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Abstract

Economic Load Dispatch (ELD) is one of the essential components in power system control and operation. Although
conventional ELD formulation can be solved using mathematical programming techniques, modern power system in-
troduces new models of the power units which are non-convex, non-differentiable, and sometimes non-continuous. In
order to solve such non-convex ELD problems, in this paper we propose a new approach based on the Social Spider
Algorithm (SSA). The classical SSA is modified and enhanced to adapt to the unique characteristics of ELD problems,
e.g., valve-point effects, multi-fuel operations, prohibited operating zones, and line losses. To demonstrate the superior-
ity of our proposed approach, five widely-adopted test systems are employed and the simulation results are compared
with the state-of-the-art algorithms. In addition, the parameter sensitivity is illustrated by a series of simulations. The
simulation results show that SSA can solve ELD problems effectively and efficiently.

Keywords: Economic load dispatch, Social spider algorithm, non-convex optimization, valve-point effect.

1. Introduction

Economic Load Dispatch (ELD) is a fundamental prob-
lem in power system control and operation. The goal

for ELD is to find a best feasible power generation schedule
with a minimal fuel cost, while satisfying the generation
constraints of the power units [1]. In the canonical formu-
lation of ELD, the fuel costs of power units are represented
by quadratic functions, which are convex and can be easily
solved using mathematical programming methods. Many
classical methods have been employed to solve ELD in the
past decades, e.g., the gradient method [2], the lambda it-
eration method [3], and quadratic programming [4]. These
methods have also been employed to solve other optimiza-
tion problems in power system like the Unit Commitment
problem [5] and the Optimal Power Flow problem [6].

Although the convex, differentiable, and monotonically
increasing canonical formulation of ELD is simple to solve,
it is unrealistic because valve-point effects (VPE), multi-
fuel options (MFO), and prohibited operating zones (POZ)
are not considered. However, all these factors shall be ac-
counted for in the real-world industrial production process.
Incorporating these factors, the modern ELD is repre-
sented by a non-convex, non-continuous, and non-differentiable
optimization problem with many equality and inequality
constraints, making it very challenging to find the global
optimum solution. For the sake of simplicity, ELD is used
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to refer to the modern formulation of the problem here-
after.

Despite the complexity of the problem, a number of
techniques have been devised to solve ELD in the past
decade, e.g., Tabu search [7], Taguchi method [8], and vari-
ants of particle swarm optimization [9, 10]. Evolutionary
algorithms (EAs) also play an important role in solving
ELD problems. Currently most state-of-the-art solvers for
ELD are EAs and their variants according to the analysis
in [11].

Social Spider Algorithm (SSA) is a recently proposed
evolutionary algorithm to solve global numerical optimiza-
tion problems [12]. By mimicking the foraging behavior of
the social spiders, SSA explores and exploits the solution
space in an iterative manner. In the formulation of SSA,
searching information is propagated among the individu-
als, i.e., spiders, through the means of vibrations, which
are lossy. In addition to this lossy information feature,
SSA also incorporates a new social animal foraging model,
namely, the information sharing model [13]. In this model,
individuals in a population perform searching and joining
behaviors simultaneously, which could potentially result in
improved searching efficiency [12, 14]. The reasons leading
to the outstanding performance of SSA have been inves-
tigated in [12], and the improvements are mainly cred-
ited to the unique design of the information loss scheme
and the searching pattern. Besides its superiority in solv-
ing optimization benchmark problems [12], SSA has also
demonstrated its potential to be applied to address real
world complex optimization problems [15]. This makes it
a good candidate to generate outstanding power schedules
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for ELD.
In this paper, we propose a variant of SSA to solve ELD

problem, accounting for VPE, MFO, POZ, and power line
loss. The advantage of our proposed algorithm is that
it can generate more cost-efficient power schedules when
compared with other algorithms. The rest of the paper is
organized as follows. We first introduce the related work in
Section 2. Section 3 presents the formulation of ELD with
VPE, MFO, POZ, and power line loss. Our proposed algo-
rithm is elaborated in Section 4, and simulation problems,
results, and comparisons are shown in Section 5. Finally
we conclude this paper in Section 6.

2. Related Work

Over the past decades, many methods have been devel-
oped to solve ELD. Lin and Viviani proposed a hierarchical
numerical method to solve the economic dispatch problem
with piecewise quadratic cost functions [16]. In this work
the authors considered multiple intersecting cost functions
for each generator, which is an analogy of MFO. A similar
formulation of the problem is addressed by Park et al. [17]
with hopfield neural networks. This work is among the first
attempts of adopting computational intelligence method-
ologies in solving ELD. Lee et al. later proposed an adap-
tive hopfield neural network to solve the same problem
[18]. Their algorithm introduced a slope adjustment and
bias adjustment method to speed up the convergence of
the hopfield neural network system with adaptive learning
rates. Lee and Breipohl proposed a decomposition tech-
nique to solve ELD with POZ [19]. Their algorithm de-
composes the nonconvex decision space into subsets which
can be solved via the conventional Lagrangian relaxation
approach. Binetti proposed a distributed algorithm based
on the auction techniques and consensus protocols to solve
ELD [20]. In their work, each power unit locally evaluates
its possible fuel costs as bids. The bids are later employed
in the auction mechanism to come up with a consensus. A
very recent work by Zhan et al. proposed a dimensional
steepest decline method [11]. This method utilizes the lo-
cal minimum analysis of the ELD problem to reduce the
solution space to singular points.

Besides the above non-EA approaches, many EA meth-
ods have also been developed to solve various formulations
of ELD. Orero and Irving proposed a simple Genetic Al-
gorithm (GA) to solve ELD with POZ [21]. Besides the
standard GA, this work also devised a deterministic crowd-
ing GA model to solve the problem. Chiang developed
an improved GA with the multiplier updating scheme for
ELD with VPE and MFO [22]. In this work, the pro-
posed GA is incorporated with an improved evolutionary
direction operator. In addition, the tailor-made migra-
tion operator efficiently searches the solution space. He
et al. proposed a hybrid GA approach to solve ELD with
VPE [23]. The algorithm proposed is a hybrid GA with
differential evolution (DE) and sequential quadratic pro-
gramming (SQP). Sinha et al. developed an Evolution-

ary Programming (EP) method to solve ELP with VPE
[24]. Pereira-Neto et al. proposed an Evolutionary Strat-
egy (ES) method to solve ELP with VPE and POZ [25].
DE has also been adapted to solve ELD [26, 27].

Swarm Intelligence (SI), a branch of EA, has also at-
tracted researchers’ attention. Particle Swarm Optimiza-
tion (PSO) has made a significant contribution in solving
ELD problems. Selvakumar and Thanushkodi proposed a
“new PSO” based on the classical PSO for ELD with VPE,
MFO, and POZ [28]. They manipulated the cognitive
searching behavior in PSO to facilitate the solution space
exploration. They also proposed an anti-predatory PSO
in [29]. In this algorithm, a new anti-predator scheme is
modeled and introduced in the classical PSO. Chaturvedi
et al. proposed a hierarchical PSO for ELD with VPE and
POZ [30]. In this work, a time-varying acceleration coef-
ficient is introduced to act as the inertia factor of PSO.
Meng et al. proposed a Quantum PSO for ELD with
VPE [31]. Their algorithm demonstrated strong searching
ability and fast convergence speed, which are contributed
by the introduction of quantum computing theory, self-
adaptive probability selection, and chaotic sequence muta-
tion. Safari and Shayeghi developed an Iteration PSO for
ELD with VPE and POZ [32]. Besides the conventional
global best (gBest) and personal best (pBest) positions
considered in canonical PSO, the proposed algorithm also
considers an iteration best (iBest) position in the search-
ing process. Nature-inspired EAs also yield satisfactory re-
sults in solving ELD variants. Some outstanding ones are
Bee Colony Optimization Algorithm [33], Biogeography-
Based Optimization [34], Ant Swarm Optimization [35],
Harmony Search Algorithm [36], and Chemical Reaction
Optimization [37].

3. Economic Load Dispatch Problem

The objective of the ELD problem is to find an optimal
power generation schedule with minimal fuel cost while
satisfying different power system operating constraints, in-
cluding power unit and load balancing constraints. In this
paper we adopt the formulation described in [11] and [37].
The problem is formulated on one-hour time spans.

3.1. Objective Function

The objective function of ELD is defined as follows:

min
P

n∑
i=1

F c
i (Pi), (1)

where n is the total number of power units, F c
i (Pi) is the

fuel cost function for the ith power unit, and Pi is the
power generation for the ith power unit according to the
power generation schedule.

2



3.1.1. Valve-point Effect

Conventionally the fuel cost of power units are formu-
lated by a quadratic function with the following form:

F c
i = ai + biPi + ciP

2
i , (2)

where a, b, and c are constant coefficients determined by
the physical characteristics of the power units. However,
the fuel cost function exhibits a larger variation in practice
due to VPE, which generates ripple like effect during the
valve-opening process of multi-valve units. A more precise
formulation with both a quadratic component and a recti-
fied sinusoidal component is adopted. In (1), the fuel cost
is defined by

F c
i = ai + biPi + ciP

2
i + |ei sin(fi(P

min
i )− Pi)|, (3)

where e and f are new coefficients describing VPE, and
Pmin
i is the minimum power generation for the ith power

unit in the system.

3.1.2. Multi-fuel Options

Modern power units can be operated with multiple fu-
els [11], and each fuel has a different fuel cost function.
The unit will always utilize the fuel with a minimum fuel
cost given a specified power generation requirement. Thus
the fuel cost defined in (3) is further modified to reflect
the effects of multiple fuel options. A piecewise quadratic
function is adopted to calculate the fuel cost of such power
units, defined as follows:

F c
i = min(ai,1 + bi,1Pi + ci,1P

2
i + |ei,1 sin(fi,1(Pmin

i )− Pi)|,
ai,2 + bi,2Pi + ci,2P

2
i + |ei,2 sin(fi,2(Pmin

i )− Pi)|,
· · · ,
ai,h + bi,hPi + ci,hP

2
i + |ei,h sin(fi,h(Pmin

i )− Pi)|),
(4)

where ai,k, bi,k, ci,k, ei,k, and fi,k are the fuel cost coeffi-
cients of the kth fuel option of the ith power unit, and h
is the total number of fuel options. Note that our formu-
lation of MFO is different from the previous ones [11, 37],
in which predefined power levels of switching among fuel
options are listed as follows:

F c
i =


ai,1 + bi,1Pi + ci,1P

2
i + |ei,1 sin(fi,1(Pmin

i )− Pi)| if Pi ∈ [Pmin
i , P1)

ai,2 + bi,2Pi + ci,2P
2
i + |ei,2 sin(fi,2(Pmin

i )− Pi)| if Pi ∈ [P1, P2)

· · ·
ai,h + bi,hPi + ci,hP

2
i + |ei,h sin(fi,h(Pmin

i )− Pi)| if Pi ∈ [Ph−1, P
max
i ]

,

(5)

where Pmax
i is the maximum power generation for the ith

power unit, and P1, P2, · · · , Ph−1 are the predefined power
levels of switching fuel options. As all the formulations
considering MFO makes the assumption that power units
can choose fuel options freely a-priori, our formulation is
a more practical one. Meanwhile, as the predefined power
levels in the simulation cases presented in Section 5 were

previously manipulated to make (4) and (5) equivalent, it
is still fair to compare the performance of our proposed
algorithm with existing ones. For example, P1 value given
in the previous test cases makes

F c
i =ai,1 + bi,1P1 + ci,1P

2
1 + |ei,1 sin(fi,1(Pmin

i )− P1)|
=ai,2 + bi,2P1 + ci,2P

2
1 + |ei,2 sin(fi,2(Pmin

i )− P1)|.
(6)

Thus it is equivalent to

F c
i = min(ai,1 + bi,1P1 + ci,1P

2
1 + |ei,1 sin(fi,1(Pmin

i )− P1)|,
ai,2 + bi,2P1 + ci,2P

2
1 + |ei,2 sin(fi,2(Pmin

i )− P1)|).
(7)

3.2. Constraints

3.2.1. Active Power Balance

In this formulation we take the transmission line loss
into consideration. Thus the active power balance is de-
fined as an equilibrium between generated power and load
demand plus line loss:

n∑
i=1

Pi = P demand + P loss, (8)

where P demand and P loss are the load demand and line
loss, respectively. The line loss is calculated by [1]:

P loss =

n∑
i=1

n∑
j=1

PiBijPj +

n∑
i=1

Bi0Pi +B00, (9)

where Bij are the line loss coefficients.

3.2.2. Power Generation Constraint

The amount of power that each power unit can gen-
erate is limited by three factors: power limits, ramp rate
limits, and POZ, each of which is represented by a set of
inequalities. First, the power generation shall be within
each power unit’s minimum and maximum limits:

Pmin
i ≤ Pi ≤ Pmax

i , (10)

where Pmin
i and Pmax

i are the minimum and maximum
power output of the ith power unit, respectively. Second,
ramp rates are employed to prevent severe power output
changes, which are actually restricted by the physical prop-
erties of the power units. The operating ranges of all units
are limited by their corresponding ramp rates:

P prev
i − PDR ≤ Pi ≤ P prev

i + PUR, (11)

where P prev
i is the previous power output of the ith power

unit, PDR and PUR are the ramp down and ramp up lim-
its, respectively. Sometimes the entire operating range
may not be completely feasible to the power unit due to
physical operation limitations. Such power units have one
or multiple power output ranges that are forbidden to the
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units. Therefore, additional constraints are introduced for
the power units with POZ:

Pi ∈ [Pmin
i , P l,1

i ] ∪ [P u,1
i , P l,2

i ] ∪ · · · ∪ [P u,z
i , Pmax

i ], (12)

where P l,r
i and P u,r

i are the rth POZ of the ith power unit,
and z is the total number of POZs.

4. Proposed Approach Based on Social Spider Al-
gorithm

SSA was recently proposed by Yu and Li [12] to solve
global numerical optimization problems. It is a general-
purpose swarm intelligence algorithm utilizing the forag-
ing behavior of the social spiders to perform optimization
tasks. SSA was initially designed to solve continuous un-
constrained problems, and we made several essential mod-
ifications to adapt the algorithm to solve ELD efficiently.

4.1. Spider

Spiders are the basic operating agents of SSA. In SSA,
the solution space of an optimization problem is formu-
lated as a hyper-dimensional spider web S on which the
spiders can move freely. Each position on the web corre-
sponds to a feasible solution to the optimization problem.
The spider web also serves as a transmission media for the
vibrations generated by the spiders.

Each spider, say the ith spider in the population, in
SSA is characterized by two properties, namely, its posi-
tion Pi(t) ∈ S and fitness value f(Pi(t)), where t is the
current iteration index and f(x) is the objective function.
In addition, each spider holds several attributes which are
utilized to guide its random walk process when searching
the solution space. The searching pattern will be intro-
duced later and these attributes are:

• The target vibration V tar
i .

• The inactive degree dini .

• The movement in the previous iteration |Pi(t)−Pi(t−
1)|.

• The dimension mask1 Mi.

4.2. Vibration

The vibrations represent a key design of SSA. It distin-
guishes SSA from other swarm intelligence algorithms and
incorporates the lossy information idea into meta-heuristic
algorithm design.

According to observations, the spiders are extremely
sensitive to the vibrations propagated over the spider web.
They are able to distinguish different vibrations from all
directions and tell their intensities [14]. In SSA design,

1A 0-1 binary vector of length equals to the dimension of the
optimization problem.

a vibration will be generated whenever a spider performs
an arbitrary movement. The vibration carries the opti-
mization information of the corresponding spider, and is
propagated to and received by others in the same popula-
tion. In such a way, the population of spiders share their
personal experience and form a communal knowledge of
the solution space.

The vibrations in SSA are characterized by two prop-
erties, namely, its source location Li ∈ S and the intensity
at its source Ti ∈ [0,+∞). In iteration t, whenever a spi-
der moves to a new position Pi(t), it generates a vibration
at this position Li = Pi(t) with an intensity calculated
based on the fitness value of the position2:

Ti = log(
1

f(Pi(t))− C
+ 1), (13)

where C is a confidently small constant. The introduction
of C is to guarantee the feasibility of the log term in (13).
The values of C will be elaborated later.

A vibration, after being generated, will attenuate when
propagated over the spider web. Thus upon receipt, the
spiders can only get partial information of the vibration’s
source location and its attenuated intensity. The vibration
attenuation process is defined as follows:

TD
i = Ti × exp(− D

σ × ra
), (14)

where TD
i is the attenuated intensity after being propa-

gated over a distance D, σ is the mean of the standard
deviation of the population’s positions over all dimensions,
and ra ∈ (0,+∞) is the attenuation rate, which is a user-
controlled parameter.

4.3. Iteration

The complete optimization process of SSA is divided
into three phases: initialization, iteration, and final phase,
where the most notable one is the iteration phase. This
phase is constituted of several steps, namely, fitness evalu-
ation, vibration processing, mask changing, random walk,
and constraint handling.

Each iteration starts with the fitness evaluation step,
where the fitness value of each spider in the population
is evaluated and stored. It is worth mentioning that the
fitness evaluation process is conducted once and only once
per iteration.

After all fitness values are evaluated, each spider will
generate a vibration at its current position using (13). The
vibrations are then propagated over the spider web using
(14), and received by all other spiders. Upon receipt of all
vibrations, each spider will select the one with the largest
attenuated intensity, denoted by V rcv

i , and compare it with

2We only study minimization problems in this paper. In such
cases, smaller objective values are translated into larger intensity
values using (13).
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V tar
i . If V rcv

i is larger, it is stored as the new V tar
i . In such

cases the inactive degree dini is reset to zero. Otherwise
V tar
i remains unchanged and dini is incremented by one.

In SSA, the movements of spiders are guided by both
V tar
i and Mi. Mi is manipulated after V tar

i is determined.
In this mask-changing step two user-controlled parame-
ters, pc and pm, are introduced and used to modify Mi. At
the beginning of this step, each spider will decide whether
its Mi shall be changed, and the probability of changing
is 1 − pcd

in
i . If Mi is determined to be modified, each bit

of Mi has a probability pm to be assigned with a one, and
1−pm to be a zero. If all bits are set to zero, a random bit
is changed to one in order to avoid getting stuck in local
optima [12].

When all dimension masks are determined, each spi-
der will perform a random walk, and then employ the
constraint-handling scheme to repair the possible infea-
sible solutions generated in the previous step. These two
steps are substantially modified to solve ELD, as elabo-
rated below.

4.4. Random Walk with Chaotic Sequence Based Memory
Factor

When an iteration of SSA proceeds to the random walk
step, each spider shall hold updated V tar

i , Mi, and a col-
lection of received vibrations. These pieces of information
are utilized to construct a target position P tar

i as follows:

(P tar
i )j =

{
(V tar

i )j if (Mi)j = 0

(V rand
i )j if (Mi)j = 1

, (15)

where (P tar
i )j is the jth element of P tar

i , (V tar
i )j is the jth

element of the source location of V tar
i , V rand

i is a random
vibration received by the spider, and (Mi)j is the jth bit
of Mi.

With the generated P tar
i , here we introduce a chaotic

sequence based memory factor into the random walk pro-
cess. Chaotic sequences has been employed in controlling
the optimization process of many swarm intelligence algo-
rithms [10, 38]. In our proposed algorithm, we employ a
logistic map iterator to emulate the dynamic system with
chaotic behavior [39]:

γt = µγt−1(1− γt−1), (16)

where µ is a control parameter and is set to four in this
paper. γt is the chaotic parameter at iteration t, randomly
generated in (0.75, 1) in this paper.

In addition, we introduce a new memory factor to con-
trol the impact of past behavior on the spider’s random
walk. In previous work [12, 40], the random walk formula
is defined as follows:

Pi(t+1) = Pi(t)+(Pi(t)−Pi(t−1))×δ+(P tar
i −Pi(t))�R,

(17)
where δ is randomly generated in (0, 1), R ∼ U(0, 1) is a
vector of random numbers, and � is the element-wise mul-
tiplication operation. In our formulation, δ is considered

as the memory factor, and defined as follows:

δ(t) = γt(ω
max − ωmax − ωmin

itermax × t), (18)

where ωmax and ωmin are the maximum and minimum
memory strengths, respectively. itermax is the maximum
allowed iteration count, which is a stopping criteria. The
design of ω terms is similar to the descending inertia weight
approach used in PSO [10].

4.5. Power Schedule Repairing Scheme

After the random walk step, the spiders in the popu-
lation are assigned with new positions. However, as their
positions are not checked against the constraints of ELD,
namely, (8)–(12), an additional constraint-handling scheme
shall be incorporated to repair the infeasible solutions.

We first consider the power generation constraints, i.e.,
(10)–(12). In these constraints, several power levels are
designed to limit the available power outputs: Pmin

i , Pmax
i ,

P prev
i − PDR, P prev

i + PUR, P l,r
i , and P u,r

i . If an element
pi in the checked power schedule (spider position) P is
infeasible for (10)–(12), pi is set to the power level which
is closest to the original pi. Thus a boundary absorbing
technique [41] is employed to address (10)–(12).

After all power outputs satisfy the boundary constraints,
the active power balance constraint (8) is checked. The
deficit energy is calculated as follows:

P dfc = P demand + P loss −
n∑

i=1

Pi. (19)

Then a repairing operation is repeated until P dfc = 0. The
scheme first randomly selects the gth power unit and then
calculates its remaining capacity:

P cap
g =

{
Pmax
g

∗ − pg P dfc > 0

Pmin
g

∗ − pg P dfc < 0
, (20)

where Pmax
g

∗ and Pmin
g

∗
are the maximum and minimum

power outputs in the current allowed operating zone. For
the test instances without POZ, Pmax

g
∗ = Pmax

g and Pmin
g

∗
=

Pmin
g . Otherwise Pmax

g
∗ = min{Pmax

g , P l,q
g }, where P l,q

g is

the closest lower limit of all POZs. Pmin
g

∗
= max{Pmin

g , P u,q
g },

where P u,q
g is the closest upper limit of all POZs. After

P cap
g is calculated, pg and P dfc are manipulated according

to the following:

P ch =

{
min{P cap

g × r, P dfc} P dfc > 0

max{P cap
g × r, P dfc} P dfc < 0

, (21)

pg ←pg + P ch, (22)

P dfc ←P dfc − P ch. (23)

This repairing scheme will work for test instances with-
out POZ. However, for some rare cases with POZ, it is
possible that

∑n
g=1 P

cap
g is not sufficient to cover P dfc due
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to the limitation of POZ. In such a case, the power out-
put of a random unit is set to the closest upper limit of
all POZs, i.e., pg = min{P u,q

g |P u,q
g > pg}, and the repair-

ing scheme is conducted again until constraint (8) is satis-
fied. A pseudocode of the modified SSA with the proposed
ELD-specific schemes is presented in Algorithm 1.

Algorithm 1 Modified Social Spider Algorithm
for Economic Load Dispatch Problem

1: Assign values to the parameters of SSA.
2: Create the population of spiders pop and assign mem-

ory for them.
3: Initialize V tar

i for each spider.
4: while stopping criteria not met do
5: for each spider in pop do
6: Evaluate the fitness value.
7: Generate a vibration at the spider’s position.
8: end for
9: for each spider in pop do

10: Calculate the intensity of the generated vibra-
tions.

11: Select the strongest vibration V rcv
i .

12: if The intensity of V rcv
i is larger than V tar

i then
13: Store V rcv

i as V tar
i .

14: end if
15: Update dini .
16: Generate a random number r from [0,1).

17: if r > pc
din
i then

18: Update the dimension mask Mi.
19: end if
20: Update the logistic map iterator γt.
21: Update the memory factor δ(t) with γt.
22: Perform a random walk with δ(t).
23: Address violated constraints in the power

schedule using proposed repairing scheme.
24: end for
25: end while
26: Output the best solution found.

5. Simulation Results and Comparisons

In order to benchmark the performance of our pro-
posed SSA-based approach in solving variants of ELD, we
conduct a series of simulations on test systems with dif-
ferent combinations of VPE, MFO, POZ, and line loss.
Five different test cases are considered, where the time
span for each case is one hour [24]. In addition, the ramp
rate constraint (11) is provided in the last two cases. For
all simulations, the population size equals the number of
power units, ra is set to 10, pc and pm are set to 0.9 and
0.1, respectively. Constant C in (13) is set to the value of
the minimal fuel cost

∑n
i=1 F

c
i (Pmin

i ). The stopping crite-
ria for all simulations is 100000 function evaluations, and
each test system is repeated for 25 runs.

The algorithm is implemented in C++. All simulations
of SSA are conducted on a personal computer with an

Intel Core i7 CPU at 3.40GHz. For other algorithms, the
best power schedules are obtained from the corresponding
publications and the fuel costs are evaluated using these
obtained solutions.

5.1. ELD with VPE

For this variant of ELD, two test systems are adopted
for evaluation, namely, the 13-unit system [24] and the
40-unit system [24]. Load demand for these systems are
1800MW and 10 500MW. The system coefficients are pre-
sented in Tables 7 and 8.

The performance of SSA is compared with the state-
of-the-art algorithms in solving these two test systems,
namely, Quantum PSO (QPSO) [31], hybrid GA (HGA)
[23], iteration PSO with time varying acceleration coeffi-
cients (IPSO-TVAC) [32], self-tuning hybrid DE (SHDE)
[26], fuzzy adaptive PSO with variable DE (FAPSO-VDE)
[42], hybrid CRO with DE (HCRO-DE) [37], Dimensional
Steepest Decline Method (DSD) [11], and PSO with chaotic
sequences and crossover operation (CCPSO) [10]. It should
be noted that the total cost obtained can be different from
the publication due to calculation precision issues [11].

Simulation results and best power schedules are listed
in Tables 1 and 2. From the tables we can see that all con-
straints are satisfied with the power schedule found, and
the obtained solutions of the best performing algorithms
(SSA, DSD, HGA, and FAPSO-VDE for 13-unit system;
SSA, IPSO-TVAC, DSD, and CCSPO for 40-unit system)
are quite similar. SSA outperforms others in 13-unit com-
parison and achieves a satisfactory performance in 40-unit
system compared with other state-of-the-art algorithms.
These results demonstrates the superiority of SSA in ex-
ploiting the local optimum spaces.

The average computation times for SSA are 0.474 and
0.569 seconds for the 13 and 40-unit systems, respectively.
As a reference, the corresponding simulation times for
FAPSO-VDE were 4.1 and 22 seconds with an Intel Pen-
tium IV CPU at 3.0GHz [42], which can be roughly trans-
lated into approximately 2 and 12 seconds on our sim-
ulation platform, respectively. Typically ELD is usually
considered with the Unit Commitment Problem, which
makes power generation schedules on a per-hour basis. In
such cases a computational time of several seconds is not
as significant when compared with the optimization time
frame. However, with the introduction of fast-changing
renewable energy sources to the conventional grid, in the
future, a smaller response time for such generation opti-
mization problems will be required and it will be necessary
to achieve a faster computational speed.

5.2. ELD with VPE and MFO

For ELD with VPE and MFO, we employ a 10-unit
system [22] for comparison. Load demand for this system
is 2700MW. The system coefficients are presented in Table
9.

The performance of SSA is compared with the state-
of-the-art algorithms in solving this test system, namely,
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Table 1: Simulation Results for 13-unit Test System with VPE

Unit SSA QPSO HGA IPSO-TVAC SHDE FAPSO-VDE HCRO-DE DSD
1 628.31788 538.56 628.3185 628.3185 628.3172 628.3185 628.3185 628.31853
2 149.57315 224.70 222.7491 149.5996 149.5986 222.7490 149.5930 149.59965
3 224.38835 150.09 149.5996 222.7489 222.7987 149.5990 222.7559 222.74907
4 109.86655 109.87 109.8665 109.8666 109.8673 109.8665 109.8665 109.86655
5 109.86652 109.87 109.8665 109.8666 109.8418 109.8665 109.8665 109.86655
6 109.86592 109.87 109.8665 109.8666 109.8641 109.8665 109.8665 109.86655
7 109.86439 109.87 109.8665 109.8666 109.8547 109.8665 109.8665 109.86655
8 109.86644 159.75 109.8665 109.8666 109.8576 109.8665 109.8665 109.86655
9 60.00000 109.87 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000
10 40.00000 77.41 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000
11 40.00000 40.00 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000
12 55.00000 55.01 55.0000 55.0000 55.0000 55.0000 55.0001 55.00000
13 55.00000 55.01 55.0000 55.0000 55.0000 55.0000 55.0000 55.00000

Cost 17963.766 18398.848 17963.829 17963.833 17963.891 17963.829 17963.831 17963.829

Table 2: Simulation Results for 40-unit Test System with VPE

Unit SSA QPSO HGA IPSO-TVAC FAPSO-VDE HCRO-DE DSD CCPSO
1 110.80000 111.20 111.3793 110.80 110.8018 110.8015 110.79983 110.7998
2 110.80000 111.70 110.9278 110.80 110.8000 110.7998 110.79983 110.7999
3 97.50000 97.40 97.4104 97.40 97.3999 97.3999 97.39991 97.3999
4 179.69999 179.73 179.7331 179.73 179.7331 179.7331 179.73310 179.7331
5 87.79992 90.14 89.2188 87.80 87.7998 87.7999 87.79990 87.7999
6 140.00000 140.00 140.0000 140.00 140.0000 140.0000 140.00000 140.0000
7 259.59973 259.60 259.6198 259.60 259.5997 259.5997 259.59965 259.5997
8 284.59980 284.80 284.6570 284.60 284.5997 284.5997 284.59965 284.5997
9 284.59957 284.84 284.6588 284.60 284.5997 284.5997 284.59965 284.5997
10 130.00000 130.00 130.0000 130.00 130.0000 130.0000 130.00000 130.0000
11 94.00000 168.80 168.8214 94.00 94.0000 94.0000 94.00000 94.0000
12 94.00000 168.80 168.8496 94.00 94.0000 94.0000 94.00000 94.0000
13 214.75979 214.76 214.7524 214.76 214.7598 214.7598 214.75979 214.7598
14 394.27937 304.53 394.2848 394.28 394.2794 394.2794 394.27937 394.2794
15 394.27937 394.28 304.5361 394.28 394.2794 394.2794 394.27937 394.2794
16 394.27937 394.28 394.2987 394.28 394.2794 394.2794 394.27937 394.2794
17 489.27937 489.28 489.2877 489.28 489.2794 489.2794 489.27937 489.2794
18 489.27937 489.28 489.2869 489.28 489.2794 489.2794 489.27937 489.2794
19 511.27937 511.28 511.2752 511.28 511.2794 511.2794 511.27937 511.2794
20 511.27937 511.28 511.2857 511.28 511.2794 511.2794 511.27937 511.2794
21 523.27937 523.28 523.2961 523.28 523.2794 523.2794 523.27937 523.2794
22 523.27937 523.28 523.3202 523.28 523.2807 523.2794 523.27937 523.2794
23 523.27937 523.29 523.2916 523.28 523.0000 523.2794 523.27937 523.2794
24 523.27937 523.28 523.3014 523.28 523.0000 523.2794 523.27937 523.2794
25 523.27937 523.29 523.2675 523.28 523.0000 523.2794 523.27937 523.2794
26 523.27937 523.28 523.2787 523.28 523.0000 523.2790 523.27937 523.2794
27 10.00000 10.01 10.0000 10.00 10.0000 10.0000 10.00000 10.0000
28 10.00000 10.01 10.0000 10.00 10.0000 10.0000 10.00000 10.0000
29 10.00000 10.00 10.0000 10.00 10.0000 10.0000 10.00000 10.0000
30 87.80000 88.47 88.6376 87.80 87.7999 87.7999 87.79990 87.8000
31 190.00000 190.00 190.0000 190.00 190.0000 190.0000 190.00000 190.0000
32 190.00000 190.00 190.0000 190.00 190.0000 190.0000 190.00000 190.0000
33 190.00000 190.00 190.0000 190.00 190.0000 190.0000 190.00000 190.0000
34 164.68395 164.91 164.9795 164.80 164.8015 164.7998 164.79983 164.7998
35 194.44082 165.36 165.9970 194.40 194.3928 194.3956 194.39778 194.3976
36 200.00000 167.19 165.0464 200.00 200.0000 200.0000 200.00000 200.0000
37 110.00000 110.00 110.0000 110.00 110.0000 110.0000 110.00000 110.0000
38 110.00000 107.01 110.0000 110.00 110.0000 110.0000 110.00000 110.0000
39 110.00000 110.00 110.0000 110.00 110.0000 110.0000 110.00000 110.0000
40 511.28462 511.36 511.3005 511.28 511.2794 511.2794 511.27937 511.2794

Cost 121412.55 121448.21 121418.27 121412.54 121412.56 121412.55 121412.53 121412.54
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QPSO, PSO with local random search (PSO-LRS) [28],
new PSO with local random search (NPSO-LRS) [28], PSO
with the constriction factor and inertia weight with a real-
valued mutation (CBPSO-RVM) [43], improved GA with
multiplier updating (IGA-MU) [22], HCRO-DE, and DSD.
The simulation results and comparison are presented in
Table 3. The average computation time is 0.510 second.

From the simulation results it is clear that SSA again
outperforms all compared algorithms in solving this ELD
with VPE and MFO problem. In this comparison, the
best power schedules found by the compared algorithms
have some differences in terms of the outputs of the power
units. A preliminary guess of the reason to this condition
is that the solution space for ELD problems considering
MFO is more complex than that with only VPE. This may
potentially result in algorithms getting stuck in the local
optima.

5.3. ELD with POZ and Line Loss

For ELD with POZ and line loss characteristics, we
employ two test systems for comparison, namely, a 6-unit
system [9] and a 15-unit system [9]. Load demand for these
systems are 1263MW and 2630MW, respectively. The sys-
tem coefficients are presented in Tables 10 and 11, and line
loss coefficients are listed in [9].

The performance of SSA is compared with the state-
of-the-art algorithms in solving these two test systems,
namely, QPSO, NPSO-LRS, IPSO-TVAC, bacterial forag-
ing optimization (BFO) [44], improved PSO (IPSO) [9],
elitist GA (EGA) [9], HCRO-DE, simple PSO (SPSO)
[30], passive congregation-based PSO (PC-PSO) [30], self-
organizing hierarchical PSO (SOH-PSO) [30], firefly algo-
rithm [45], and CCPSO . The simulation results and com-
parison are presented in Tables 4 and 5. The average com-
putation times are 0.338 and 0.574 second, respectively.

From the simulation results we can see SSA generates
the best performing power schedule among all the com-
pared algorithms. Further investigation of the generated
schedules shows that although all algorithms can success-
fully locate the same best performing operating zones,
other algorithms are not able to further exploit the op-
timum sub-space.

It is worth noting that there are several published re-
sults on the 15-unit system with better fuel cost perfor-
mance, i.e., smaller than $32 662.51 obtained by SSA.
However, after a careful investigation it can be observed
that these results violate the ramp rate constraints. For
example, the power output of the second unit in the best
recorded result of [9] is 407.9727, which exceeds the max-
imum allowed power output limited by the ramp rate,
which is 380. This situation may be caused by the dif-
ferent test instance configurations, and these infeasible so-
lutions are not included in the comparison (except for [9],
in which the test case was proposed).
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Figure 1: Convergence performance of SSA with different ra values.

5.4. Parameter Selection

Parameter selection is critical to the optimization per-
formance of SSA [40]. Although there is already related
work on benchmarking the parameter sensitivity of SSA, it
is still interesting to investigate and search for the optimal
combination of parameters to solve ELD-like optimization
problems. In order to test the impact of changing param-
eters on the fuel cost performance, we employ the 13-unit
test system introduced in Section 5.1 and perform a pa-
rameter sweep test on the four parameters of SSA, namely,
population size (|pop|), ra, pc, and pm.

The simulation is conducted as follows. We first start
from the previous recommended parameter setting given
in [40], i.e., |pop|/ra/pc/pm is 30/1.0/0.7/0.1. Then one
parameter is tested against a wide range of possible values
to figure out which one performs the best. This process
is repeated until all four parameters are adjusted. Note
that although this testing method neglects the correlations
among multiple parameters, it can still generate a sub-
optimal parameter combination while alleviating the effort
in the parameter-tuning process to the maximum extent.

The simulation results are presented in Table 6. The
best, the mean and the standard deviation (S.D.) of the
results are presented. The simulation results indicate that
the best parameter combination is |pop|/13/10/0.9/0.1. In
addition, it can be concluded that the correlation among
the tested parameters for solving ELD is not significant
due to the observation that the worst results for each test
is comparable.

To better illustrate the convergence performance with
respect to different parameter settings, the convergence
results of each parameter test are plotted in Figures 1, 2,
3, where the median ones among the 25 runs are presented.
The x-axis is the function evaluation counts, and the y-
axis is the best-so-far fuel cost. From the results it can be
observed that the best performing parameters generally
also have the fastest convergence speed.
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Table 3: Simulation Results for 10-unit Test System with VPE and MFO

Unit SSA QPSO PSO LRS NPSO LRS CBPSO-RVM IGA MU HCRO-DE DSD
1 219.16264 224.7063 219.0155 223.3352 219.2073 219.1261 213.4589 218.59400
2 211.65928 212.3882 213.8901 212.1957 210.2203 211.1645 209.7300 211.71174
3 280.68427 283.4405 283.7616 276.2167 278.5456 280.6572 332.0143 280.65706
4 239.95493 239.9530 237.2687 239.4187 239.3704 238.4770 237.7581 239.63943
5 276.38750 283.8190 286.0163 274.6470 276.4120 276.4179 269.1476 279.93452
6 239.79532 241.0024 239.3987 239.7974 240.5797 240.4672 238.9677 239.63943
7 290.07417 287.8671 291.1767 285.5388 292.3267 287.7399 280.6141 287.72749
8 239.82117 240.6245 241.4398 240.6323 237.7557 240.7614 238.9677 239.63943
9 426.37501 407.9870 416.9721 429.2637 429.4008 429.3370 413.6294 426.58829
10 276.08571 278.2120 271.0623 278.9541 276.1815 275.8518 266.3841 275.86861

Cost 623.6433 624.1505 624.0297 623.9258 624.3911 623.6526 628.9605 623.8265

Table 4: Simulation Results for 6-unit Test System with POZ and Line Loss

Unit SSA QPSO NPSO LRS IPSO-TVAC BFO IPSO EGA HCRO-DE
1 448.39165 447.5823 446.9600 447.5840 449.4600 447.4970 474.8066 447.4021
2 169.30115 172.8387 173.3944 173.2010 172.8800 173.3221 178.6363 173.2407
3 256.19797 261.3300 262.3436 263.3310 263.4100 263.4745 262.2089 263.3812
4 139.74938 138.6812 139.5120 138.8520 143.4900 139.0594 134.2826 138.9774
5 170.27317 169.6781 164.7089 165.3280 164.9100 165.4761 151.9039 165.3897
6 89.72839 74.8963 89.0162 87.1500 81.2520 87.1280 74.1812 87.0538

Loss 10.6421 13.0066 12.9351 12.4460 12.4020 12.9584 13.0217 12.4449
Cost 15419.803 15450.140 15450.000 15443.063 15443.8497 15449.882 15459.239 15443.075

Table 5: Simulation Results for 15-unit Test System with POZ and Line Loss

Unit SSA IPSO EGA SPSO PC-PSO SOH-PSO FA CCPSO
1 455.0000 439.1162 415.3108 455.00 455.00 455.00 455.0000 455.0000
2 380.0000 407.9727 359.7206 380.00 380.00 380.00 380.0000 380.0000
3 130.0000 119.6324 104.4250 130.00 130.00 130.00 130.0000 130.0000
4 130.0000 129.9925 74.9853 129.28 127.15 130.00 130.0000 130.0000
5 169.9721 151.0681 380.2844 164.77 169.91 170.00 170.0000 170.0000
6 460.0000 459.9978 426.7902 460.00 460.00 459.96 460.0000 460.0000
7 430.0000 425.5601 341.3164 424.52 430.00 430.00 430.0000 430.0000
8 125.6909 98.5699 124.7867 60.00 108.38 117.53 71.7450 71.7526
9 32.5629 113.4936 133.1445 25.00 77.41 77.90 58.9164 58.9090
10 128.1047 101.1142 89.2567 160.00 97.76 119.54 160.0000 160.0000
11 80.0000 33.9116 60.0572 80.00 67.61 54.50 80.0000 80.0000
12 80.0000 79.9583 49.9998 72.62 73.26 80.00 80.0000 80.0000
13 25.0000 25.0042 38.7713 25.00 25.57 25.00 25.0000 25.0000
14 15.0000 41.4140 41.9425 44.38 19.57 17.86 15.0000 15.0000
15 15.0000 35.6140 22.6445 49.42 38.93 15.00 15.0000 15.0000

Loss 26.3306 32.4196 33.4359 29.9930 30.5500 32.2900 30.6614 30.6616
Cost 32662.51 32857.54 33063.54 32798.69 32775.36 32751.39 32704.45 32704.45

Table 6: Parameter Analysis Simulation Results

ra Best Mean S.D. pc Best Mean S.D. pm Best Mean S.D.
0.1 17964.267 17964.669 0.3258 0.01 17964.136 17964.359 0.1312 0.01 17963.886 17963.946 0.0254
0.2 17964.187 17964.374 0.1059 0.1 17964.168 17964.388 0.1530 0.1 17963.864 17963.893 0.0142
0.5 17964.077 17964.229 0.1026 0.2 17964.119 17964.209 0.0580 0.2 17963.944 17964.030 0.0341
1.0 17964.063 17964.137 0.0433 0.3 17964.097 17964.166 0.0460 0.3 17964.047 17964.168 0.0646
2.0 17964.055 17964.136 0.0431 0.4 17964.110 17964.183 0.0453 0.4 17964.077 17964.288 0.1102
3.0 17964.056 17964.109 0.0421 0.5 17964.030 17964.127 0.0525 0.5 17964.233 17964.434 0.1376
5.0 17963.950 17964.050 0.0534 0.6 17964.074 17964.133 0.0338 0.6 17964.459 17964.694 0.1577
7.0 17963.999 17964.055 0.0308 0.7 17963.952 17964.049 0.0351 0.7 17964.349 17964.738 0.3273
10 17963.854 17963.895 0.0172 0.8 17963.946 17964.011 0.0347 0.8 17964.344 17964.811 0.2679
15 17964.041 17964.113 0.0515 0.9 17963.804 17963.880 0.0185 0.9 17964.901 17965.647 0.6320
20 17964.030 17964.329 0.0875 0.99 17963.869 17963.907 0.0227 0.99 17964.928 17965.826 0.5852

Params 13/ra/0.7/0.1 Params 13/10/pc/0.1 Params 13/10/0.9/pm
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Figure 2: Convergence performance of SSA with different pc values.
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Figure 3: Convergence performance of SSA with different pm values.

6. Conclusion

In this paper we propose a new approach based on
the social spider algorithm to solve the economic dispatch
problem in power grid operation and control. Although
the conventional ELD problem is convex and can be eas-
ily solved by mathematical programming methods, the
power unit model it employs is not as precise as those
considering more practical constraints, e.g., VPE, MFO,
and POZ. These characteristics of power units make the
optimization problem non-convex, non-differentiable, and
non-continuous.

In order to efficiently solve the modern ELD problem,
we propose a variant of SSA with new controlling schemes.
A chaotic sequence based memory factor is introduced to
control the searching pattern, where the previous move-
ment of a spider in SSA is assigned with different degrees
of importance with the process of optimization. In addi-
tion, we introduce a problem-specific power schedule re-
pairing scheme to fix the infeasible solution generated in
the random walk step. This repair scheme takes the power
supper/demand and POZ constraints into account, while
all other boundary constraints are handled by a boundary
absorbing technique.

To evaluate the performance of our proposed SSA-based
ELD solver, the approach is applied to solve five different
test power systems with various numbers of power units
and constraint configurations. The simulation results are
compared with a wide range of the state-of-the-art algo-
rithms in solving ELD within the employed test systems.
SSA is able to find new best fuel cost solution in four out of
the five systems, and can achieve the same solution quality
in the remaining one. This result indicates the superiority
of SSA in solving ELD with different configurations. In
addition, we performed a parameter sensitivity test to de-
velop a best performing combination of SSA parameters.
The convergence performance of different parameter val-
ues are also presented for comparison. From all simulation
results it can be concluded that our proposed SSA-based
approach outperforms the existing state-of-the-art algo-
rithms in solving non-convex ELD problems.

Appendix

The system coefficients and configurations are presented
in Tables 7, 8, 9, 10, and 11.
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Table 8: System Coefficients for 40-unit Test System with VPE

Unit(i) Pmin
i Pmax

i ai bi ci ei fi Unit(i) Pmin
i Pmax

i ai bi ci ei fi
1 36 114 94.705 6.73 0.0069 100 0.084 21 254 550 785.96 6.63 0.00298 300 0.035
2 36 114 94.705 6.73 0.0069 100 0.084 22 254 550 785.96 6.63 0.00298 300 0.035
3 60 120 309.54 7.07 0.02028 100 0.084 23 254 550 794.53 6.66 0.00284 300 0.035
4 80 190 369.03 8.18 0.00942 150 0.063 24 254 550 794.53 6.66 0.00284 300 0.035
5 47 97 148.89 5.35 0.01140 120 0.077 25 254 550 801.32 7.10 0.00277 300 0.035
6 68 140 222.33 8.05 0.01142 100 0.084 26 254 550 801.32 7.10 0.00277 300 0.035
7 110 300 287.71 8.03 0.00357 200 0.042 27 10 150 1055.1 3.33 0.52124 120 0.077
8 135 300 391.98 6.99 0.00492 200 0.042 28 10 150 1055.1 3.33 0.52124 120 0.077
9 135 300 455.76 6.6 0.00573 200 0.042 29 10 150 1055.1 3.33 0.52124 120 0.077
10 130 300 722.82 12.9 0.00605 200 0.042 30 47 94 148.89 5.35 0.01140 120 0.077
11 94 375 635.20 12.9 0.00515 200 0.042 31 60 190 222.92 6.43 0.00160 150 0.063
12 94 375 654.69 12.8 0.00569 200 0.042 32 60 190 222.92 6.43 0.00160 150 0.063
13 125 500 913.40 12.5 0.00421 300 0.035 33 60 190 222.92 6.43 0.00160 150 0.063
14 125 500 1760.4 8.84 0.00752 300 0.035 34 90 200 107.87 8.95 0.00010 200 0.042
15 125 500 1728.3 9.15 0.00708 300 0.035 35 90 200 116.58 8.62 0.00010 200 0.042
16 125 500 1728.3 9.15 0.00708 300 0.035 36 90 200 116.58 8.62 0.00010 200 0.042
17 220 500 647.85 7.97 0.00313 300 0.035 37 25 110 307.45 5.88 0.01610 80 0.098
18 220 500 649.69 7.95 0.00313 300 0.035 38 25 110 307.45 5.88 0.01610 80 0.098
19 242 550 647.83 7.97 0.00313 300 0.035 39 25 110 307.45 5.88 0.01610 80 0.098
20 242 550 647.81 7.97 0.00313 300 0.035 40 242 550 647.83 7.97 0.00313 300 0.035

Table 9: System Coefficients for 10-unit Test System with VPE and MFO

Unit(i) Fuel(g) Pmin
i Pmax

i ai bi ci ei fi
1 1 100 250 26.97 -0.3975 0.002176 0.02697 -3.9750
1 2 100 250 21.13 -0.3059 0.001861 0.02113 -3.0590
2 1 50 230 118.4 -1.2690 0.004194 0.11840 -12.690
2 2 50 230 1.865 -0.0399 0.001138 0.00187 -0.3988
2 3 50 230 13.65 -0.1980 0.001620 0.01365 -1.9800
3 1 200 500 39.79 -0.3116 0.001457 0.03979 -3.1160
3 2 200 500 -59.14 0.4864 0.00001176 -0.05914 4.8640
3 3 200 500 -2.876 0.0339 0.0008035 -0.00288 0.3389
4 1 99 265 1.983 -0.0311 0.001049 0.00198 -0.3114
4 2 99 265 52.85 -0.6348 0.002758 0.05285 -6.3480
4 3 99 265 266.8 -2.3380 0.005935 0.26680 -23.380
5 1 190 490 13.92 -0.0873 0.001066 0.01392 -0.8733
5 2 190 490 99.76 -0.5206 0.001597 0.09976 -5.2060
5 3 190 490 -53.99 0.4462 0.0001498 -0.05399 4.4620
6 1 85 265 52.15 -0.6348 0.002758 0.05285 -6.3480
6 2 85 265 1.983 -0.0311 0.001049 0.00198 -0.3114
6 3 85 265 266.6 -2.3380 0.005935 0.26680 -23.380
7 1 200 500 18.93 -0.1325 0.001107 0.01893 -1.3250
7 2 200 500 43.77 -0.2267 0.001165 0.04377 -2.2670
7 3 200 500 43.35 0.3559 0.0002454 -0.04335 3.5590
8 1 99 265 1.983 -0.0311 0.001049 0.00198 -0.3114
8 2 99 265 52.85 -0.6348 0.002758 0.05285 -6.3480
8 3 99 265 266.8 -2.3380 0.005935 0.26680 -23.380
9 1 130 440 88.53 -0.5675 0.001554 0.08853 -5.6750
9 2 130 440 15.32 -0.0451 0.007033 0.01423 -0.1817
9 3 130 440 14.23 -0.0182 0.0006121 0.01423 -0.1817
10 1 200 490 13.97 -0.0994 0.001102 0.01397 -0.9938
10 2 200 490 -61.13 0.5084 0.00004164 -0.06113 5.0840
10 3 200 490 46.71 -0.2024 0.001137 0.04671 -2.0240

Table 10: System Coefficients for 6-unit Test System with POZ and Line Loss

Unit(i) Pmin
i Pmax

i ai bi ci PUR PDR P prev
i POZs

1 100 500 240 7.0 0.0070 80 120 440 [210, 240], [350, 380]
2 50 200 200 10.0 0.0095 50 90 170 [90, 110], [140, 160]
3 80 300 220 8.5 0.0090 65 100 200 [150, 170], [210, 240]
4 50 150 200 11.0 0.0090 50 90 150 [80, 90], [110, 120]
5 50 200 220 10.5 0.0080 50 90 190 [90, 110], [140, 150]
6 50 120 190 12.0 0.0075 50 90 110 [75, 85], [100, 105]
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Table 11: System Coefficients for 15-unit Test System with POZ and Line Loss

Unit(i) Pmin
i Pmax

i ai bi ci PUR PDR P prev
i POZs

1 150 455 671 10.1 0.000299 80 120 400
2 150 455 574 10.2 0.000183 80 120 300 [185, 225], [305, 335], [420, 450]
3 20 130 374 8.80 0.001126 130 130 105
4 20 130 374 8.80 0.001126 130 130 100
5 150 470 461 10.4 0.000205 80 120 90 [180, 200], [305, 335], [390, 420]
6 135 460 630 10.1 0.000301 80 120 400 [230, 255], [365, 395], [430, 455]
7 135 465 548 9.80 0.000364 80 120 350
8 60 300 227 11.2 0.000338 65 100 95
9 25 162 173 11.2 0.000807 60 100 105
10 25 160 175 10.7 0.001203 60 100 110
11 20 80 186 10.2 0.003586 80 80 60
12 20 80 230 9.90 0.005513 80 80 40 [30, 40], [55, 65]
13 25 85 225 13.1 0.000371 80 80 30
14 15 55 309 12.1 0.001929 55 55 20
15 15 55 323 12.4 0.004447 55 55 20

Table 7: System Coefficients for 13-unit Test System with VPE

Unit(i) Pmin
i Pmax

i ai bi ci ei fi
1 0 680 550 8.1 0.00028 300 0.035
2 0 360 309 8.1 0.00056 200 0.042
3 0 360 307 8.1 0.00056 200 0.042
4 60 180 240 7.74 0.00324 150 0.063
5 60 180 240 7.74 0.00324 150 0.063
6 60 180 240 7.74 0.00324 150 0.063
7 60 180 240 7.74 0.00324 150 0.063
8 60 180 240 7.74 0.00324 150 0.063
9 60 180 240 7.74 0.00324 150 0.063
10 40 120 126 8.6 0.00284 100 0.084
11 40 120 126 8.6 0.00284 100 0.084
12 55 120 126 8.6 0.00284 100 0.084
13 55 120 126 8.6 0.00284 100 0.084
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