaip1 cells had fewer TUNEL+ cells compared with the NT and si-NC cells at differentiation day 3 in both **phf8**-/Y and **phf8**/Y cells (Fig. 6A-b). We then examined whether the **pmaip1** knockdown influences mesodermal and early cardiac differentiation. As shown in Figure 6B, the apoptosis of FLK-1+ cells was significantly decreased in si-Pmaip1 mESCs (Fig. 6B). The expression of T and gsc as well as **nrp1** and **flk-1** were increased in si-Pmaip1 cells compared with those in NT and si-NC cells at differentiation day 3. In addition, the expression of cardiac transcript factors **mef2c** and **tbx5** was upregulated at differentiation day 5, and **myh6** and **tnnt2** were upregulated at differentiation day 9 (Fig. 6C). We also transfected si-Pmaip1 into **phf8**/Y ESCs. The expression of **pmaip1** was downregulated at differentiation day 0 and day 1 in **phf8**/Y ESCs with si-Pmaip1 (Supporting Information as Fig. S4A-a), accompanied by a decrease in TUNEL+ cells compared with NT and si-NC (Fig. 6A-b), while Annexin V remained unchanged (Supporting Information Fig. S4A-b). The expression of **nrp1** and **flk-1** did not significantly change in **phf8**/Y ESCs with si-Pmaip1 at differentiation day 3, while **mef2c** was upregulated at differentiation day 5, and **myh6** was upregulated at differentiation day 9 (Supporting Information as Fig. S4B). These results suggest that downregulation of **pmaip1** in **phf8**/Y ESCs may not lead to as robust of a phenotype as it did in **phf8**-/Y ESCs. This difference is likely due to the level of **pmaip1** during early differentiation of **phf8**/Y ESCs was already decreased to a low level similar to that observed in the undifferentiated cells (Fig. 5B). Taken together, these data demonstrate that the decreased apoptosis via down-regulation of **pmaip1** contributes, at least partially, to the **phf8**-/Y-facilitated mesodermal and cardiomyocyte commitment.

Overexpression of pmaip1 or hPHF8 in phf8/Y ESCs Increases Apoptosis and Weakens Mesodermal and Cardiac Differentiation

To further determine whether PHF8 contributes to mesoderm and cardiac cell commitment through the regulation of apoptosis via targeting **pmaip1**, we rescued the expression of **pmaip1** and **phf8** in **phf8**/Y ESCs by generating **pmaip1**-overexpressing **phf8**/Y mESCs (**phf8**-**pmaip1**+/Y mESCs) and **hPHF8**-overexpressing **phf8**/Y mESCs (**phf8**-**hPHF8**+/Y mESCs). The qRT-PCR analysis confirmed that the expression of **hPHF8** or **pmaip1** was significantly upregulated in the respective overexpressing cell lines (Supporting Information Fig. S4C). The expression of **pmaip1** in undifferentiated **phf8**/Y mESCs was not affected by **hPHF8** overexpression. However, **pmaip1** transcripts increased by differentiation day 3 in overexpressing cells (Supporting Information Fig. S4D), indicating that **PHF8** does regulate the expression of **pmaip1** during differentiation. Both TUNEL and Annexin V analysis revealed significant increases of apoptosis in **phf8**-**pmaip1**+/Y and **phf8**-**hPHF8**+/Y mESCs compared with the **phf8**/Y and **phf8**-NC-/Y mESCs at differentiation day 3 or day 4, accompanied by a higher apoptosis ratio in FLK-1+ cells (Fig. 6D). Moreover, the expression of **T** and **gsc** as well as **nrp1** and **flk-1** were significantly decreased in **phf8**-**pmaip1**+/Y and **phf8**-**hPHF8**+/Y mESCs at differentiation day 3, followed by a down-regulation of **mef2c** and **tbx5** at differentiation day 5, and **myh6** and **tnnt2** at differentiation day 9 (Fig. 6E). In addition, TUNEL analysis showed no changes in the apoptotic responses either through knockout or overexpression of **phf8** compared with the corresponding wild-type cells or **phf8**/Y cells during induced ectodermal differentiation (Supporting information Fig. S4E). These data are consistent with a regulatory role of **phf8** on mesodermal and cardiac differentiation through targeting of **pmaip1**.

DISCUSSION

This is the first study to unravel a regulatory role of histone demethylase in the differentiation of ESCs through the control of apoptosis and subsequent effects on cell lineage commitment. The role of **PHF8** in the regulation of ESC differentiation to the mesodermal lineage and cardiac differentiation is supported by selective changes in RNA markers for mesodermal lineages, and...
an increase in cardiomyocyte progenitors and cardiomyocytes (Figs. 1C, 2C). Moreover, deletion of phf8 specifically inhibits apoptosis of Flk-1\(^{1+}\) mesodermal cells with a concomitant reduction in Annexin V\(^{1+}\) staining (Fig. 4D) and cardiac differentiation (Fig. 2B–E), while the ratio of TUNEL\(^ {1+}\) to either NESTIN\(^ {1+}\) (ectodermal cells) or SOX17\(^ {1+}\) (endodermal cells) cells does not differ between the phf8\(^ {+/+}\) and phf8\(^ {+-}\) lines (Supporting Information Fig. S3C, S3D). Consistently, the proportion of early apoptotic cells

Figure 5. pmaip1 is a direct target gene of plant homeo domain finger protein 8 (PHF8) in mouse embryonic stem cells (mESCs). (A): Microarray gene expression heat map depicting the expression of apoptosis-related genes at differentiation days 0, 1 and 3.5 in phf8\(^ {+/+}\) and phf8\(^ {+-}\) ESCs. The expression values in log2 scale were calculated and presented on the heat map with red representing highly abundant transcripts and green representing poorly abundant transcripts. n = 3. (B): qRT-PCR analysis of pmaip1 during the ESC differentiation. (C): ChIP assay of PHF8 around the TSS of pmaip1 in phf8\(^ {+/+}\) and phf8\(^ {+-}\) ESCs at differentiation days 0 and 3. n = 4 each. (D): Western blot analysis of H3K9me2 and H3 in phf8\(^ {+/+}\) and phf8\(^ {+-}\) ESCs during the differentiation. H3 was used as a loading control. n = 9. (E): H3K9me2 staining in phf8\(^ {+/+}\) and phf8\(^ {+-}\) embryoid bodies (EBs) at differentiation day 1. Scale bars = 25 \(\mu\)m. (F): ChIP assay of H3K9me2 around the TSS of pmaip1 in phf8\(^ {+/+}\) and phf8\(^ {+-}\) ESCs at differentiation day 3. n = 4. Data are presented as mean ± SEM. *, p < 0.05; **, p < 0.01; ***, p < 0.001 compared with the corresponding phf8\(^ {+/+}\) value or d0.
(Annexin V\(^+\)) in pmaip1-knockdown (Fig. 6B) is also decreased, while pmaip1-overexpression or hPHF8-overexpression in phf8\(^+/\) cells increase the proportion of TUNEL\(^+\) and Annexin V\(^+\) cells simultaneously with a reduction in mesodermal and cardiac differentiation (Fig. 6D, 6E). These findings indicate that the PHF8 functions, at least partially, through regulation of apoptosis.
It is well known that the regulation of apoptosis is of critical importance for proper ESC differentiation and embryo development [8, 43]. ESC differentiation is regulated by apoptosis induced by MAPK activation [7] and IP3R3-regulated Ca2+ release [5]. Previously only histone 3 lysine 4 methyltransferase MLL2 had been shown to activate the antiapoptotic protein Bcl2 to inhibit apoptosis during ESC differentiation [44]. The data presented, here, extends and reveals the importance of epigenetic controls in the activation of proapoptotic genes associated with ESC differentiation.

Mesodermal and cardiac differentiation have been shown to be regulated by the histone demethylase ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) [13, 45] and jumonji domain-containing protein 3 (JMJD3) [12] through transcriptional activation of mesodermal and cardiac genes. These findings together with those presented in this paper support the critical role of histone demethylases in lineage commitment through regulatory mechanisms that control the expression of core lineage specific transcription factors and apoptotic genes. The decrease in apoptosis through depletion of phf8 can be attributed to the maintenance of repressive H3K9me2 mark on the TSS of pmaip1 after phf8 deletion, resulting in a ~70% downregulation of pmaip1 at differentiation day 3 in the phf8−/− cells (Fig. 5B). The pro-apoptotic gene pmaip1 is, therefore, epigenetically regulated by the histone demethylase, which subsequently affects the mesodermal and cardiac differentiation.

pmaip1 is a Bcl2 homology domain 3 (BH3)-only protein that acts as an important mediator of apoptosis [46]. Its expression is regulated transcriptionally by various transcription factors and, when present, it acts to promote cell death in a variety of ways [21] including caspase 3 dependent [47] and independent apoptosis [48] and autophagy [40]. Here, we find that PHF8 and its regulation on the pmaip1 promote DNA fragmentation and cell death mostly through a caspase 3-independent pathway. This conclusion is based on the observation that neither the ratio of cleaved caspase 3 to total caspase 3 [49, 50] nor PARP1, a downstream target of caspase 3, is significantly affected. While this may be explained as the inhibitor of apoptosis proteins can counteract the function of caspase 3 [51, 52], the exact mechanisms we observed here need to be further explored.

Functionally, knockdown of *pmaip1* confers significant protection to apoptosis (Fig. 6B), while the increase in *pmaip1* occurs concomitantly with the enhancement in apoptosis observed during the early stage of cardiac differentiation (Fig. 4A–4C). The potential pmaip1-mediated apoptosis pathway might be explained by the following possibilities: (i) similar to BNP3 (another BH3-only protein) which acts in the death of cardiac myocytes during exposure to hypoxia and acidosis without significant caspase activation [53], *pmaip1* might activate mitochondrial permeability transition pore but not mitochondrial apoptosis-inducing channel and causes the caspase 3-independent cell death [54]; and (ii) *pmaip1* would induce the direct DNA damage which has been proved to mediate the cell death pathway involved in the reactive oxygen species generation in Soas-2 osteogenic sarcoma cells [55, 56]. Further studies are needed to elucidate the regulatory mechanisms of *pmaip1* on the caspase 3-independent cell death in differentiating ESCs.

Our findings appear to contradict publications reporting that PHF8 promotes neuronal differentiation of P19 cells [19]. Since the retinoic acid (RA) receptor was implicated in this process and our mesodermal induction system does not utilize RA [23], the differences are likely model system dependent, however, the role of RA requires further attention. Alternatively, function and expression of PHF8 may differ or be gene specific among cell types. In the undifferentiated state of mESC, PHF8 as well as histone H3K27 demethylases UTX [13, 45] and JMJD3 [12] are dispensable to ESC proliferation (Fig. 3D, 3E) and apoptosis (Fig. 4). PHF8, however, regulates the proliferation and apoptosis of self-renewing cancer cells. It is highly expressed in prostate cancer cells [57], Hela cells [58], esophageal squamous cell carcinoma [59], and human nonsmall cell lung cancer cells [60]. Knockdown of phf8 in these cancerous cells results in a decrease of proliferation due to the poor cell cycle and the induction of apoptosis, while we show here that knock out of phf8 does not affect proliferation or cell cycle in undifferentiated ESCs. These differences highlight the distinction in the function and regulation of PHF8 between potentially tumorigenic mESCs and cancer cells.

CONCLUSION

This study has identified a previously unrecognized function of histone demethylase PHF8 in the mesodermal and cardiac differentiation of ESCs through the control of apoptosis and the regulation of a proapoptotic gene. Mechanistically, PHF8 promotes apoptosis by removing the repressive H3K9me2 mark from the TSS of a pro-apoptotic gene *pmaip1*. Loss of this repressive mark permits or promotes *pmaip1* transcription, which promotes caspase 3-independent DNA fragmentation and cell death. Deletion of *phf8*, in contrast, represses *pmaip1* expression and reduces apoptosis in differentiating cells, which leads to augmented mesodermal lineage specification and cardiac cell commitment (Fig. 7) but not to the early ectodermal or endodermal differentiation. These results establish a new paradigm of the epigenetic control essential to the early ESC differentiation and lineage commitment through regulating apoptosis.

ACKNOWLEDGMENTS

This study was supported by grants from the National Basic Research Program of China (2011CB965300; 2014CB965100), the Strategic Priority Research Program of CAS.
(XDA01020204), the National Natural Science Foundation of China (31030050; 81520108004), and the National Science and Technology Major Project of China (2012ZX09501001) to H.T.Y. We thank Dr. Jiemin Wong for kindly providing the hPHF8 plasmid.

AUTHOR CONTRIBUTIONS

Y.T. and Y.-Z.H.: conception and design, collection and/or assembly of data, data analysis and interpretation and manuscript writing; H.J.B. and Q.W.: collection and/or assembly of data; C.C.: provision of study material; H.Y.T.: conception and design; K.R.B.: manuscript writing; H.T.Y.: conception and design, data analysis and interpretation, manuscript writing, financial support and final approval of manuscript. Y.T. and Y.Z.H. contributed equally to this article. Y.T. and Y.-Z.H. contributed equally to this work.

DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST

The authors indicate no potential conflicts of interest.

REFERENCES

www.StemCells.com © 2016 The Authors STEM CELLS published by Wiley Periodicals, Inc. on behalf of AlphaMed Press
51 Deveraux QL, Roy N, Stemnicke HR et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17:2215–2223.
54 Webster KA, Graham RM, Thompson JW et al. Redox stress and the contributions of BH3-only proteins to infarction. Antioxid Redox Signal 2006;8:1667–1676.