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Abstract—This paper presents a discontinuous Galerkin time
domain (DGTD) method for the transient analysis of magnetized
graphene from the microwave to terahertz (THz) frequencies. By
considering the atom thick graphene layer as an infinitely thin
conductive sheet with finite surface conductivity, a frequency
dependent anisotropic resistive boundary condition (RBC) is
obtained. Based on this RBC, the direct volumetric discretization
of graphene layer is avoided. Instead of directly deriving the nu-
merical flux for DGTD considering the presence this anisotropic
and dispersive RBC, an auxiliary surface polarization current
governed by a first-order time-dependent partial differential
equation (PDE) is introduced over the graphene with the purpose
to obtain an isotropic and simultaneously non-dispersive RBC.
In this way, the new formulated numerical flux expression
derived from the Rankine-Hugoniot jump relations is isotropic,
and no time-domain convolution is involved in the finalized
matrix equations. To verify the applicability and accuracy of
the proposed algorithm, the Faraday rotation and the surface
plasmon resonance of a plane wave through magnetically biased
graphene are investigated. For open-region scattering problems,
a hybrid DGTD and time-domain boundary integral (TDBI)
method is applied to rigorously truncate the computational
domain.

Index Terms—Auxiliary differential equation (ADE),
anisotropic resistive boundary condition (RBC), discontinuous
Galerkin time-domain (DGTD) method, magnetized graphene,
time-domain boundary integral (TDBI) algorithm.

I. INTRODUCTION

AS a truly two-dimensional (2-D) layer with carbon atoms
arranged in a honeycomb lattice, graphene has received

significant attentions due to its many unusual physical prop-
erties [1] such as gapless electronic band structure, linear
energy-momentum dispersion relationship, ambipolarity, and
anomalous quantum Hall effect, etc. These remarkable fea-
tures make it as a promising candidate for transistors [2],
tuneable terahertz (THz) antennas [3], and surface plasmon
waveguides [4], etc. The atom-thick graphene is best described
by a surface conductivity which manipulates the electro-
magnetic/optical properties of graphene. In the absence of
external magnetostatic biasing, the surface conductivity σg

is a scalar [5], otherwise it becomes a tensor σg [5], [9].
By dynamically tuning the surface conductivity via electrical
or chemical doping, the propagation, polarization, radiation,
and scattering of electromagnetic waves through graphene can
be flexibly manipulated. The magnetically biased graphene
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exhibits strong gyrotropic properties [6], [7] making it a
promising candidate for microwave and optical components
such as circulators, isolators, phase shifters and other non-
reciprocal devices [7], [8]. Apart from the practical experi-
mental demonstration of the gyrotropic properties like Faraday
rotation, full-wave simulators are also necessary to implement
numerical investigation.

For the situation without the magnetostatic biasing, a num-
ber of numerical solvers have already been developed to
quantify the intrinsic properties of graphene such as method of
moments (MoM) [10], finite-difference time-domain (FDTD)
method [11]. Compared with frequency domain methods [10],
time-domain methods [11], [12] have a plethora of advan-
tages such as broadband characterization with only one single
simulation, etc. To model the graphene, presently, there are
two general approaches: i) The graphene is considered as a
thin layer with finite thickness [14], [15], thus volumetric
discretization is required. For this approach, the isotropic
surface conductivity is transformed to an equivalent volume
permittivity. ii) The graphene is modeled as an infinitesimal
thin conductive sheet over which a scalar resistive boundary
condition (RBC) is satisfied [11]–[13]. For the first approach,
particularly fine spatial mesh structures are unavoidable, which
is prohibitive for both memory cost and time consuming. On
the other hand, the second approach by employing the RBC
is free of these drawbacks.

In the presence of a biasing magnetic field, an anisotropic
surface conductivity σg [5], [6], [9] is generated due to Lorentz
force, which significantly complicates the problem, thus novel
methods must be developed to attack both the anisotropy and
the dispersion. In [16], a matrix exponential FDTD method
based on the direct volumetrically meshing is developed to
analyze a free-standing magnetized graphene sheet illuminated
by a plane wave. Via direct 3D discretization, the σg is
transformed to an equivalent volumetric tensor permittivity ϵg.
By introducing an auxiliary polarization volume current source
governed by an auxiliary differential equation (ADE) into the
Ampere’s law equation, the anisotropic constitutive relation
becomes isotropic (or scalar) and nondispersive. Therefore, the
standard FDTD can be applied to the finalized partial differ-
ential equations (PDEs). Notably, straightforward volumetric
discretization is the bottleneck of this method. Hence, the RBC
based approaches are desired alternatives.

In this paper, a discontinuous Galerkin time-domain (DGT-
D) [18]–[20] method is developed for the first time to analyze
the intrinsic properties of magnetically biased graphene by
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leveraging the advantages of RBC. Compared with FDTD,
DGTD is capable of modeling complex structures and easily
achieve high order accuracy by using high-order basis func-
tions. Unlike FEM [21], all operations of DGTD are local
since the information exchange among neighboring elements
are enforced through the numerical flux, thus resulting in
block-diagonal mass and stiffness matrices. The dimension of
each block is equal to the degrees of freedom (DoF) in that
element. Mass-matrix blocks are inverted and stored before
time marching, which produces a very compact and efficient
solver when combined with an explicit scheme.

In DGTD analysis, all boundary conditions are implement-
ed through reformulating the numerical flux based on the
Rankine-Hugoniot jump relations. For a magnetized graphene,
the anisotropic surface conductivity σg will definitely result in
an anisotropic RBC. Direct incorporation of this anisotropic R-
BC into DGTD will no doubt result a numerical flux in a tensor
scheme, simultaneously dispersive. To attack these problems,
in this paper, an auxiliary surface polarization current governed
by an ADE [16], [19], [23] is introduced over the graphene
sheet. With the ADE and the auxiliary polarization current,
the anisotropic and dispersive RBC is converted to be an
isotropic and nondispersive one. Therefore, the time-domain
convolution is avoided and the corresponding numerical flux in
the presence of the new RBC is isotropic. With this approach,
in fact, the gyroelectric effects are represented by the auxiliary
polarization current, and the dispersive property is considered
in the time-dependent ADE. By applying the DG testing over
the two first-order Maxwell’s curl equations and the ADE, the
finalized semi-discrete matrix equations will be solved by the
explicit Runge-Kutta (RK) marching scheme in this work. For
PDE solvers, artificial boundaries must be enforced to truncate
the computational region. In this work, DGTD is hybridized
with the time-domain boundary integral (TDBI) algorithm by
evaluating the field values required for the incoming numerical
flux calculation over the truncation boundary [26]. This
method is mathematically exact, and the truncation boundary
can be conformal to the scatterer’s surface, thus making the
computational region as small as possible.

The remainder of this paper is organized as follows. In
Section II, the theory and formulation of the proposed al-
gorithm are detailed, including the description of RBC, the
derivation of numerical flux and ADE, and the formulation
of semi-discrete matrix equations. In Section III, numerical
results are presented to validate the accuracy and robustness
of the proposed algorithm. Conclusions are made at the end
of this paper.

II. THEORY AND FORMULATION

A. Formulation of Upwind Flux with an Auxiliary Differential
Equation

Suppose a graphene sheet is placed at z = 0 plane and
biased by a static magnetic field perpendicular to the graphene
plane, i.e., B0 = ẑB0. Because of the Lorentz force, the
surface conductivity exhibits anisotropy [7]. To have a funda-
mental insight into this phenomenon, the motion of an electron
in the presence of an electric field E is studied. Firstly, a x-
ploarized electric field E = x̂Ex is considered. In this case,

the electron is accelerated along the negative x-direction due
to the electric force Fe = −eE with −e denoting the electron
charge. Simultaneously, the moving electron with velocity υ
will expose to a Lorentz force Fm = −eυ × B0 along the
negative y− direction. As a result, two current components
along the x− and y− directions respectively will be generated
due to the entanglement of these two forces [7]. Namely,

J = σxxExx̂+ σyxExŷ (1)

where σxx and σyx are conductivities parallel and perpendic-
ular to the electric field E, respectively. Similarly, for the case
with an electric field E = ŷEy , two current components will
be generated as well. That is,

J = −σxyEyx̂+ σyyEyŷ (2)

For graphene with same properties in all directions, the
conductivities must satisfy σxx = σyy and σyx = σxy . Based
on this fact, the generated currents in (1) and (2) can be
combined together and rewritten into a compact form [7],

J = σg ·E (3)

with E = [Ex, Ey, 0]
T and

σg =

 σxx −σyx 0
σyx σxx 0
0 0 0

 (4)

The analytical expressions for the surface conductivities
σxx and σyx comprising intraband and interband contribu-
tions can be obtained based on the Kubo formula [22]. For
frequencies in the THz range, the intraband term is dominant
over the interband [7]. Thus, only the contribution from the
intraband is considered in this paper. Based on the fact that
the probability of electron transitions between Landau levels
around the Fermi-level µc are the strongest over others, the
expressions for σxx and σyx can be approximated by a Drude-
like model [7], [16]. Namely,

σxx(ω, µc, τ, T,B0) = σ0
1 + jωτ

(ωcτ)2 + (1 + jωτ)2
(5)

σyx(ω, µc, τ, T,B0) = σ0
ωcτ

(ωcτ)2 + (1 + jωτ)2
(6)

with

σ0 =
e2τkBT

π~2

[
µc

kBT
+ 2ln

(
e−µc/kBT + 1

)]
(7)

where kB is the Boltzmann constant, T is the Kelvin temper-
ature (T = 300 K in this paper), ~ is the reduced Planck’s
constant, τ is the scattering time, and ωc ≈ eB0v

2
F /µc is the

cyclotron frequency with vF ≈ 106 m/s denoting the Fermi
velocity.

By considering the graphene layer as an infinitesimal thin
conductive sheet, the following boundary conditions over the
graphene sheet have to be satisfied:

n̂×
(
E+ −E−) = 0 (8)

n̂×
(
H+ −H−) = σg ·E (9)

where the superscripts − and + represent the two sides of
the graphene sheet, n̂ is a unit vector pointing normal to the
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resistive surface.
Since the incorporation of boundary conditions in DGTD

is enforced by redefining the numerical flux, the anisotropic
boundary condition in (9) definitely results in a tensor form
flux expression and simultaneously dispersive, which no doubt
complicates the problem significantly (The convolution in
the time-domain is required and the different components
of electromagnetic fields are entangled with each other). To
address these toughes, an auxiliary polarization surface current
J(ω) is introduced by rewriting (9) as

n̂×
(
H+ −H−) = J(ω) (10)

with J governed by the ADE

Jx(ω) = σxxEx − σyxEy (11)
Jy(ω) = σyxEx + σxxEy (12)

After some mathematical manipulations, (11) and (12) can be
rewritten as

jωJx(ω) = −2ΓJx(ω)− ωcJy(ω) + 2Γσ0Ex(ω) (13)
jωJy(ω) = −2ΓJy(ω) + ωcJx(ω) + 2Γσ0Ey(ω) (14)

where Γ = 1
2τ denotes the phenomenological scattering rate.

Through the inverse Fourier transform, the time-domain
counterparts of (13) and (14) can be obtained as

∂J

∂t
= C · J+ 2Γσ0E (15)

with

C =

[
−2Γ −ωc

ωc −2Γ

]
(16)

With this auxiliary polarization surface current J and the
ADE in (15), the anisotropic and dispersive RBC in (9) is
transformed to an isotropic and nondispersive one in (10).
Then, the incorporation of this scalar RBC into DGTD can
be facilitated in the conventional way by reformulating the
numerical flux based on the Rankine-Hugoniot jump relations
for Riemann problems.

For an arbitrary mesh element i (tetrahedrons are used in
this paper), the jump relations along three different character-
istic curves [17] for the f -th face of element i are defined as
(assume face fg of element i is over the graphene sheet):

1) Jump across the characteristic curve ξn = −cit

1

µi
n̂i,f × (E∗

f −Ei) = −ci(H∗
f −Hi) (17)

1

ϵi
n̂i,f × (Hi −H∗

f ) = −ci(E∗
f −Ei) (18)

2) Jump across the characteristic curve ξn = 0

n̂i,f × (E∗∗
f −E∗

f ) = 0 (19)

n̂i,f × (H∗∗
f −H∗

f ) = αgJ (20)

3) Jump across the characteristic curve ξn = cjf t

1

µj
f

n̂i,f × (Ej
f −E∗∗

f ) = cjf (H
j
f −H∗∗

f ) (21)

1

ϵjf
n̂i,f × (H∗∗

f −Hj
f ) = cjf (E

j
f −E∗∗

f ) (22)

where 1 ≤ f ≤ 4 for the tetrahedron, j denotes the
neighboring element sharing the f -face of element i, n̂i,f is
the outward unit normal vector of face f . ci and cjf represent
the characteristic speed in element i and its neighboring j, re-
spectively. ϵi/j and µi/j are the permittivity and permeability,
respectively.

(
E∗

f ,H
∗
f

)
and

(
E∗∗

f ,H∗∗
f

)
are the intermediate

states in element i and j, respectively. It is noted that the
incorporation of the RBC is facilitated by disrupting the
tangential continuity of intermediate variables H∗

f and H∗∗
f .

The above jump relations have to be satisfied over the faces
shared by element i and j. The parameter αg is defined as

αg =

{
1, f = fg

0, f ̸= fg
(23)

By combining (17), (19), (20), and (21), the upwind flux for
the Ampere’s law equation is formulated by

n̂i,f×H∗
f =n̂i,f×


(
ZiHi + Zj

fH
j
f

)
+ n̂i,f×

(
Ei −Ej

f

)
Zi + Zj

f

(24)

+αg

ZjJi
fg(

Zi + Zj
f

)
 ,

and by referring to (18), (19), (20) and (22), the upwind flux
for the Maxwell-Faraday’s law equation is given by

n̂i,f ×E∗
f =n̂i,f×


(
Y iEi + Y j

f E
j
f

)
+ n̂i,f×

(
Hj

f −Hi
)

Y i + Y j
f

(25)

−αg

Ji
fg

2
(
Y i + Y j

f

)
 ,

where Zi =
√
µi/ϵi and Zj

f =
√
µj
f/ϵ

j
f represent the

characteristic impedance of element i and the neighboring at
the f -th face.

B. Formulation of DGTD

Let Ω denote the computation domain of interest, which is
bound by surface ∂Ω. With DGTD, the domain Ω is firstly
split into N non-overlapping tetrahedrons Ωi with boundary
∂Ωi. In element i, the electric field E and magnetic field H are
approximated by 3-D vector basis functions Φi(r), Ψi(r) [18],
[26], and the polarization current J is approximated by 2-D
vector basis functions φi(r) (Without loss of generality, we
assume that one of the element’s faces is over the graphene
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sheet):

Ei =

ni
e∑

k=1

eik(t)Φ
i
k(r) (26)

Hi =

ni
h∑

l=1

hi
k(t)Ψ

i
l(r) (27)

Ji =

ni
c∑

q=1

ciq(t)φ
i
q(r) (28)

where ni
e, ni

h, and ni
c are the number of vector basis function

for E, H, and J in i-th element, respectively; eik, hi
k, and ciq

are the unknown time-dependent coefficients of basis functions
Φi(r), Ψi(r), and φi(r).

By applying the DG testing over the two first-order time-
derivative Maxwell’s curl equations and the ADE in (15), we
can obtain∫

Ωi

Φi
k·
[
ϵi
∂Ei

∂t
−∇×Hi

]
dr =

4∑
f=1

∫
∂Ωi,f

Φi
k ·

[
n̂i,f × (H∗

f −Hi)
]
dr (29)

∫
Ωi

Ψi
l·
[
µi

∂Hi

∂t
+∇×Ei

]
dr =

4∑
f=1

∫
∂Ωi,f

Ψi
l ·

[
n̂i,f × (Ei −E∗

f )
]
dr (30)

∫
∂Ωi,fg

φi
q ·

∂Ji

∂t
dr=

∫
∂Ωi,fg

φi
q ·C · Jidr+ 2Γσ0

∫
∂Ωi,fg

φi
q ·Eidr

(31)

With (24)-(28), the semi-discrete matrix equations can be
derived as:

M̄i
e

∂ei

∂t
= S̄i

eh
i +

4∑
f=1

(
F̄ii,f

ee eif+F̄ij,f
ee ejf (32)

+F̄ii,f
eh hi

f + F̄ij,f
eh hj

f

)
+ αgF̄

ii,fg
ec ci

M̄i
h

∂hi

∂t
= −S̄i

he
i +

4∑
f=1

(
F̄ii,f

hh hi
f + F̄ij,f

hh hj
f (33)

+F̄ii,f
he eif + F̄ij,f

he ejf

)
+ αgF̄

ii,fg
he ci

J̄i ∂c
i

∂t
= M̄cc

i + 2Γσ0M̄ve
i (34)

where [
M̄i

e

]
kl

=

∫
Ωi

Φi
k · ϵiΦi

ldr (35)

[
M̄i

h

]
kl

=

∫
Ωi

Ψi
k · µiΨi

ldr (36)

[
S̄i
e

]
kl

=

∫
Ωi

Φi
k · ∇ ×Ψi

ldr (37)

[
S̄i
h

]
kl

=

∫
Ωi

Ψi
k · ∇ ×Φi

ldr (38)

[
J̄i
]
kl

=

∫
∂Ωi,fg

φi
k ·φi

ldr (39)

[
M̄c

]
kl

=

∫
∂Ωi,fg

φi
k ·C ·φi

ldr (40)

[
M̄v

]
kl

=

∫
∂Ωi,fg

φi
k ·Φi

ldr (41)

[
Fii,f

ee

]
kl
=

−1

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f × (n̂i,f × Φi

l)dr (42)

[
F̄ij,f

ee

]
kl
=

1

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f × (n̂i,f ×Φj,f

l )dr (43)

[
F̄ii,f

eh

]
kl

= −
Zj
f

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f ×Ψi

ldr (44)

[
F̄ij,f

eh

]
kl

=
Zj
f

Zi + Zj
f

∫
∂Ωi,f

Φi
k · n̂i,f ×Ψj,f

l dr (45)

[
F̄ii,fg

ec

]
kl

=
Zj
fg

Zi + Zj
fg

∫
∂Ωi,fg

Φi ·φi
ldr (46)

[
F̄ii,f

hh

]
kl

=
−1

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f × (n̂i,f ×Ψi

l)dr (47)

[
F̄ij,f

hh

]
kl

=
1

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f × (n̂i,f ×Ψj,f

l )dr (48)

[
F̄ii,f

he

]
kl

=
Y j
f

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f ×Φi

ldr (49)

[
F̄ij,f

he

]
kl

=
−Y j

f

Y i + Y j
f

∫
∂Ωi,f

Ψi
k · n̂i,f ×Φj,f

l dr (50)

[
F̄

ii,fg
he

]
kl

=
1

Y i + Y j
fg

∫
∂Ωi,fg

Ψi
k · (n̂i,fg ×φi

l)dr (51)

In this work, 12 edge vector basis functions (six con-
stant tangential/linear normal (CT/LN) and six linear tan-
gential/linear normal (LT/LN) basis functions, respectively)
are used for both E and H in each mesh element, i.e.,
ni
e = 12 and ni

h = 12 for i = 1, · · · , N . Since the
surface polarization current Ji has only tangential components,
thus its basis function φi(r) actually can be constructed by
n̂i,fg × Φi(r)× n̂i,fg based on the property of the edge vector
basis function. Consequently, the number of basis functions
for the auxiliary surface current J is 6 since each face has
only 6 basis functions with non-zero tangential components.

To solve the semi-discrete matrix equations from (32) to
(34), the fourth-order RK method is employed. For explicit
time-marching scheme, the Courant-Friedrichs-Lewy (CFL)-
like condition must be satisfied to ensure stability. In general,
the time step size δt is determined in terms of the following
condition [19], [23], [24]:

c0δt ≤ min{lmin
√
ϵrµr/4(p+ 1)2} (52)

where c0 is the free-space light speed, p is the order of basis
function. In this work, first-order basis functions are used, thus
p = 1.
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Fig. 1. The total transmission coefficients (a), Faraday rotation angle (b), and the cross-polarized transmission coefficients (c) versus frequency for different
magnetostatic biasing.

(a)

(b)

Fig. 2. The total transmission coefficient (a) and the Faraday rotation angle
θF for different magnetic biasing when µc = 10−5 eV.

C. TDBI Formulation

The field values Ej
f and Hj

f over the computational bound-
ary ∂Ω used for computing the incoming numerical flux in
(24) and (25) are evaluated by the TDBI method on the
basis of Huygens’ principle. Let the Huygens’ surface ∂Γ be
discretized by triangular facets ∂Ωi′,m′ , where i′ runs over the
indices of elements that are outside the volume enclosed by
∂Γ and have at least three nodes residing on ∂Γ, and f ′ runs
over the indices of each element’s facets that are described
by these nodes. On the surface mesh described by ∂Ωi′,f ′ ,
one can introduce (equivalent) electric and magnetic surface

currents, Jh
i′,f ′(r, t) and Je

i′,f ′(r, t) [?], [25]:

Jh
i′,f ′(r, t) =

ni′
h∑

l′=1

hi′,l′(t)n̂i′,f ′(r)×Ψi′,l′(r) (53)

Je
i′,f ′(r, t) = −

ni′
e∑

k′=1

ei′,k′(t)n̂i′,f ′(r)×Φi′,k′(r)

The boundary fields Ej,∂Ω
f and Hj,∂Ω

f are then constructed
using currents Jh

i′,m′ and Je
i′,m′ [25], [27], [28]:

Ej,∂Ω
f (r, t)=

∑
i′

∑
f ′
[µ0Li′,f ′(Jh

i′,f ′)−Ki′,f ′(Je
i′,f ′)] (54)

Hj,∂Ω
f (r, t)=

∑
i′

∑
f ′
[ϵ0Li′,f ′(Je

i′,f ′)+Ki′,f ′(Jh
i′,f ′)].

Here, the operators Li′,f ′ and Ki′,f ′ are defined as

Li′,f ′(J) = − 1

4π

∫
∂Ωi′,f′

∂tJ(r
′, t−R/c)

R
dr′

+
c2

4π
∇
∫
∂Ωi′,f′

∫ t−R/c

0

∇′ · J(r′, t′)
R

dt′dr′ (55)

Ki′,f ′(J) =
1

4π
∇×

∫
∂Ωi′,f′

J(r′, t−R/c)

R
dr′

where R = |r−r′| is the distance between the integration point
r′ ∈ ∂Ωi′,m′ and the observation point r and c = 1/

√
ϵµ is

the speed of light in the background medium.
To discretize the L and K operators in (55), a linear

shifted interpolation function is employed as the temporal
basis functions [26]. Since the different time-step sizes of
DGTD and TDBI, interpolations are required for field values
at the truncation boundary and the Huygens’ surface, where
the incoming flux evaluation required fields at the truncation
boundary are calculated by TDBI with time step size δtBI [see
(54)] while the equivalent currents required fields [see (53)] at
the Huygens’ surface are computed by DGTD with time step
size δtDG [see (32) and (33)].

III. NUMERICAL RESULTS

To validate and demonstrate the accuracy of this proposed
algorithm, the Faraday rotation and surface plasmon polariza-
tion are studied by varying the chemical potential µc and the
magnetostatic biasing B0.
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(a)

(b)

Fig. 3. The Faraday rotation angle θF as a function of static magnetic field
biasing in the range ωcτ ≪ 1 (a) and ωcτ ≫ 1 (b).

A. An Infinitely Large Graphene Sheet

For the first example, an infinitely large graphene sheet
placed at xy plane is biased by a z-directed magnetostatic
field B0 = ẑB0. For the excitation, a plane wave defined as
Einc(r, t) = x̂g(t− k̂ ·r/c0) is used, where k̂ = ẑ is the direc-
tion of propagation, g(t) = exp(−[t− t0]

2/τ2m) cos(2πfm[t−
t0]) is a Gaussian pulse with modulation frequency fm = 5
THz, duration τm = 6.37×10−13 s, and delay t0 = 5tm. The
first-order Silver-Müller absorbing boundary condition (SM-
ABC) [29] are employed to truncate the computational domain
in the z direction, which is sufficient for this example since
all incoming waves are normal to the boundary.

Firstly, we let µc = 0.5 eV and the scattering time
τ = 5× 10−12 s while varying the magnetic biasing B0 from
0.5 to 30 T. In Fig. 1, the total transmission coefficient

Ttot =

√
||Ex,obs(ω)||2 + ||Ey,obs(ω)||

||Einc(ω)||
, (56)

the Faraday rotation angle

θF = tan−1

(
Ey,obs(ω)

Ex,obs(ω)

)
, (57)

and the cross-polarized transmission coefficient

Tcross =
||Ey,obs(ω)||
||Einc(ω)||

(58)

Fig. 4. The calculated extinction-cross-section (ECS) by the proposed
DGTD-RBC algorithm and the reference result by integral equation method
in [30]

are presented. For comparison, the analytical total transmission
coefficient [7], [16]

Ttot,ana =
2
√
||2 + σxxη0||2 + ||σyxη0||2

||(2 + σyxη0)2 + (σoη0)2||
(59)

and the analytical Faraday rotation angle [7]

θF,ana = tan−1

(
η0σyx

2 + η0σxx

)
(60)

are also provided. Very good agreements between the nu-
merical results and the analytical ones are observed. The
results show that the magnetostatic biasing has significant
impacts on the electromagnetic waves propagating through a
graphene sheet.

With regarding to the µc dependence, there is an interesting
comment in [7] that for any value of B0, the Faraday rotation
angle θF → 0 when µc → 0. This is attributable to the
fact that the conductivity of graphene is very small under this
circumstance (only a very small amount of electrons exist in
the conduction band). As a result, the interaction between the
electromagnetic wave and the graphene is negligible. There-
fore, the transmission coefficient Ttot → 1 while θF → 0. To
prove this assertion, we set µc = 10−5 eV and vary B0 from
1 to 104 T. The calculated results are shown in Fig. 2 (a) and
2 (b), which agrees with the previous assertion. Similarly, the
transmission coefficient Ttot → 0 and θF → 0 when µc → ∞.
This is because the conductivity of the graphene is very large
in this case, thus acting as a perfect electrical conductor (PEC).

As for the B0 dependence, there is also an interesting
comment in [7] claiming that the Faraday rotation angle θF
increases with B0 in the range B0 such that ωcτ ≪ 1, while
θF decreases with B0 in the range B0 such that ωcτ ≫ 1.
Firstly, the case ωcτ ≪ 1 is studied by setting τ = 10−13 s
and µc = 10 eV, the Faraday rotation angle θF at f = 30
GHz as the function of B0 are presented in Fig. 3 (a). It
is clearly observed that θF increases with B0 in the range
ωcτ ≪ 1. Next, the case ωcτ ≫ 1 is investigated by letting
τ = 2 × 10−12 s and µc = 1.0 eV. In Fig. 3 (b), the
Faraday rotation angle versus the magnetostatic biasing b0 are
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(a)

(b)

Fig. 5. The normalized total scattering-cross-section (TSCS) (a) and
extinction-cross-section (ECS) (b) versus different chemical potentials.

presented. It is found that θF decreases with B0 in the range
ωcτ ≫ 1. This phenomenon is also observed in Fig. 2 (b).

B. Finite Size Graphene Patches

To validate the accuracy of the proposed algorithm for 3-D
examples, a 5 by 10 µm unmagnetized graphene patch in [30]
is revisited. The parameters of the surface conductivity σg

are given by T = 300 K, µc = 0 eV, and Γ = 1
2τ with

τ = 10−13 s. For convenience, the same plane wave in the
first example is employed as the excitation. To rigorously
truncate the computational domain, the hybrid DGTD and
TDBI algorithm is applied. The time step sizes for DGTD
and TDBI are 9.92×10−17 s and 1.97×10−15 s, respectively.
For finite size geometries, the figure-of-merits of interest are
the total-scattering cross-section (TSCS), the absorption cross-
section (ACS), or the extinction cross-section (ECS). In Fig.
4, the calculated ECS and the reference by integral equation
(IE) method [30] is also provided for comparison. It is noted
that very good agreements are achieved.

Next, a 20 by 100 µm2 graphene patch biased by a z-
directed static magnetic field B0 = 0.25ẑ is characterized.
The graphene patch is illuminated by the same plane wave

Fig. 6. The normalized extinction-cross-section (ECS) for substrates Si,
SiO2, and Si3N4.

as above and the hybrid DGTD-BI is applied to truncate the
computational domain. The time step sizes of DGTD and
TDBI are 1.1068×10−16 s and 2.6919×10−15 s, respectively;
and the total number of tetrahedrons involved in this example
is 102, 758. Firstly, to show the impacts of chemical potentials
on the plasmon resonance, the TSCS and ECS corresponding
to different µc are calculated by letting the scattering rate
Γ = 2.5 meV/~. The results are presented in Fig. 5. It is
noted that the resonant frequencies shift upwards with higher
chemical potentials, and the resonance becomes more stronger.

Secondly, to study the influences of substrates on the plas-
mon resonance, the graphene patch is supposed to be covered
by different mediums with thickness h = 2 µm. They are
silicon (Si), silicon-nitrate (Si3N4), and silicon-dioxide (SiO2),
which are commonly used by experimental researchers. The
calculated ECS with µc = 0.5 eV is shown in Fig. 6. It is
noted that the first two resonant peaks of the ECS shifts to
low frequencies with the increasing of permittivity. This is
due to that the physical dimension of the graphene becomes
larger compared with wavelength λ = λ0/

√
ϵr.

C. A Graphene-Strip Grating

In the last example, a grating structure composed of three
graphene strips placed in the z = 0 plane with a static
magnetic biasing B̂0 = B0ẑ is investigated. This grating
structure has three x-directed graphene strips but periodically
placed along the y-axis with periodicity p = 15 µm. Each
of the strips has width w = 10 µm and length l = 50
µm. The same plane wave excitation as the above examples
is applied again. Furthermore, the hybrid DGTD and TDBI
method is used [26]. For this simulation, the chemical potential
µc and scattering rate Γ are set to be 1.0 eV and 2.5 meV/~,
respectively. The number of tetrahedrons is 80, 425, the time
step size δtDG for DGTD and δtBI for TDBI are 1.01×10−16

s and 2.17× 10−15 s, respectively.
Firstly, the TSCS and ACS corresponding to different

magnetic biasing are calculated, as shown in Fig. 7. As can
be seen, the TSCS and ACS display sharp maxima at some
frequency points in the terahertz band, which are due to the far
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(a)

(b)

Fig. 7. The normalized TSCS (a) and ACS (b) versus different magnetostatic
biasing from 0.1 THz to 10 THz.

and near field enhancement resulted from the surface-plasmon
resonances. Next, to have a better insight into the surface
plasmon polarization, the total electric near-fields over the
plane where graphene residing are presented at f1 = 1.529
THz, f2 = 4.003 THz, and f3 = 5.628 THz for B0 = 5 T,
as shown in Fig. 8. The near-field enhancement is obviously
noted at these three plasmon resonance frequencies.

IV. CONCLUSION

In this paper, a DGTD based algorithm is developed to
model the graphene biased by an external static magnetic
field. To avoid very fine mesh cells, a tensor-form RBC is
firstly applied over the graphene by regarding the graphene
as an infinitesimal thin conductive sheet with an anisotropic
surface conductivity σg derived from the Kubo formula. By
introducing an auxiliary polarization current J and an ADE
over the graphene sheet, the dispersive anisotropic boundary
condition is transformed into an isotropic and nondispersive
one. This newly obtained RBC can be readily incorporated
into DGTD by changing the jump relation along the charac-
teristic curve. The accuracy and applicability of the proposed
algorithm are verified by studying the transmission, cross-

(a)

(b)

(c)

Fig. 8. The normalized electric near-field at f1 = 1.529 THz (a), f2 = 4.003
THz, and f3 = 5.618 THz (c).

polarization, Faraday rotation, and plasmon resonance in the
case of a graphene sheet illuminated by a plane wave.
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