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Abstract 18 

Rapid warming has been observed in the high-altitude areas around the globe, but the 19 

implications on moisture change are not fully understood. Here we use tree-rings to reveal 20 

common moisture change on the southeastern Tibetan Plateau (TP) during the past five centuries, 21 

and show that regional moisture change in late spring to early summer (April-June) is closely 22 

related to large-scale temperature anomaly over the TP, with increased moisture coincident with 23 

periods of high temperature. The most recent pluvial during the 1990s-2000s is likely the wettest 24 

for the past five centuries, which coincides with the warmest period on the TP during the past 25 

millennium. Dynamic analysis reveals that vertical air convection is enhanced in response to 26 

anomalous TP surface warming, leading to an increase in lower-tropospheric humidity and 27 

effective precipitation over the southeastern TP. The coherent warm-wet relationship identified 28 

in both tree-rings and dynamic analysis implies a generally wetter condition on the southeastern 29 

TP under future warming. 30 

 31 

Keywords Dendrochronology; High-altitude warming; Moisture change; Tibetan Plateau32 



 3 

1 Introduction 33 

Marked increase in global temperature has been observed since the early twentieth century (IPCC 34 

2013; Karl et al. 2015). However, this warming is spatially non-uniform, and a large percentage of rapid 35 

warming rates are found over the high-altitude regions in addition to the Arctic (Wang et al. 2014a; Pepin 36 

et al. 2015). The Tibetan Plateau (hereafter, TP), for example, experienced a temperature increase of 37 

0.33°C/decade during 1961-2012, which is roughly 0.13°C/decade higher than the global average (Yan 38 

and Liu 2014). The TP warming rate did not abate during the recent global warming hiatus since 1998 39 

(Yan and Liu 2014; Pepin et al. 2015), suggesting it being a region of robust response to anthropogenic 40 

radiative forcing. State-of-the-art climate models projected that rapid temperature increase on the TP will 41 

persist throughout the twenty-first century (Rangwala et al. 2013; Su et al. 2013). 42 

The effects of rapid high-altitude warming are dramatic and widespread. On the TP, extensive glacial 43 

shrinkage and permafrost degradation have been observed since the beginning of instrumental 44 

measurements in the mid-20
th

 century, with accelerating rates over recent decades (Kang et al. 2010; Yao 45 

et al. 2012; Wu et al. 2013). Meanwhile, earlier thawing and later freezing of soil have occurred, leading to 46 

a substantial reduction in the number of frozen days (Li et al. 2012). The length of the growing season has 47 

increased at a rate of roughly three days per decade during the past half century, largely owing to an earlier 48 

start of the growing season (Dong et al. 2012). Interestingly, some plants on the TP delayed the onset of 49 

their growth in spring due to rapid winter temperature increase that triggered a later fulfillment of chilling 50 

requirements (Yu et al. 2010), although other factors may complicate such an explanation (Chen et al. 51 

2011).   52 

Moisture-related change accompanying rapid warming on the TP is complicated and exhibits 53 

considerable spatiotemporal heterogeneity over the past few decades. Seasonally speaking, precipitation 54 

has overall increased in winter and spring but decreased slightly in summer and autumn (Li et al., 2010; 55 
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Chen et al. 2013). Spatially, the annual precipitation has increased in the northeastern and southeastern 56 

regions, but decreased in the northwest and the east edge of the TP (Chen et al. 2013; Yang et al. 57 

2014a). Although spatially coherent patterns are found for an increase in evaporation and snow cover and 58 

a decrease in surface wind, other factors such as cloud cover, solar radiation and river runoff exhibit large 59 

spatiotemporal heterogeneity that complicates moisture change over the TP (Kang et al. 2010; Yang et al. 60 

2014a; Duan and Xiao 2015). As a result, the implications of rapid high-altitude warming on moisture 61 

change over the TP are poorly understood, and one critical reason is the lack of extensive, long-term 62 

observations (Qiu 2014). Here we use tree-rings to study common moisture change on the southeastern TP 63 

during the past five centuries, and examine whether regional moisture change is related to large-scale TP 64 

surface temperature anomaly from a long-term perspective. Tree-rings are employed as a proxy in light of 65 

their precise dating, annual resolution, and high sensitivity to climate change in the study area (Fan et al. 66 

2008a; Fang et al. 2010; Liu et al. 2012; Duan and Zhang 2014).  67 

 68 

2 Data and Methods 69 

2.1 Tree-ring data 70 

We collected tree-ring samples from two sites in the southern Shaluli Mountains, southeastern TP 71 

(Fig. 1). The two sites are close to each other, and both are situated on a steep, leeward slope dominated 72 

by subalpine old-growth forests of Forest Fir (Abies forrestii). Two increment cores per tree were 73 

collected from living trees of A. forrestii at breast height (1.3 m above ground). All sampled trees are 74 

healthy and relatively isolated, an optimal condition for maximizing climate signals in tree rings. In total 75 

56 cores from 28 trees and 50 cores from 25 trees were retrieved at the site of MAX and MXG, 76 

respectively (Table 1). 77 
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After being properly mounted and sanded in the laboratory, all samples were measured using a 78 

Velmex ring-width measuring system at 0.001 mm precision. Calendar year was assigned to each growth 79 

ring by both visual and the COFECHA program assisted statistical cross-dating methodology (Holmes 80 

1983). Eight (three) cores from the MAX (MXG) site were eliminated during this process due to their 81 

irregular growth patterns.  82 

The raw ring-width measurements contain non-climatic growth trends that need to be removed for 83 

dendroclimatic study, a procedure termed as “tree-ring standardization” (Fritts 1976). We applied an 84 

initial power transformation to reduce the heteroscedastic behavior commonly found in tree-rings (Cook 85 

and Peters 1997), and then detrended all series conservatively by fitting negative exponential curves or 86 

linear regression curves of any slope. Tree-ring indices were calculated as the residuals between the raw 87 

measurements and the fitted curve values, which can effectively avoid potential index value inflation 88 

associated with the ratio method (Cook and Peters 1997). The resulting index series were merged to 89 

develop a biweight robust mean chronology, with its variance stabilized using the Rbar weighted 90 

method (Osborn et al. 1997; Frank et al. 2007). Finally, we applied the “signal-free” approach to 91 

mitigate potential trend distortion problem in traditionally detrended chronology (Melvin and Briffa 92 

2008). The resulting “signal-free” chronology was used for further analysis. 93 

 94 

2.2 Climate data 95 

Monthly temperature and precipitation records, spanning 1957-2013, were obtained from Daocheng 96 

(DC), the nearest weather station to our sampling sites (Fig. 2). The half-degree gridded Climatic 97 

Research Unit (CRU) TS 3.23 temperature and precipitation datasets (Harris et al. 2014) were used to 98 

investigate the spatial relationship of our tree-rings with large-scale climate anomalies. We only used the 99 

CRU data starting from 1951, as there were few observations on the TP before the 1950s.  100 
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The self-calibrating Palmer Drought Severity Index (scPDSI, van der Schrier et al. 2013) was used 101 

as a drought metric. The PDSI is a metric of meteorological drought (Palmer 1965), and has been proven 102 

suitable for describing moisture conditions across China (Li et al. 2009a). The scPDSI is a new variant 103 

of the PDSI and is more suitable for regions with diverse climatology (van der Schrier et al. 2013). As 104 

the nearest Daocheng climate records were not included in the development of the scPDSI dataset, we 105 

averaged four half-degree scPDSI grid points relatively close to our sampling sites to represent regional 106 

moisture condition (Fig. 1). The four grids were chosen because of their proximity to both our sampling 107 

sites and the Lijiang (LJ) weather station, which has the longest observations in the area (i.e., 1944-2012) 108 

and was included in the scPDSI calculation.  109 

The European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset 110 

(ERA-Interim, Dee et al. 2011) was used for dynamic analysis. ERA-Interim is a global atmospheric 111 

reanalysis product covering the data-rich period from 1979 to the present. ERA-Interim was chosen 112 

because of its marked improvements on certain key aspects, such as the representation of the 113 

hydrological cycle, the quality of the stratospheric circulation, and the handling of biases and changes in 114 

the observing system (Dee et al. 2011). As a result, it performs better than other reanalysis products over 115 

the TP (Bao and Zhang 2013).  116 

 117 

3 Results 118 

A 498-year (1509-2006) and 516-year (1498-2013) chronology was developed for the MAX and 119 

MXG site, respectively (Table 1). The two chronologies agree very well with each other, with a 120 

correlation of 0.67 (p<0.001) and an explained variance of 83.6% by the first principal component 121 

during the common period 1509-2006. Further considering the close location of the two sites and their 122 

high environmental homogeneity, we merged all the ring-width index series to develop one composite 123 
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chronology (hereafter, MX) to represent a regional-scale climate signal. This composite chronology 124 

spans from 1498 to 2013, and is composed of 95 cores from 47 trees, with a mean segment length of 291 125 

years (Fig. 3). According to the generally accepted expressed population signal (EPS, Wigley et al. 1984) 126 

cutoff value of 0.85, the chronology is considered most reliable during 1523-2013 when sample size 127 

exceeds five cores from four trees. The running Rbar ranges from 0.45 around the 1970s to 0.74 around 128 

the 1520s with a mean value of 0.58 (Fig. 3). These statistics indicate that the chronology contains fairly 129 

strong and stable common signals, and is valid for dendroclimatic studies described below. 130 

As shown in Fig. 4a, statistically significant (p<0.05) positive correlations between tree-rings and 131 

precipitation are found in previous August-September and current May-June. Significant positive 132 

correlations with temperature are observed from prior October to current April. Negative but 133 

non-significant correlations with temperature are found in current May-June. These results indicate a 134 

typical moisture stress on tree growth (Li et al. 2007, 2008; Fan et al. 2009; Fang et al. 2015a). We 135 

therefore examined the correlations of tree-rings with the scPDSI during their common period 136 

1944-2012. As shown in Fig. 4b, significant positive correlations with the scPDSI are found in all 137 

months investigated, with the highest values in late spring to early summer (April-June). This suggests 138 

that the early growing season (EGS) moisture is the most critical factor that limits subalpine tree growth 139 

on the southeastern TP.  140 

The above climate-tree growth relationship indicates that our chronology is most suitable for the 141 

reconstruction of April-June moisture change in the study area. We used a simple linear regression 142 

model to build the reconstruction, and assessed its fidelity by split sample calibration and verification 143 

tests (Cook and Kairiukstis 1990). As shown in Table 2, the actual and reconstructed scPDSI correlate at 144 

0.715 during 1944-2012 (p<0.001), which means the reconstruction accounts for 51.2% (R
2

adj = 50.4%) 145 

of the actual scPDSI variance during this period. The values of two most rigorous tests of model 146 
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validation, the reduction of error (RE) and the coefficient of efficiency (CE), are both positive, 147 

indicating a good model skill (Cook and Kairiukstis 1990). The results of the sign test, which describes 148 

how well the tree-ring estimates track the direction of actual data year to year, exceed the 99% 149 

confidence level. These statistical tests sufficiently validate our regression model. A visual comparison 150 

also suggests the reconstruction tracks well the actual scPDSI values at both high- and low-frequency 151 

scales, despite that it tends to overestimate the persistence but slightly underestimate the severity of the 152 

pluvial condition during the 2000s (Fig. 5). Based on this model we reconstructed April-June moisture 153 

change on the southeastern TP for the past 491 years (Fig. 6a).  154 

 155 

4 Discussion 156 

Our results show that subalpine tree growth on the southeastern TP is mainly controlled by the EGS 157 

moisture availability (Fig. 4). This type of climate-tree growth relationship is commonly found over the 158 

eastern TP (Li et al. 2008; Fan et al. 2009; Wang et al. 2012; Fang et al. 2015a). Physiological studies 159 

revealed that the EGS moisture to a great extent controls the onset of xylogenesis and xylem cell 160 

production, and thus largely determines ring formation of subalpine conifers on the eastern TP (Wang et 161 

al. 2012; Ren et al. 2015). Significant positive correlations with precipitation and non-significant 162 

negative correlations with temperature in May and June suggest that xylem growth is primarily 163 

controlled by precipitation rather than temperature at our sampling sites (Ren et al. 2015). However, at 164 

sites where precipitation is more abundant, temperature could be the most critical limiting factor on 165 

subalpine tree growth on the southeastern TP (Liang et al. 2010; Yang et al. 2010; Liu et al. 2016). 166 

Under that situation, low air and soil temperature may limit tree growth by causing direct leaf and root 167 

damage and/or by reducing photosynthetic rate and cambial activity (DeLucia 1986; Gruber et al. 2009; 168 

Liang et al. 2009, 2010). Therefore, we caution that moisture is not necessarily the most critical factor 169 
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limiting subalpine tree growth across the southeastern TP. Temperature may become most critical when 170 

moisture is sufficient for tree growth, and the threshold for such a transition requires future 171 

investigation. 172 

Our EGS moisture reconstruction covers the period of 1523-2013 (Fig. 6a). Due to the “segment 173 

length curse” (Cook et al. 1995), our reconstruction is capable of resolving interannual to interdecadal 174 

moisture variations, but may not be able to represent the centennial-scale variability very well. We 175 

therefore focus our discussion on sub-centennial scale moisture variability. As shown in Fig. 6a, our 176 

reconstruction reveals marked interdecadal variations in regional EGS moisture over the past five 177 

centuries. Severe dry conditions occurred during the 1630s-1640s, 1670s-1690s, 1730s-1770s, 178 

1790s-1820s, 1860s-1880s, 1910s-1930s, and 1950s-1980s, and pronounced wet conditions were 179 

observed during the 1520s-1590s, 1610s-1620s, 1700s-1720s, 1830s-1850s, 1890s-1900s, and 180 

1990s-2000s. The most severe and prolonged drought occurred in the 1730s-1770s. The most recent 181 

pluvial during the 1990s-2000s was likely the wettest for the past five centuries, although its duration 182 

was exceeded by the generally wet conditions during the sixteenth century. It is worth noting that 183 

tree-rings overestimated the persistence but slightly underestimated the severity of this pluvial (Fig. 5). 184 

Nonetheless, the 1990s-2000s pluvial is probably unprecedented at least for the past five centuries, as 185 

revealed by this and other moisture sensitive tree-rings on the southeastern TP (Fig. 6). 186 

Spatial correlation analysis with instrumental scPDSI during 1951-2012 indicates that our 187 

reconstruction is representative of large-scale EGS moisture change on the southeastern TP (Fig. 7a and 188 

7b). To examine whether it represents large-scale moisture change back in time, we compared our 189 

reconstruction with three tree-ring records (BM, LX, and LZ, Fig. 1) that are also most sensitive to the 190 

EGS moisture condition on the southeastern TP (Fan et al. 2008a; He et al. 2012; Liu et al. 2012). As 191 

shown in Fig. 6, our record agrees well with the other three over most of the past five centuries, with a 192 
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significant correlation value (p<0.001) of 0.30 with the BM for 1655-2005 (351 years), 0.25 with the LX 193 

for 1523-2010 (488 years), and 0.27 with the LZ record for 1523-2009 (487 years). However, one 194 

discrepancy is observed during the sixteenth century when our record indicates a generally wet while the 195 

LX record shows a dry condition. We found that our record also shows generally low values if without 196 

the “signal-free” adjustment, suggesting that the generally dry condition with the LX record is likely due 197 

to the trend distortion introduced by the traditional detrending method (Melvin and Briffa 2008). At any 198 

rate, these records exhibit a high degree of coherency with regard to interdecadal variations, indicating 199 

common EGS moisture change on the southeastern TP over the past five centuries. 200 

An ensuing question is what caused the coherent EGS moisture change on the southeastern TP. One 201 

possibility is the Asian monsoon. However, the EGS is largely ahead of monsoon season (Fig. 2), thus 202 

the Asian summer monsoon is unlikely to play a key role. This is corroborated by the non-significant 203 

correlations of the actual April-June scPDSI with the East Asian (Li and Zeng 2002) and South Asian 204 

(Wang et al. 2001) summer monsoon indices (Fig. S1). Moreover, both monsoon systems have 205 

weakened during recent decades (Yu et al. 2004; Li et al. 2009b; Turner and Annamalai 2012), which is 206 

in contrast to the EGS moisture increase on the southeastern TP. Another possibility is the large-scale 207 

ocean-atmospheric circulations. However, as shown in Fig. S2, the EGS moisture change on the 208 

southeastern TP shows no significant correlation pattern with the precedent or concurrent tropical sea 209 

surface temperatures (Rayner et al. 2003), supporting the notion that large-scale ocean-atmospheric 210 

circulations do not play a key role on the wetting trend on the TP (Fang et al. 2015b). The third 211 

possibility is snow cover on the TP (Estilow et al. 2015). However, the actual April-June scPDSI shows 212 

no significant correlation pattern with the precedent winter snow cover on the TP (Fig. S3a). Although it 213 

shows significant positive correlations with concurrent snow cover in the study area (Fig. S3b), the 214 

covariability more likely suggests a response of snow cover to the EGS moisture availability. The fourth 215 
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possibility is precipitation on the TP. Similar to snow cover, the actual April-June scPDSI shows no 216 

significant correlation pattern with the precedent winter precipitation on the TP (Fig. S3c), suggesting 217 

that the latter is not a critical factor that affects the EGS moisture. Instead, it shows significant positive 218 

correlations with concurrent precipitation in the study area (Fig. S3d), indicating the EGS moisture is 219 

largely determined by precipitation in the same season.  220 

Our moisture reconstruction shows strong and positive correlations with large-scale TP surface 221 

temperature anomaly in prior winter (October-February) and current EGS (April-June). The strong and 222 

positive correlations with prior winter minimum temperature (Tmin) are concentrated on the 223 

southeastern TP (Fig. 7c), while the correlations with the EGS Tmin are centered over the interior of the 224 

TP (Fig. 7d). Similar but weaker correlation patterns are found for the maximum temperature (Tmax) in 225 

both seasons (Fig. S4). The seasonal shift in spatial correlation pattern suggests that temperature of 226 

different seasons affects the EGS moisture through different processes. The strong and positive 227 

correlations of the EGS moisture with prior winter temperature are found within the study area (Fig. 7c). 228 

The atmosphere has a relatively short memory where the climate signals in winter may not be able to 229 

exert a time-lagged effect on the warm season moisture, and instead soil moisture is more likely the 230 

medium for such a long climate memory (Barnett et al. 1989; Hsu and Liu 2003; Chow et al. 2008). 231 

Indeed, we found that the EGS moisture shows persistently high correlations with prior winter scPDSI at 232 

our sampling sites (Fig.4b), consistent with previous studies at other moisture-stressed sites on the 233 

southeastern TP (Fan et al. 2008a; Fang et al. 2010; He et al. 2012). These results suggest that prior 234 

winter temperature affects the EGS moisture availability by modulating water storage in the soil. In winter, 235 

frozen ground prevents infiltration of snowmelt or rainfall into the soil, leading to higher-than-normal 236 

springtime runoff (Niu and Yang 2006). High winter temperature causes thawing of ground and slow 237 

melting of snowpack, which result in more infiltration of water into deep soil. Meanwhile, high 238 



 12 

temperature means more winter precipitation falls as rain instead of snow (Barnett et al. 2005), a change 239 

that facilitates winter soil water infiltration. These processes under high winter temperature help retain 240 

more water in the local system, which will otherwise be likely lost as surface runoff and river flow during 241 

the rapid snow melting in late spring to early summer. The above notion is supported by the observed 242 

increase in wintertime low-level clouds at both daytime and nighttime on the TP during recent decades 243 

(Duan and Xiao 2015), which is a result of increased surface warming, snowpack melting and evaporation. 244 

Overall the increase in wintertime low-level clouds is more pronounced at nighttime than at daytime 245 

(Duan and Xiao 2015), supporting our finding that the Tmin is more strongly correlated to the EGS 246 

moisture change on the southeastern TP. 247 

The EGS moisture is not strongly related to concurrent Tmin in the study area (Fig. 7d), and its 248 

correlation with concurrent Tmax is even negative (Fig. S4b). These results suggest that high EGS 249 

temperature leads to regional moisture loss by enhancing evapotranspiration (Fang et al. 2015a; Ren et al. 250 

2015). In contrast, our record shows strong and positive correlations with concurrent surface temperature 251 

anomaly over the interior of the TP (Fig. 7d), suggesting that our study area gains moisture when 252 

anomalous warming occurs over the interior of the TP. Regression analysis using the ERA-Interim 253 

reanalysis data was performed in order to understand the dynamic process. As shown in Fig. 8a, 254 

corresponding to positive TP surface temperature anomalies in April-June, positive 200 hPa geopotential 255 

anomalies are found over the TP and surroundings, with the center above the interior of the TP with an 256 

extension to northwest China. The appearance of strong upper-level anti-cyclone indicates a large-scale 257 

upward convection in the region as a response to anomalous surface warming on the TP. The convection 258 

leads to an increase in lower tropospheric humidity over the southeastern TP, as represented by positive 259 

anomalies of 700 hPa specific humidity (Fig. 8b). In contrast, the convection does not induce more 260 

atmospheric humidity over the interior of the TP, largely because the underlying surface is characterized 261 
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by gobi deserts with limited moisture supply. As a result, strong convection plus increased lower 262 

tropospheric humidity lead to an increase in precipitation and effective precipitation 263 

(Precipitation-Evaporation, P-E) in the southeastern TP, whereas a strong convection plus less lower 264 

tropospheric humidity result in an decrease in precipitation and effective precipitation in the interior and 265 

western TP (Fig. 8c and 8d).               266 

Previous studies found that high temperature leads to strong surface and soil water evaporation that 267 

favors the formation of convective precipitation, a crucial process for water supply on the TP before the 268 

arrival of monsoon rainfall (Yanai and Li 1994; Lau et al. 2010). This warm-wet relationship has been 269 

found in many regions of the TP (Li et al. 2010, 2014; Yang et al. 2014b). Therefore, high EGS surface 270 

temperature on the TP benefits moisture supply in its southeastern region through enhancing large-scale 271 

evaporation and convective precipitation.  272 

To validate whether the warm-wet relationship has persisted at a long-term scale, we compared our 273 

EGS moisture reconstruction with three tree-ring records (ML, BD, and QM, Fig. 1) that represent 274 

large-scale temperature change on the TP (Fan et al. 2008b; Duan and Zhang 2014; Wang et al. 2014b). 275 

Admittedly only the ML record is from the core area of high correlations shown in Fig. 7c and 7d. 276 

However, it shows very coherent relationship with the other two temperature records (Fig. 9), indicating 277 

temperature change is highly uniform on the TP. As shown in Fig. 9, the moisture and temperature 278 

reconstructions exhibit a high degree of coherency with regard to their interdecadal variations, with 279 

increased moisture coincident with periods of high temperature, and vice versa for the dry and cool 280 

periods. In particular, the wettest pluvial of the past five centuries occurred during the 1990s-2000s, 281 

which is also the warmest period on the TP during the past millennium (Wang et al. 2014b). The 282 

coincidence of the 1990s-2000s warm and pluvial conditions on the southeastern TP may not be 283 

enhanced by any persistent trend, as both temperature and moisture records exhibit strong interdecadal 284 
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variations during the 20
th

 century (Fig. 9), which is in contrast to the persistent warming and wetting 285 

trend on the northeastern TP (Yang et al. 2014b). Therefore, the warm-wet association on the 286 

southeastern TP has persisted at least for the past five centuries. 287 

Our chronology contains prior winter temperature signal (Fig. 4a), which to some extent complicates 288 

the interpretation of a warm-wet relationship between the TP surface temperature and the EGS moisture 289 

change in its southeastern region. However, two moisture-sensitive chronologies used in the study 290 

contain very weak or no prior winter temperature signal (Fan et al. 2008a; Liu et al. 2012) and that 291 

exhibit coherent variations with our chronology (Fig. 6), proving that the warm-wet relationship is not 292 

due to the inclusion of winter temperature signal in our chronology. At any rate, future sampling of pure 293 

moisture-sensitive chronologies on the southeastern TP is needed in order to validate our conclusion. 294 

Moreover, the warm-wet relationship breaks down in a few short periods such as the late 1950s to the 295 

early 1960s (Fig. 9). Other factors that may affect the EGS moisture change on the southeastern TP 296 

await future investigation. 297 

 298 

5 Conclusions 299 

We developed a 491-year EGS moisture reconstruction with tree-rings, by far the longest for the 300 

southeastern TP. Our and other reconstructions together reveal common EGS moisture change on the 301 

southeastern TP, and provide a long-term context for evaluating their relationship with large-scale 302 

climate anomaly. Our study indicates a coherent relationship between large-scale TP surface 303 

temperature and the EGS moisture change in its southeastern region. High TP surface temperature may 304 

affect the EGS moisture supply through the modulation of winter soil water storage and the enhancement 305 

of regional EGS evaporation and convective precipitation. State-of-the-art climate models projected that 306 

rapid temperature increase on the TP will persist throughout the twenty-first century as a result of 307 
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continuing anthropogenic greenhouse forcing. The coherent warm-wet association identified in the study 308 

implies a generally wetter condition on the southeastern TP under future warming.  309 
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Figure Captions:  

Fig. 1 Map of the Tibetan Plateau showing the location of the tree-ring sampling sites (triangle), 

the Daocheng (DC) and Lijiang (LJ) meteorological station (black circle), and the four scPDSI 

grid points (open circle) used in this study. The tree-ring sites are as follows: Black triangle 

denotes the two sites of this study (MX). Blue triangles denote the three moisture-sensitive sites 

(BM (Fan et al. 2008a), LX (Liu et al. 2012), and LZ (He et al. 2012)). Red triangles denote the 

three temperature-sensitive sites (ML (Fan et al. 2008b), BD (Duan and Zhang 2014), and QM 

(Wang et al. 2014b))  

Fig. 2 (a) Monthly mean temperature and (b) monthly total precipitation records at the Daocheng 

meteorological station during 1957-2013 

Fig. 3 (a) The composite chronology developed from two sites of A. forrestii on the southeastern 

TP. (b) The running EPS statistics. Dashed line denotes the 0.85 cutoff value. (c) The running 

Rbar statistics. Horizontal line denotes the mean value. (d) The corresponding sample size 

Fig. 4 Correlations of tree-rings with (a) monthly precipitation (solid bars) and temperature (light 

bars) records from previous June to current September during 1957-2013, and with (b) monthly 

scPDSI data during1944-2012. The dashed lines indicate the corresponding 95% confidence 

level 

Fig. 5 Comparison of the actual (solid line) and estimated (dotted line) April-June scPDSI values 

during their common period 1944-2012 

Fig. 6 Comparison of the EGS scPDSI reconstruction with three tree-ring records that are most 

sensitive to the EGS moisture condition on the southeastern TP. (a) The April-June scPDSI 

reconstruction from this study. (b) BM (Fan et al. 2008a). (c) LX (Liu et al. 2012). (d) LZ (He et 

al. 2012). Data in (b) to (d) have been normalized for direct comparison. Bold line in each panel 

denotes a 21-year low-pass filter. Vertical shading denotes wet periods in our reconstruction 

Fig. 7 Spatial correlation patterns for the period of 1951-2012. (a) Actual and (b) reconstructed 

April-June scPDSI correlated with regional gridded scPDSI. Reconstructed April-June scPDSI 

correlated with the CRU minimum temperature in (c) prior winter (October-February) and (d) 

current EGS (April-June). The correlation coefficient at the 0.05 significance level is about 0.25, 

based on a two-tailed student’s t-test. The box in (d) denotes the region over which the 

temperature is averaged 
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Fig. 8 Spatial regression patterns for the period of 1979-2014. Regression patterns of (a) 200 hPa 

geopotential height (m
2
/s

2
), (b) 700 hPa specific humidity (g/kg), (c) precipitation (mm/day), and 

(d) effective precipitation (P-E, mm/day) with the interior TP surface temperature in April-June. 

The interior TP surface temperature was averaged over a region as denoted in Fig. 7d, using the 

gridded CRU dataset 

Fig. 9 Comparison of the EGS scPDSI reconstruction with three temperature-sensitive tree-ring 

records on the TP. (a) The April-June scPDSI reconstruction from this study. (b) ML (Fan et al. 

2008b). (c) BD (Duan and Zhang, 2014). (d) QM (Wang et al. 2014b). Data in (b) to (d) have 

been normalized for direct comparison. Bold line in each panel denotes a 21-year low-pass filter. 

Vertical shading denotes wet periods in our reconstruction 

 

Table Captions:  

Table 1 Statistics of the two tree-ring sampling sites, the nearest meteorological station, and the 

scPDSI grid points developed by van der Schrier et al. (2013) 

Table 2 Statistics of calibration and verification test results 
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Fig. 1 Map of the Tibetan Plateau showing the location of the tree-ring sampling sites (triangle), 

the Daocheng (DC) and Lijiang (LJ) meteorological station (black circle), and the four scPDSI 

grid points (open circle) used in this study. The tree-ring sites are as follows: Black triangle 

denotes the two sites of this study (MX). Blue triangles denote the three moisture-sensitive sites 

(BM (Fan et al. 2008a), LX (Liu et al. 2012), and LZ (He et al. 2012)). Red triangles denote the 

three temperature-sensitive sites (ML (Fan et al. 2008b), BD (Duan and Zhang 2014), and QM 

(Wang et al. 2014b))  
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Fig. 2 

 

 

 

 

 

 

 

 

 
 

Fig. 2 (a) Monthly mean temperature and (b) monthly total precipitation records at the Daocheng 

meteorological station during 1957-2013 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 (a) The composite chronology developed from two sites of A. forrestii on the southeastern 

TP. (b) The running EPS statistics. Dashed line denotes the 0.85 cutoff value. (c) The running 

Rbar statistics. Horizontal line denotes the mean value. (d) The corresponding sample size 
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Fig. 4 

 

 

 

 
Fig. 4 Correlations of tree-rings with (a) monthly precipitation (solid bars) and temperature (light 

bars) records from previous June to current September during 1957-2013, and with (b) monthly 

scPDSI data during1944-2012. The dashed lines indicate the corresponding 95% confidence 

level 
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Fig. 5 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5 Comparison of the actual (solid line) and estimated (dotted line) April-June scPDSI values 

during their common period 1944-2012 
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Fig. 6 

 

 

 

 

 

 
Fig. 6 Comparison of the EGS scPDSI reconstruction with three tree-ring records that are most 

sensitive to the EGS moisture condition on the southeastern TP. (a) The April-June scPDSI 

reconstruction from this study. (b) BM (Fan et al. 2008a). (c) LX (Liu et al. 2012). (d) LZ (He et 

al. 2012). Data in (b) to (d) have been normalized for direct comparison. Bold line in each panel 

denotes a 21-year low-pass filter. Vertical shading denotes wet periods in our reconstruction 
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Fig. 7 

 

 

 

 

 

 

 

 
 

Fig. 7 Spatial correlation patterns for the period of 1951-2012. (a) Actual and (b) reconstructed 

April-June scPDSI correlated with regional gridded scPDSI. Reconstructed April-June scPDSI 

correlated with the CRU minimum temperature in (c) prior winter (October-February) and (d) 

current EGS (April-June). The correlation coefficient at the 0.05 significance level is about 0.25, 

based on a two-tailed student’s t-test. The box in (d) denotes the region over which the 

temperature is averaged 
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Fig. 8 

 

 

 

 

 

 

 
 

Fig. 8 Spatial regression patterns for the period of 1979-2014. Regression patterns of (a) 200 hPa 

geopotential height (m
2
/s

2
), (b) 700 hPa specific humidity (g/kg), (c) precipitation (mm/day), and 

(d) effective precipitation (P-E, mm/day) with the interior TP surface temperature in April-June. 

The interior TP surface temperature was averaged over a region as denoted in Fig. 7d, using the 

gridded CRU dataset 
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Fig. 9 

 

 

 

 
 

Fig. 9 Comparison of the EGS scPDSI reconstruction with three temperature-sensitive tree-ring 

records on the TP. (a) The April-June scPDSI reconstruction from this study. (b) ML (Fan et al. 

2008b). (c) BD (Duan and Zhang, 2014). (d) QM (Wang et al. 2014b). Data in (b) to (d) have 

been normalized for direct comparison. Bold line in each panel denotes a 21-year low-pass filter. 

Vertical shading denotes wet periods in our reconstruction 
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Table 1 Statistics of the two tree-ring sampling sites, the nearest meteorological station, and the 

scPDSI grid points developed by van der Schrier et al. (2013) 

 
Data Type Site Code Location 

(latitude; longitude) 

Elevation 

(m a.s.l.) 

Number 

(core/tree) 

Time Span 

(A.D.) 

Tree-ring 
MAX 29°09'N, 99°56'E 3530 56/28 1509-2006 

MXG 29°09'N, 99°57'E 3600 50/25 1498-2013 

Meteorological 

data 
DC 29°03'N, 100°18'E 3728 — 1957-2013 

PDSI — 
27°75'-˗28°25'N, 

100°25'-˗100°75'E 
— — 1944-2012 

 

 

 

 

 

 

 

 

Table 2 Statistics of calibration and verification test results 

 
 Calibration 

(1944-1977) 

Verification 

(1978-2012) 

Calibration 

(1978-2012) 

Verification 

(1944-1977) 

Full calibration 

(1944-2012) 

r  0.703 0.711 0.711 0.703 0.715 

r
2
 0.494 0.506 0.506 0.494 0.512 

RE — 0.461 — 0.561 — 

CE — 0.374 — 0.446 — 

Sign test 26/8* 25/10* 27/8* 25/9* — 

* Significant at p<0.01   

 

 

 

 


