<table>
<thead>
<tr>
<th>Title</th>
<th>Continual Decrease in Blood Lead Level in Americans: United States National Health Nutrition and Examination Survey 1999-2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TSOI, MF; Cheung, CL; Cheung, TT; Cheung, BMY</td>
</tr>
<tr>
<td>Citation</td>
<td>The American Journal of Medicine, 2016, v. 129 n. 11, p. 1213-1218</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2016</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/232040</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>

Man-Fung Tsoi, BSc, a Ching-Lung Cheung, PhD, a,b,c,d Tommy Tsang Cheung, MRCP, a,b Bernard Man Yung Cheung, PhD a,b,c,e

aDivision of Clinical Pharmacology and Therapeutics, Department of Medicine, The University of Hong Kong, Pokfulam, China; bResearch Centre of Heart, Brain, Hormone and Healthy Aging, The University of Hong Kong, Pokfulam, China; cPartner State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, China; dDepartment of Pharmacology and Pharmacy, The University of Hong Kong, Pokfulam, China; eInstitute of Cardiovascular Science and Medicine, The University of Hong Kong, Pokfulam, China.

ABSTRACT

BACKGROUND: Lead is toxic and affects neurodevelopment in children even at low levels. There has been a long-term effort in the United States to reduce exposure to lead in the environment. We studied the latest US population blood lead levels and analyzed its trend.

METHOD: Blood lead levels in 63,890 participants of the National Health Nutrition and Examination Survey 1999-2014 were analyzed using SPSS Complex Samples v22.0 (IBM Corp, Armonk, NY).

RESULTS: Mean blood lead levels and 95% confidence intervals (CIs) were 1.65 μg/dL (1.62-1.68), 1.44 μg/dL (1.42-1.47), 1.43 μg/dL (1.40-1.45), 1.29 μg/dL (1.27-1.32), 1.27 μg/dL (1.25-1.29), 1.12 μg/dL (1.10-1.14), 0.97 μg/dL (0.95-0.99), and 0.84 μg/dL (0.82-0.86) in 1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, 2009-2010, 2011-2012, and 2013-2014, respectively. Blood lead levels decreased significantly (P < .001), and the trend remained significant when stratified by age, gender, ethnicity, and pregnancy status (P < .05). Estimated percentages of children with blood lead level ≥ 5 μg/dL were 9.9% (95% CI, 7.5-12.9), 7.4% (95% CI, 5.9-9.4), 5.3% (95% CI, 4.1-6.9), 2.9% (95% CI, 2.1-3.9), 3.1% (95% CI, 2.0-4.8), 2.1% (95% CI, 1.5-3.1), 2.0% (95% CI, 1.0-3.6), and 0.5% (95% CI, 0.3-1.0) in 1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, 2009-2010, 2011-2012, and 2013-2014, respectively. The decreasing trend was significant (P < .05). In children aged 1 to 5 years in the National Health Nutrition and Examination Survey 2011-2014, the estimated 97.5 percentile of blood lead level was 3.48 μg/dL.

CONCLUSIONS: Blood lead levels have been decreasing in the US population. The reference level also should decrease. It is still important to monitor blood lead levels in the population, especially among pregnant women and children aged 1 to 5 years.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). • The American Journal of Medicine (2016) 129, 1213-1218

KEYWORDS: Blood lead level; NHANES

Funding: None.
Conflict of Interest: None.
Authorship: All authors had access to the data and played a role in writing this manuscript.
Requests for reprints should be addressed to Bernard Man Yung Cheung, PhD, University Department of Medicine, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China.
E-mail address: mycheung@hku.hk

Lead is ubiquitous in the environment but has no known biological role in humans.1 It can form complexes with amino acids, proteins, and thiol-containing compounds, resulting in inhibition of enzymes and induction of oxidative stress.2 In adults, lead is well known for causing toxicity to the bone marrow, liver, kidney, and central nervous system. Recent studies also showed that high blood lead levels are associated with an increase in systolic blood pressure and mortality.3,5 Pregnant women with
high blood lead levels are at risk of spontaneous abortion. However, children are at the highest risk of lead poisoning. High blood lead levels are associated with reduced intelligence, attention deficit hyperactivity disorder, hearing impairment, and delayed puberty in girls. Chelation therapy can be considered in children with a blood lead level of 45 μg/dL or greater, but there is no evidence to show that chelation therapy is associated with any improvement in intelligence. Because lead exposure can result in irreversible harm in children, reducing blood lead levels in the population is desirable. This is best achieved by reducing lead in the environment.

The current upper reference level for blood lead is 5 μg/dL in the United States. This reference level was set in 2012 using the 97.5th percentile of blood lead levels in children aged 1 to 5 years in the National Health Nutrition and Examination Survey (NHANES) 2007-2010. Previous studies have shown a decrease in blood lead levels in the US population over the years.

However, as the events in Flint, Michigan, have shown, there is no room for complacency. The crisis was due to a decision made by the local government to use Flint River as the source for tap water. The proportion of children aged 1 to 5 years with a blood lead level ≥5 μg/dL was 2.5%. Therefore, we analyzed the trend in blood lead levels in the US population using the latest data from NHANES and estimated the proportion of children with an elevated lead level, defined as 5 μg/dL or greater.

MATERIALS AND METHODS

NHANES is a continuous national survey conducted by the US Centers for Disease Control and Prevention. Detailed methodology and protocols are described on its webpage. Each participant represents approximately 50,000 Americans. The study was approved by the Research Ethics Review Board at the National Center for Health Statistics. All participants gave informed consent.

We used the NHANES dataset from 1999 to 2014. For inclusion in the analysis, a blood lead level had to be available. Included participants were stratified according to the year of survey, age, gender, ethnicity, poverty income ratio, and pregnancy status.

Venous blood samples were obtained to measure blood lead levels according to a standard protocol. Samples were frozen at −20°C and shipped in dry ice until analysis. After thawing, samples were diluted and analyzed with an Inductively Coupled Plasma Dynamic Reaction Cell Mass Spectrometer (ELAN DRC II, PerkinElmer, Norwalk).

RESULTS

We analyzed 7970, 8946, 8373, 8407, 8266, 8793, 7920, and 5215 participants in NHANES 1999-2000, 2001-2002, 2003-2004, 2005-2006, 2007-2008, 2009-2010, 2011-2012, and 2013-2014, respectively. The characteristics of these participants are summarized in Table 1. Mean blood lead levels decreased from 1.65 μg/dL (95% CI, 1.62-1.68) in 1999-2000 to 0.84 μg/dL (95% CI, 0.82-0.86) in 2013-2014 (Table 1). The decreasing trend of blood lead levels across the years was significant (P < .001).

We further analyzed subgroups stratified by age, gender, and ethnicity. Mean blood lead levels stratified by age are summarized in Figure 1. There was a significant reduction in blood lead levels in all age groups (P < .001) (Figure 1). Blood lead levels stratified by age and gender are summarized in Supplementary Table 1, available online. There was a significant decrease (P < .001) in all age groups and genders. Blood lead levels stratified by ethnicity are summarized in Supplementary Table 2, available online. Other ethnicities have been further divided into non-Hispanic Asians and other race since NHANES 2011-2012 (Supplementary Table 2, available online). The decrease in blood lead levels was significant in all ethnicities...
The mean blood lead levels in pregnant women and in children aged 1 to 5 years are summarized in Supplementary Table 3, available online. The proportion of pregnant women with elevated blood lead level also decreased with marginal significance \((P = .053)\) (Table 2). The proportion of children aged 1 to 5 years with an elevated lead level decreased from 9.9\% (95\% CI, 7.5-12.9) in 1999-2000 to 0.5\% (95\% CI, 0.3-1.0) in 2013-2014 \((P < .001)\) (Figure 2). The estimated 97.5\% percentile of the blood lead level in children aged 1 to 5 years in NHANES 2011-2014 was 3.48 \(\mu g/dL\).

DISCUSSION

Data from NHANES were used because it is a large-scale survey representative of the US noninstitutionalized population.\(^{20}\) Moreover, participants of all ages, including infants, children, and pregnant women, were included. The protocol in NHANES is standardized and therefore facilitates comparison across the years. Lead was measured in a centralized laboratory according to a strict protocol. Previous studies have reported a decreasing trend in blood lead levels in the US populations among different age groups and ethnicities.\(^{13,16,21,22}\) Our analysis confirmed this decreasing trend and showed that there were further decreases in recent years. This is encouraging and demonstrates the effectiveness of long-term measures to reduce lead exposure in the United States. Compared with the results of the Canadian Health and Measures Survey and the Korean National Health and Nutrition Examination Survey in the corresponding age groups, the mean blood lead levels in NHANES were lower.\(^{23,24}\)

We found that less than 1\% of children had a blood lead level \(\geq 5 \mu g/dL\) in 2013-2014. There were no pregnant women in the sample population with an elevated blood lead level. It may be timely to revise the blood lead reference level to reflect the decrease in blood lead levels in the United States. Our analysis suggested that the upper reference level for blood lead should be reduced to 3.5 \(\mu g/dL\).

In contrast to the declining blood lead levels across the United States, the switch to Flint River as the source of water resulted in increased release of lead in pipes and elevated blood lead level in the residents of Flint, Michigan.\(^{25,26}\) In children, this is of particular concern because lead is detrimental to neurocognitive development. The lesson that should be learned is that public health measures to monitor and reduce population exposure to lead in the environment should not be relaxed. Continued vigilance is essential to good public health.

Study Limitations

Our analysis was not without limitations. The study population was not a cohort, and the participants, who were chosen randomly, differed in successive surveys. Blood samples were obtained only once in each participant, so

\((P < .05)\) except other race \((P = .454)\) (Supplementary Table 2, available online).

The mean blood lead levels in pregnant women and in children aged 1 to 5 years are summarized in Supplementary Table 3, available online. The proportion of pregnant women with elevated blood lead level also decreased with marginal significance \((P = .053)\) (Table 2). The proportion of children aged 1 to 5 years with an elevated lead level decreased from 9.9\% (95\% CI, 7.5-12.9) in 1999-2000 to 0.5\% (95\% CI, 0.3-1.0) in 2013-2014 \((P < .001)\) (Figure 2). The estimated 97.5\% percentile of the blood lead level in children aged 1 to 5 years in NHANES 2011-2014 was 3.48 \(\mu g/dL\).

DISCUSSION

Data from NHANES were used because it is a large-scale survey representative of the US noninstitutionalized population.\(^{20}\) Moreover, participants of all ages, including infants, children, and pregnant women, were included. The protocol in NHANES is standardized and therefore facilitates comparison across the years. Lead was measured in a centralized laboratory according to a strict protocol. Previous studies have reported a decreasing trend in blood lead levels in the US populations among different age groups and ethnicities.\(^{13,16,21,22}\) Our analysis confirmed this decreasing trend and showed that there were further decreases in recent years. This is encouraging and demonstrates the effectiveness of long-term measures to reduce lead exposure in the United States. Compared with the results of the Canadian Health and Measures Survey and the Korean National Health and Nutrition Examination Survey in the corresponding age groups, the mean blood lead levels in NHANES were lower.\(^{23,24}\)

We found that less than 1\% of children had a blood lead level \(\geq 5 \mu g/dL\) in 2013-2014. There were no pregnant women in the sample population with an elevated blood lead level. It may be timely to revise the blood lead reference level to reflect the decrease in blood lead levels in the United States. Our analysis suggested that the upper reference level for blood lead should be reduced to 3.5 \(\mu g/dL\).

In contrast to the declining blood lead levels across the United States, the switch to Flint River as the source of water resulted in increased release of lead in pipes and elevated blood lead level in the residents of Flint, Michigan.\(^{25,26}\) In children, this is of particular concern because lead is detrimental to neurocognitive development. The lesson that should be learned is that public health measures to monitor and reduce population exposure to lead in the environment should not be relaxed. Continued vigilance is essential to good public health.

Study Limitations

Our analysis was not without limitations. The study population was not a cohort, and the participants, who were chosen randomly, differed in successive surveys. Blood samples were obtained only once in each participant, so
Table 2 Estimated Proportion of Pregnant Women and Children Aged 1 to 5 Years of Different Ethnicities and Poverty Income Ratios with Elevated Blood Lead Level in 1999-2014

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pregnant women</td>
<td>0.7% (0.2-2.6)</td>
<td>0.2% (0.0-1.1)</td>
<td>0.9% (0.1-6.3)</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Children aged 1-5 y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratified by genders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2.8% (2.1-3.6)</td>
<td>1.9% (1.5-2.5)</td>
<td>1.6% (1.3-2.0)</td>
<td>1.3% (1.0-1.8)</td>
<td>1.1% (0.8-1.5)</td>
<td>0.8% (0.5-1.1)</td>
<td>1.2% (0.8-1.9)</td>
<td>0.3% (0.2-0.6)</td>
</tr>
<tr>
<td>Female</td>
<td>7.9% (6.8-9.2)</td>
<td>5.9% (5.1-6.8)</td>
<td>4.5% (3.8-5.3)</td>
<td>3.4% (2.8-4.1)</td>
<td>3.9% (3.2-4.8)</td>
<td>2.9% (2.3-3.6)</td>
<td>2.5% (1.9-3.3)</td>
<td>2.4% (1.7-3.5)</td>
</tr>
<tr>
<td>Stratified by ethnicities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexican Americans</td>
<td>10.2% (7.2-14.2)</td>
<td>4.3% (2.5-7.4)</td>
<td>3.7% (2.0-6.7)</td>
<td>1.4% (0.5-3.9)</td>
<td>1.2% (0.5-3.3)</td>
<td>2.6% (1.3-5.1)</td>
<td>0.0%</td>
<td>0.5% (0.1-3.2)</td>
</tr>
<tr>
<td>Other Hispanics</td>
<td>3.6% (1.2-10.4)</td>
<td>6.6% (3.1-13.5)</td>
<td>3.3% (0.4-20.4)</td>
<td>6.9% (2.9-15.4)</td>
<td>1.1% (0.1-7.2)</td>
<td>1.7% (0.4-6.8)</td>
<td>1.0% (0.1-7.2)</td>
<td>0.7% (0.1-4.7)</td>
</tr>
<tr>
<td>Non-Hispanic white</td>
<td>9.4% (5.9-14.7)</td>
<td>5.5% (3.5-8.7)</td>
<td>2.9% (1.5-5.5)</td>
<td>1.6% (0.8-3.2)</td>
<td>3.1% (1.5-6.0)</td>
<td>1.65% (0.8-3.10)</td>
<td>2.8% (1.2-6.6)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Non-Hispanic black</td>
<td>19.1% (14.0-25.5)</td>
<td>18.0% (14.0-22.9)</td>
<td>16.4% (12.7-20.8)</td>
<td>7.8% (5.4-11.3)</td>
<td>7.1% (4.3-11.4)</td>
<td>3.8% (1.8-7.9)</td>
<td>3.2% (1.6-6.4)</td>
<td>1.6% (0.6-4.1)</td>
</tr>
<tr>
<td>Others</td>
<td>2.6% (0.4-5.9)</td>
<td>8.8% (3.1-22.7)</td>
<td>4.9% (1.9-12.0)</td>
<td>3.8% (1.4-10.4)</td>
<td>1.2% (0.2-8.6)</td>
<td>1.7% (0.4-6.9)</td>
<td>0.0%</td>
<td>1.3% (0.4-4.0)</td>
</tr>
<tr>
<td>Non-Hispanic Asian</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0%</td>
<td>0.8% (0.1-5.4)</td>
</tr>
<tr>
<td>Other race, including multiracial</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>0.0%</td>
<td>1.1% (0.3-3.9)</td>
</tr>
<tr>
<td>Stratified by poverty income ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><1.3</td>
<td>14.0% (10.2-18.9)</td>
<td>12.7% (9.8-16.1)</td>
<td>8.9% (6.7-11.7)</td>
<td>6.7% (4.8-9.2)</td>
<td>4.8% (3.3-7.1)</td>
<td>4.1% (2.7-6.0)</td>
<td>3.1% (1.6-5.9)</td>
<td>1.1% (0.5-2.0)</td>
</tr>
<tr>
<td>≥1.3</td>
<td>6.2% (3.6-10.4)</td>
<td>2.7% (1.5-5.1)</td>
<td>2.5% (1.3-4.8)</td>
<td>0.9% (0.4-2.1)</td>
<td>1.9% (0.7-4.9)</td>
<td>0.6% (0.2-1.6)</td>
<td>0.8% (0.1-4.5)</td>
<td>0.0%</td>
</tr>
<tr>
<td>Stratified by age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2 y</td>
<td>11.8% (8.2-16.5)</td>
<td>12.1% (9.1-16.0)</td>
<td>7.7% (5.3-11.0)</td>
<td>3.6% (2.4-5.4)</td>
<td>3.4% (2.1-5.4)</td>
<td>2.9% (1.8-4.7)</td>
<td>3.3% (1.4-7.6)</td>
<td>0.9% (0.4-2.0)</td>
</tr>
<tr>
<td>3-5 y</td>
<td>8.4% (5.5-12.6)</td>
<td>4.5% (2.9-6.8)</td>
<td>3.6% (2.5-5.4)</td>
<td>2.5% (1.5-4.0)</td>
<td>3.0% (1.6-5.6)</td>
<td>1.6% (0.9-2.9)</td>
<td>1.3% (0.5-3.3)</td>
<td>0.3% (0.1-0.9)</td>
</tr>
</tbody>
</table>

NA = not applicable.
fluctuations of blood levels with time among individuals could not be captured. Because lead is mainly deposited in bones, the cumulative exposure of lead could not be measured simply by blood test. This is especially relevant to immigrants, who may have been exposed to lead before living in the United States. Immigrants and refugees within 6 months of arrival in the United States are more likely to have elevated blood lead levels. The Centers for Disease Control and Prevention has introduced a program to monitor population groups. Previous studies showed elevated blood lead levels in Mexican Americans and the poor, but this was not evident in the latest NHANES data.

![Figure 1](image1.png)
Figure 1 Estimated mean blood lead level in participants in different age groups in 1999-2014.

![Figure 2](image2.png)
Figure 2 Estimated proportion of children aged 1 to 5 years with elevated lead level in 1999-2014.
CONCLUSIONS
There has been a continuous decreasing trend in blood lead levels in the US population. Because blood lead level in young children is a very important health issue, monitoring of blood lead levels at the population level should be continued.

References
2. Matovic V, Buha A, Ethukic-Cosic D, Bulat Z. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver, and kidneys. Food Chem Toxicol. 2015;78:130-140.

SUPPLEMENTARY DATA
Supplementary tables accompanying this article can be found in the online version at http://dx.doi.org/10.1016/j.amjmed.2016.05.042.