
IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 1

Textually Relevant Spatial Skylines
Jieming Shi Dingming Wu Nikos Mamoulis

Abstract—We study the modeling and evaluation of a spatio-textual skyline (STS) query, in which the skyline points are selected not
only based on their distances to a set of query locations, but also based on their relevance to a set of query keywords. STS is
especially relevant to modern applications, where points of interest are typically augmented with textual descriptions. We investigate
three models for integrating textual relevance into the spatial skyline. Among them, model STD, which combines spatial distance with
textual relevance in a derived dimensional space, is found to be the most effective one. STD computes a skyline which not only
satisfies the intent of STS, but also has a small and easy-to-interpret size. We propose an efficient algorithm for computing STD-based
skylines, which operates on an IR-tree that indexes the data. The effectiveness of our STD model and the efficiency of the proposed
algorithm are evaluated on real data sets.

Index Terms—TOBEADDED

F

1 INTRODUCTION

In modern applications (e.g., Google Maps), points of inter-
est are typically augmented with textual descriptions. For
example, in TripAdvisor and Foursquare, people share tips
and add tags for the places that they have visited; on Flickr,
people share photos associated with GPS coordinates and
textual descriptions. Retrieving points of interest based on
both spatial proximity and textual relevance, i.e., searching
with local intent, is witnessed everywhere and has attracted
a lot of research interest [1], [2], [3], [4], [5]. In this paper,
we propose a new data analysis operator for such data, the
spatio-textual skyline (STS) query, which allows users to find
places that are (i) near a group Q of spatial query points and
(ii) relevant to a set of keywords. STS integrates the textual
relevance of objects into the spatial skyline, so that the result
is interesting in terms of both Euclidean distance and classic
keyword search.

1.1 Background and Motivation

The general skyline operation [6] selects a set of interesting
objects from a large set of multidimensional objects. An
object is interesting if it is not dominated by any other object,
i.e., it is not worse than any other object in all dimensions.
For example, Figure 1(a) shows a set of two dimensional
points p1, . . . , p5; each point models a hotel, such that the
x-value is its distance to the beach, while the y-value is its
price (thus, in each dimension, smaller values are better).
The skyline is {p1, p3}; for example, p2 is dominated by p3,
because the x-value of p3 is smaller and the y-value of p3 is
not larger than that of p2.

The spatial skyline query (SSQ) [7] finds the spatial
skyline of a set P of spatial locations (e.g., points of interest),

● J. Shi and N. Mamoulis are with the Department of Computer Science,
University of Hong Kong, Hong Kong.
E-mail: {jmshi, nikos}@cs.hku.hk

● D. Wu is with the College of Computer Science & Software Engineering,
Shenzhen University, China and the Department of Computer Science,
University of Hong Kong, Hong Kong.
E-mail: dmwu@cs.hku.hk

Corresponding author: D. Wu

based on a set of input query locations Q. In brief, each
object p ∈ P is associated with ∣Q∣ derived dimensions; the
i-th derived value for p is the Euclidean distance d(qi, p)
between p and query location qi in Q. Then, the spatial
skyline is the set of points that are not dominated by
any other point in the space of derived dimensions. For
example, consider the locations P = {p1, . . . , p6} of a set
of restaurants, as shown in Figure 1(b) and the positions
Q = {q1, q2} of two persons, who want to find candidate
restaurants to have dinner together. Figure 1(c) shows in
the derived 2-dimensional space (∣Q∣ = 2) the distances of
all restaurants to q1 and q2. SSQ finds the spatial skyline{p1, p2, p3}, which is the set of interesting restaurants to q1

and q2, because for the remaining ones both q1 and q2 would
have to travel more in order to meet.

SSQ computes skyline objects that are interesting with
respect to only their Euclidean distances to Q; thus, SSQ
does not allow users to specify any non-spatial preferences
expressed by textual search. Assume that the two persons
in our previous example prefer restaurants that offer “ham-
burger” and “dessert” in a “cozy” environment and have
“friendly” service, and let the textual descriptions of the six
restaurants be as shown in Figure 1(d). The SSQ result (i.e.,{p1, p2, p3}) fails to include the interesting restaurants p4

and p6 w.r.t. the textual preferences of the users.

1.2 Contributions and Outline

The STS operator that we propose in this paper aims at
addressing the aforementioned weakness of SSQ in disre-
garding textual relevance as a search criterion. STS gener-
alizes SSQ and finds application in modern retrieval tasks.
For instance, consider a group of people who visit a city
(e.g., London) and stay in different hotels. These people may
want to visit an attraction of the city, which is not far from
their locations and at the same time it is relevant to their
preferences (e.g., “museum”, “art”, “gallery”, “culture”). As
another example, consider a couple who want to visit sev-
eral attractions in London, such as London eye, Buckingham
palace, British museum and St Paul’s Cathedral. The couple
needs a list of candidate restaurants that are not far from the

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 2

0 2 4 6 8 10
0

2

4

6

8

10

p1 p2

p3

p4

p5

(a) General Skyline

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

q1

q2

p1

p2
p3

p4

p5

p6

(b) Locations

0.0 0.2 0.4 0.6 0.8 1.0
d(q1 ,pi)

0.0

0.2

0.4

0.6

0.8

1.0

d
(q

2
,p
i)

p1

p2

p3

p4p5

p6

(c) Derived Space (SSQ)

p1: {bar, noisy}
p2: {coffee}
p3: {buffet}
p4: {cozy, dessert, friendly, hamburger}
p5: {bread, cheesecake, coffee, cream, dessert}
p6: {cozy, delicious, dessert, friendly, hamburger}

(d) Restaurant Descriptions

Fig. 1. Skyline Examples

attractions and satisfy their preferences (e.g., “vegetarian”,
“healthy”, “dining on a budget”), in order for them to enjoy
meals during the trip.

In Section 2, we propose three models for integrating
textual relevance into spatial skylines. Model DDA (Derived
Dimension Augmentation) simply adds textual relevance
to the set of derived dimensions. Model KBFF (Keyword
Boolean Filtering First) applies a two-step process that first
selects candidate objects whose descriptions contain at least
one of the query keywords and then computes the spatial
skyline of the candidates. Model STD (Spatio-Textual Dom-
inance) replaces the spatial distance measure of the derived
dimensions by a combined spatio-textual distance; thus, the
skyline computed by STD is both spatially and textually
relevant to the query set Q.

We evaluate the three models and compare them with
SSQ visually and quantitatively in Section 3, using real
data sets. The results clearly show that STD is the most
appropriate model for STS. An additional advantage of STD
is that it computes a skyline orders of magnitude smaller
than that of SSQ, DDA, and KBFF on the same data, that
makes it easier to manage and analyze.

Besides studying the effectiveness of STD, we propose
efficient algorithms for computing spatio-textual skylines
based on STD in Section 4. Given a large volume of objects,
the challenge is that the skyline should be computed in a
derived (i.e., dynamic) spatio-textual distance space, which
cannot be pre-indexed. We present a basic algorithm BSTD
which operates on an IR-tree [3] that indexes the objects.
BSTD employs pruning rules to discover skyline objects
efficiently. In order to further improve the performance
of BSTD, we propose an advanced algorithm ASTD that
uses a memory-based R-tree to index the skyline objects
found so far and reduce the dominance tests and I/O cost
significantly. The performance of the proposed algorithms is
evaluated on real data under various parameter settings, in
Section 5. Section 6 reviews work related to the STS operator.
Finally, we conclude the paper in Section 7.

2 MODELS

In this section, we first provide some basic definitions and
then describe in detail three spatio-textual skyline (STS)
models. Let P be the set of objects for which we want to
compute the STS. Each object p ∈ P is a point location
p = ⟨x, y⟩ associated with a textual description that is
represented as a term vector [8] p.ψ. Each dimension of
the vector corresponds to a term and its value (weight)
is calculated using the tf-idf weighing scheme [9]. The
STS operator takes in a query which comprises a set of

query point locations Q = {q1, q2, . . .} and a set of query
keywords Q.ψ = {t1, t2, . . .}. As an example, consider the
textual descriptions of the six objects in Figure 1(d); their
term vectors are shown as columns in Table 1. Given a
set of query keywords Q.ψ, the textual relevance of each
object p can be modeled as a ranking function w(Q.ψ, p.ψ)
(e.g., language models [10]). Typically, larger values of the
ranking function model higher textual relevance.

TABLE 1
Term Vectors

p1 p2 p3 p4 p5 p6
bar 0.389 0 0 0 0 0
bread 0 0 0 0 0.156 0
buffet 0 0 0.778 0 0 0
cheesecake 0 0 0 0 0.156 0
coffee 0 0.477 0 0 0.0954 0
cozy 0 0 0 0.119 0 0.0954
cream 0 0 0 0 0.156 0
delicious 0 0 0 0 0 0.156
dessert 0 0 0 0.0753 0.0602 0.0602
friendly 0 0 0 0.119 0 0.0954
hamburger 0 0 0 0.119 0 0.0954
noisy 0.389 0 0 0 0 0

2.1 Derived Dimension Augmentation (DDA)
In SSQ, each object p has ∣Q∣ derived spatial dimensions. The
value of each dimension is the Euclidean distance d(qi, p)
between p and a query location qi ∈ Q. Model DDA adds
one more derived dimension w(Q.ψ, p.ψ) to each object p,
modeling the textual relevance of p to the query keywords
Q.ψ. STS is then computed as the skyline in the derived(∣Q∣ + 1)-dimensional space. This model is similar to SSQ
with static non-spatial attributes, proposed in [7]; the differ-
ence is that the textual relevance is dynamically calculated
and depends on the query keywords.

Example 1 Consider the six objects p1, . . . , p6 and
query Q = {q1, q2} with query keywords Q.ψ ={cozy, deli-
cious, dessert, friendly, hamburger} in Figure 1(b). Based on
DDA, the STS result includes all the six objects, as shown
in Figures 2(a) and 2(b) (the numbers in bold indicate
that an object is not dominated, due to the combination
of these values). In this example, the textual relevance
w(Q.ψ, p.ψ) is computed using language models [10]: if
p.ψ contains no term in Q.ψ, then w(Q.ψ, p.ψ) = 0; oth-
erwise, w(Q.ψ, p.ψ) = ∏ti∈Q.ψ ŵ(ti, p.ψ), where ŵ(ti, p.ψ)
is defined as follows. If term ti appears in p.ψ, ŵ(ti, p.ψ) is
the weight of ti in p.ψ; otherwise, ŵ(ti, p.ψ) is a smoothing
factor (e.g., 0.02). Finally, we scale the textual relevance by
raising w(Q.ψ, p.ψ) to the power of 1/∣Q.ψ∣, in order to not

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 3

w(Q.ψ,p
i .ψ)

0.000.02 0.04 0.06 0.08 0.10 d(
q 2
,p i

)

0.0
0.2

0.4
0.6

0.8
1.0

d
(q

1
,p
i
)

0.0

0.2

0.4

0.6

0.8

1.0

p1
p2
p3 p4p5

p6

(a) Derived Space (DDA)

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

102

103

104

105

R
un

tim
e

(m
s)

IRbasic
RIbasic
RIskyRtree

(a) Runtime

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

102

103

104

105

I/O

IRbasic
RIbasic
RIskyRtree

(b) I/O

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

105

106

107

do
m

in
an

ce
 te

st
s

IRbasic
RIbasic
RIskyRtree

(c) Dominance tests

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

102

103

104

I/O
 o

f R
-tr

ee

IRbasic
RIbasic
RIskyRtree

(d) I/O of R-tree

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

101

102

103

104

105

I/O
 o

f B
-tr

ee

IRbasic
RIbasic
RIskyRtree

(e) I/O of B-tree

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

102

103

104

I/O
 o

f I
nv

er
te

d
in

de
x

IRbasic
RIbasic
RIskyRtree

(f) I/O of Inverted index

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Query area coverage %

102

103

104

105

I/O
 o

f B
-tr

ee
 a

nd
 In

ve
rte

d
in

de
x

IRbasic
RIbasic
RIskyRtree

(g) I/O of B-tree and Inverted Index

Figure 11: Vary area coverage of query points

[23] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K. Nørvåg.
Efficient processing of top-k spatial keyword queries. In Advances in
Spatial and Temporal Databases - 12th International Symposium,
SSTD 2011, Minneapolis, MN, USA, August 24-26, 2011,
Proceedings, pages 205–222, 2011.

[24] G. Salton, A. Wong, and C. S. Yang. A vector space model for
automatic indexing. Commun. ACM, 18(11):613–620, 1975.

[25] M. Sharifzadeh and C. Shahabi. The spatial skyline queries. In
Proceedings of the 32nd International Conference on Very Large
Data Bases, Seoul, Korea, September 12-15, 2006, pages 751–762,
2006.

[26] W. Son, S. Hwang, and H. Ahn. MSSQ: manhattan spatial skyline
queries. Inf. Syst., 40:67–83, 2014.

[27] W. Son, M. Lee, H. Ahn, and S. Hwang. Spatial skyline queries: An
efficient geometric algorithm. In Advances in Spatial and Temporal
Databases, 11th International Symposium, SSTD 2009, Aalborg,
Denmark, July 8-10, 2009, Proceedings, pages 247–264, 2009.

[28] K. Tan, P. Eng, and B. C. Ooi. Efficient progressive skyline
computation. In VLDB 2001, Proceedings of 27th International
Conference on Very Large Data Bases, September 11-14, 2001,
Roma, Italy, pages 301–310, 2001.

[29] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual
indexing for geographical search on the web. In Advances in Spatial
and Temporal Databases, 9th International Symposium, SSTD 2005,
Angra dos Reis, Brazil, August 22-24, 2005, Proceedings, pages
218–235, 2005.

[30] W. Wang, E. T. Wang, and A. L. P. Chen. Dynamic skylines
considering range queries. In Database Systems for Advanced
Applications - 16th International Conference, DASFAA 2011, Hong
Kong, China, April 22-25, 2011, Proceedings, Part II, pages
235–250, 2011.

[31] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen. Joint top-k spatial
keyword query processing. IEEE Trans. Knowl. Data Eng.,
24(10):1889–1903, 2012.

[32] S. Zhang, N. Mamoulis, and D. W. Cheung. Scalable skyline
computation using object-based space partitioning. In Proceedings of
the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2009, Providence, Rhode Island, USA, June 29 - July
2, 2009, pages 483–494, 2009.

[33] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid index
structures for location-based web search. In Proceedings of the 2005
ACM CIKM International Conference on Information and
Knowledge Management, Bremen, Germany, October 31 - November
5, 2005, pages 155–162, 2005.

[34] L. Zou, L. Chen, M. T. Özsu, and D. Zhao. Dynamic skyline queries
in large graphs. In Database Systems for Advanced Applications,
15th International Conference, DASFAA 2010, Tsukuba, Japan, April
1-4, 2010, Proceedings, Part II, pages 62–78, 2010.

8. TO BE ADDED

d(q1, pi) d(q2, pi) w(Q.ψ, pi.ψ)
p1 0.1 0.5 0
p2 0.5 0.1 0
p3 0.2 0.2 0
p4 0.28 0.28 0.076
p5 0.26 0.26 0.0249
p6 0.8 0.9 0.096

(b) Derived Values (DDA)

0.0 0.2 0.4 0.6 0.8 1.0
d(q1 ,pi)

0.0

0.2

0.4

0.6

0.8

1.0

d
(q

2
,p
i)

p4

p5

p6

(c) KBFF Example

0 2 4 6 8 10 12
st(q1 ,pi)

0

2

4

6

8

10

12

st
(q

2
,p
i)

p4

p5

p6

(d) STD Example

Fig. 2. Models

get extremely small values. For instance, w(Q.ψ, p4.ψ) =(0.119 × 0.02 × 0.0753 × 0.119 × 0.119)1/5 = 0.076.

2.2 Keyword Boolean Filtering First (KBFF)
Model KBFF adapts SSQ to consider textual relevance, fol-
lowing two steps. It first selects from P only the candidate
objects whose textual descriptions p.ψ contain at least one
term from the query keywords Q.ψ (partial matches). Then,
SSQ is applied on the candidates set C ⊆ P selected in
the first step. We can also have a tighter variant of KBFF
that selects, as candidates, objects for which Q.ψ ⊆ p.ψ
(full matches). This version of KBFF is similar to the query
studied in [11], which applies boolean keyword filtering first
and then computes a general skyline.

Example 2 When applied on the data of Example 1,
KBFF first obtains the candidate objects C = {p4, p5, p6},
because their textual descriptions overlap with Q.ψ. Then,
by applying SSQ on C only, the resulting STS is {p5}, as
shown in Figure 2(c).

2.3 Spatio-Textual Dominance (STD)
Model STD is based on integrating, for each query location
qi ∈ Q, Euclidean distance with textual relevance to the
candidate STS objects pj ∈ P , defining a unified spatio-
textual distance function st(qi, pj). In this paper, we adopt
the weighted distance [4] st(qi, pj) = d(qi, pj)/w(Q.ψ, pj .ψ).
Compared to other possible aggregate functions, e.g., the
weighted sum α ⋅ d(qi, pj) + (1 − α)(1 − w(Q.ψ, pj .ψ)) [5],
the weighted distance is parameter-free and has no normal-
ization problems. Note that w(Q.ψ, pj .ψ) ∈ [0,1], therefore
st(qi, pj) ≥ d(qi, pj).

Using function st(), for a given query Q, we can map
each object pi ∈ P to a space of ∣Q∣ derived spatio-textual
dimensions. Object pj is spatio-textually dominated (Definition
1) by pi if and only if pj is not better than pi in all
derived dimensions and pj is worse than pi in at least one
derived dimension. Based on spatio-textual dominance, we
can directly define the spatio-textual skyline (STS) (Defini-
tion 2). Spatio-textual dominance and spatio-textual skyline are
abbreviated to dominance and skyline or STS, respectively,
when the context is clear. Note that any object pi ∈ P for
which w(Q.ψ, pi.ψ) = 0 has infinite st(qj , pi) to any qj ∈ Q;
these objects can be immediately pruned from the skyline,
since they are dominated by any object in P with non-zero
textual relevance.
Definition 1. (Spatio-Textual Dominance) pi domQ pj ⇐⇒∀qk ∈ Q ∶ st(qk, pi) ≤ st(qk, pj) and ∃qk ∈ Q ∶ st(qk, pi) <

st(qk, pj).

Definition 2. (Spatio-Textual Skyline) Given query Q, the
spatio-textual skyline (STS) of P includes the objects inP that are not spatio-textually dominated by any other
object in P .

Example 3 Using the data of our running example,
similar to model KBFF, STD discards the textually irrelevant
objects w.r.t. Q.ψ, as these objects have infinite derived
spatio-textual distances to every qi ∈ Q. Figure 2(d) shows
the derived spatio-textual distances of the remaining objects.
The STS is {p4}.

2.4 Discussion
In general, a good STS operator should compute a skyline
that is interesting in terms of both the Euclidean distance
and the textual relevance. The objects with large Euclidean
distance and low textual relevance (or even irrelevant)
should be penalized. Model DDA considers the spatial
dimensions and the textual dimension separately, so it may
include in the skyline objects far from the query locations
(e.g., p6) or with low textual relevance (e.g., p5). It may
even include irrelevant objects w.r.t. the query keywords
(e.g., p1, p2, and p3). In general, the skyline computed by
DDA is expected to be large. Model KBFF is better than
DDA, since it immediately prunes textually irrelevant ob-
jects. However, the remaining objects are only evaluated
based on their spatial dimensions, even when they differ
significantly w.r.t. their textual relevance. Hence, the result
of KBFF may include spatially close objects of low textual
relevance (e.g., p5). Model STD is expected to be better than
DDA and KBFF, since STD discards irrelevant objects and
penalizes objects with large Euclidean distance and low
textual relevance. We note that DDA can be seen as an
instance of a class of models that augment to SSQ additional
non-spatial derived dimensions, whereas KBFF and STD
belong to a class of models, which embed textual relevance
in the derived spatial dimensions (in the case of KBFF, this
is done with a step function).

3 MODEL EVALUATION

In this section, we evaluate the three models DDA, KBFF,
and STD and compare them with SSQ based on a case
study and quantitative measurements. We use two datasets
for the evaluation. TripAdvisor-LDN (used in Section 3.1)
contains 9,346 restaurants with a dictionary of 169 terms
from London and its neighboring area. Each restaurant has a
textual description extracted from its tags, title, and reviews.
The average length of the textual description per restaurant
is 2.56. Flickr-LDN (used in Section 3.2) contains 406,151

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 4

(a) SSQ (b) DDA (c) KBFF (d) STD

Fig. 3. London Tour Case Study

pictures in London crawled from Flickr with a dictionary
of 222,613 terms. Each picture is associated with a GPS
coordinate and a set of terms extracted from its tags and
title. The average number of terms per picture is 9.56.

3.1 Case-based Analysis

Consider one of the application scenarios discussed in the
introduction. A tourist is planning to have a family trip to
London. He plans to visit London eye, Buckingham palace,
British museum, and St Paul’s Cathedral (query locations)
and wants to find a list of restaurants (skyline objects) that
are not far from the venues to be visited and provide ser-
vices that meet his textual preferences chicken wings, dessert,
healthy, and dining on a budget.

3.1.1 Visualization-based Analysis
Figure 3 shows the skyline results of the four methods SSQ,
DDA, KBFF, and STD, using the set of landmarks {London
eye, Buckingham palace, British museum, and St Paul’s
Cathedral} as Q and the textual preferences of the tourist
as Q.ψ. The red squares on the maps are the landmarks; the
black triangles are the skyline objects found by each model.
We now analyze the result and discuss the differences of the
four methods.
SSQ vs. STD. Recall that SSQ disregards Q.ψ and only
computes the spatial skyline. This results in the pruning
of some spatially and textually interesting objects by SSQ.
For instance, object “Tibits” in Figure 3(d) with textual de-
scription vegan, international, healthy, dining on a budget, fam-
ilies with children, sandwiches, breakfast/brunch, lunch, dinner,
reservations, late night, dessert, takeout, fusion, vegetarian, large
groups, buffet, organic is a skyline object in STD because it is
spatially and textually relevant to the query. On the other
hand, SSQ prunes this object as it is spatially dominated by
other 14 objects on its east. For instance, object “The Pigalle
Club” in Figure 3(a) with textual description british spatially
dominates “Tibits” since it is just a little bit closer to all
the query locations compared to “Tibits”. However, “The
Pigalle Club” has low textual relevance to Q.ψ and it is not
interesting. In general, SSQ returns numerous objects that
have low or zero relevance to the query keywords.
DDA and KBFF vs. STD. Unlike SSQ, models DDA and
KBFF take textual relevance into account; however, they
may include in the skyline numerous objects that are not

interesting. DDA reports some distant skyline objects with
high textual relevance. For instance, object “Pizza Hut Is-
lington” with textual description large groups, families with
children, dining on a budget, lunch, pizza & pasta, buffet, dinner,
dessert, takeout, close to the right-upper corner of Figure 3(b),
is regarded as a skyline object due to its high textual rele-
vance. However, it is not included in the skylines of other
models because of its large Euclidean distance to the query
locations. Same as SSQ, DDA retrieves some spatially close
but textually irrelevant objects, e.g., “Cafe Rouge St Pauls”
in Figure 3(b). In fact, the result of DDA is a superset of the
result of SSQ if each object has distinct coordinate, since the
derived space of SSQ is a subspace of the derived space of
DDA and each place has a distinct location.1 KBFF includes
many objects with low textual relevance. For instance, object
“Ciao Bella” with textual description dinner, reservations, late
night, dessert, italian, breakfast/brunch, delivery, lunch in Figure
3(c) is reported as a skyline object because of its small
Euclidean distance to one of the query locations, although it
has low textual relevance (it contains only keyword dessert).
By visually comparing the four models in Figure 3, we
can conclude that STD is the most effective model, as it
computes a small skyline with spatially close and textually
interesting objects w.r.t. the query.

3.1.2 Statistics-based Analysis

Table 2 reports some statistics about the results of the four
methods. In terms of computational cost, DDA is the most
expensive model (as it operates in a space of higher dimen-
sionality), while the costs of the other model are similar.
We will explain the reasons behind the efficiency of STD in
Section 5. We proceed to analyze the statistics of the skylines
computed by the four methods.

TABLE 2
Statistics of the Skylines by Different Models

Time (ms) Result Size Spatial Coverage (%)
SSQ 225 1158 0.0118
DDA 322 1195 0.0497
KBFF 210 111 0.0147
STD 188 21 0.0131

1. For two SSQ skyline objects with identical locations, one of them
can dominate the other in DDA. However, such cases are very rare.

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 5

Result Size Analysis. According to Table 2 and Figure 3, the
skyline computed by STD is significantly smaller compared
to the skylines found by SSQ and DDA and also much
smaller compared to the skyline by KBFF. Smaller skylines
are better, in general, as in practice the user can spend
more time in analyzing the objects in them. In our example,
the tourist would be overwhelmed by the results of SSQ,
DDA, and KBFF, while we expect her to have no problem
to interpret and use the result of STD. The result of SSQ
is large because (i) all the objects inside the convex hull
of the query locations are skyline objects [7] (no matter
how textually relevant they are) and (ii) the objects outside
the convex hull but near it also have high probability to
be included in the spatial skyline. The result of DDA is
even larger, as it is a superset of the spatial skyline by SSQ
if all objects have distinct locations. Although KBFF has a
keyword filtering step, the number of objects containing at
least one query keyword may still be quite large; thus, the
spatial skyline over a large candidate set gives a large result.
On the other hand, STD computes a skyline of smaller size,
because it penalizes the objects far from the query locations
and the objects with low textual relevance. Hence, only a
few objects have good scores based on the ranking function
st(). In summary, compared to DDA and KBFF, STD is more
powerful in distinguishing important objects with respect
to both spatial distance and textual relevance, resulting in
a small and useful skyline which does not overwhelm the
user. At the same time, the spatial skyline alone (computed
by SSQ) is too large to be useful unless the convex hull of
the query locations is very small.
Spatial Coverage Analysis. We also compare the models in
terms of their spatial coverage, i.e., ratio of the area of their
skyline’s MBR to the area of the map that contains all places
(i.e., the area of London and its suburbs for the TripAdvisor-
LDN dataset). In Table 2, we can see that the skylines of
SSQ, STD, and KBFF all have small spatial coverages, since
the spatial proximity plays an important role in the skyline
computation. On the other hand, the spatial coverage of
the skyline produced by DDA is much larger, since sepa-
rately considering the spatial and textual dimensions may
report distant objects with high textual relevance. Since SSQ
considers only the spatial dimensions when computing the
skyline, we consider the spatial coverage of the skyline
computed by SSQ as a benchmark. Note that the spatial
coverage of the skyline of STD is only slightly larger than
that of the benchmark. Hence, we conclude that the skyline
result of STD is very good in terms of spatial proximity to
the set of query objects Q.
Result Quality Analysis. The objective of the STS operator
is to retrieve skyline objects that are close to the query
locations and relevant to the query keywords. Hence, we
evaluate the quality of the skylines by the different models
in terms of (a) the average textual relevance of the skyline
objects, (b) the percentage of the skyline objects that are
textually relevant, (c) the average SUMD (the sum of the
Euclidean distances between a skyline object and the query
locations), (d) the average MAXD (the maximum of the
Euclidean distances between a skyline object and the query
locations), and (e) the average MIND (the minimum of the
Euclidean distances between a skyline object and the query
locations). Table 3 displays the results of the four methods

according to the above five measurements. Regarding the
average textual relevance, STD is the best model and KBFF
comes closely the second. The results of SSQ and DDA
have very low average textual relevance. The reason is that
the objects returned by STD and KBFF are all relevant to
the query keywords (having non-zero textual relevance),
while the percentage of the relevant objects (having non-
zero textual relevance) in SSQ and DDA are only 7.51% and
10.6%, respectively. Note that, when computing the average
textual relevance of the skyline objects for SSQ and DDA,
we assign a low textual relevance (e.g., 0.001) to the skyline
objects with zero textual relevance. With respect to the
spatial proximity (SUMD, MAXD, and MIND) measures,
the results of the four methods are comparable. This shows
that model STD succeeds in its goal to find spatially close
objects while taking the textual relevance into account.

TABLE 3
Result Quality Measurements

(Avg.) T. Relev. Relev. Obj. (%) SUMD MAXD MIND
SSQ 0.00254 7.51 0.0711 0.0310 0.00774
DDA 0.00331 10.6 0.0720 0.0313 0.00783
KBFF 0.0220 100 0.0728 0.0315 0.00776
STD 0.0312 100 0.0810 0.0349 0.00595

3.2 Quantitative Evaluation
In this section, we use Flickr-LDN data to evaluate the four
methods in terms of the average result size and the average
textual relevance under various parameter settings. In each
experiment, we evaluate the computed skylines by varying
one of the following query parameters: (i) the number of
query locations (default ∣Q∣=10), (ii) the number of query
keywords (default ∣Q.ψ∣=10), and (iii) the spatial coverage
of the query locations (default 0.4% of the map’s area),
while keeping the other parameters to their default values.
For each parameter setting, we run 100 STS queries and
average the statistics of the computed skylines. The queries
are generated through the following steps. (i) We randomly
select an object p from the dataset as center point. (ii) We
randomly generate the other ∣Q∣ − 1 query locations within
a square centered at p with area no larger than the query
spatial coverage constraint. (iii) The first ∣Q.ψ∣ keywords
of p serve as the query keywords; if p has less than ∣Q.ψ∣
keywords, we randomly select other objects in the square
to obtain more keywords from them until ∣Q.ψ∣ keywords
are collected. The test queries in Section 5 are also generated
using the same strategy above. We also evaluated how the
spatial coverage and other measures (such as the average
SUMD) of the skyline are affected by changing the query
parameters. The evaluation results (omitted due to space
constraints) show that the differences between the four
models with respect to these measures are insensitive to the
parameters and they are as shown in Section 3.1.2.

3.2.1 Varying the Number of Query Locations
Figure 4(a) displays the average size of the skyline produced
by the four models when varying the number of query lo-
cations. STD produces skylines orders of magnitude smaller
than those computed by the other models. As the number

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 6

1 2 5 10 15 20 25 30 35 40
Number of Query Locations

100

101

102

103

104

105

R
es

ul
t S

iz
e

STD
SSQ
KBFF
DDA

(a) Result Size

1 2 5 10 15 20 25 30 35 40
Number of Query Locations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 T
ex

tu
al

 R
el

ev
.

STD
SSQ
KBFF
DDA

(b) Average Textual Relev.

Fig. 4. Varying the Number of Query Locations

1 2 4 6 8 10 15 20
Number of Query Keywords

101

102

103

104

105

R
es

ul
t S

iz
e

STD
SSQ
KBFF
DDA

(a) Result Size

1 2 4 6 8 10 15 20
Number of Query Keywords

10-3

10-2

10-1

100

A
ve

ra
ge

 T
ex

tu
al

 R
el

ev
.

STD
SSQ
KBFF
DDA

(b) Average Textual Relev.

Fig. 5. Varying the Number of Query Keywords

of query locations increases, the skyline sizes of all models
increase. The result size of STD increases at a slower pace
compared to the other three methods. In fact, we expect that
typical STS queries will have less than 10 query locations;
for such numbers the result of STD contains less than 100
places. The result size of KBFF is very large, which indicates
that the Boolean filtering approach employed by it is not
effective. The skyline result of DDA is even larger than that
of KBFF (and always larger than that of SSQ, as discussed).
Figure 4(b) displays the average textual relevance of the
skyline objects for all methods. STD produces results of con-
sistently higher quality compared to competitor models. In
general, the textual relevance of the STD skyline decreases
with the number of query locations, since more objects with
low textual relevance may enter the skyline. The average
textual relevance of DDA is large when there is only one
query location, since DDA considers textual relevance as an
additional independent dimension and the influence of this
dimension is high when the number of query locations is
small. The average textual relevance of the results by SSQ
and DDA is low because they put none or little focus on
this aspect. KBFF produces slightly better results, because
it prunes totally irrelevant places; still, the included places
may have low textual relevance.

3.2.2 Varying the Number of Query Keywords
The next experiment assesses the effect of the number of
query keywords ∣Q.ψ∣ on the quality of the produced sky-

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Spatial Coverage of Query Locations (%)

101

102

103

104

105

106

R
es

ul
t S

iz
e

STD
SSQ
KBFF
DDA

(a) Result Size

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Spatial Coverage of Query Locations (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

A
ve

ra
ge

 T
ex

tu
al

 R
el

ev
.

STD
SSQ
KBFF
DDA

(b) Average Textual Relev.

Fig. 6. Varying the Spatial Coverage of the Query Locations

lines by all models. Figure 5(a) displays the result size of the
four methods. Again, the result size of STD is significantly
smaller than the competitors for the reasons explained be-
fore. As Figure 5(b) shows, STD has significantly higher
textual relevance compared to its competitors. The gap de-
creases as the number of query keywords increases, because
it becomes more difficult to find results of high relevance
to all the keywords. Still, we expect that the number of
keywords in a typical STS query is less than 10, where STD
is notably more superior than competitor models.

3.2.3 Varying the Spatial Coverage of Q

In the next experiment, we generated query workloads of
various spatial coverages of the query locations Q, ranging
from 0.05% to 12.8%, while keeping ∣Q∣ = 10 and ∣Q.ψ∣ = 10.
The London area is 1572km2. Spatial coverage varying from
0.05% to 12.8% equals to varying from 0.786km2 (e.g.,
a square with edge length 887m) to 201.216km2 (e.g., a
square with edge length 14.185km). As Figure 6(a) shows,
the result size of STD is significantly smaller than those
of the competitors and close to around 100, even when
the query locations are very far from each other. STD puts
strong requirements on both spatial and textual aspects of
the query, therefore its result size is not very sensitive to
the spatial coverage of Q. On the other hand, since SSQ and
DDA include all the objects in the convex hull of the query
locations in the skyline (while KBFF prunes only some of
them), their skyline size increases in proportion to the query
spatial coverage. The average textual relevance of STD is
significantly larger than that of the competitors (Figure 6(b))
and the relevances of the computed skylines decrease as the
spatial coverage of the query locations increases. The reason
is that as the query spatial coverage increases, the spatial
distances to the query locations increase and become a
more important factor than textual relevance in the derived
distances st().

3.2.4 Tuning KBFF

In the filtering step of model KBFF, we select the objects
whose textual descriptions contain at least one of the query
keywords. We now experiment on varying the required
number of matched keywords in selecting candidates for
KBFF and testing the effect on the quality of the skyline.
We set the number of query locations to 10, the number
of query keywords to 10, and the spatial coverage of the
query locations to 0.4%. The number of required matched
keywords varies from 1 to 10. Table 4 displays the re-
sults of this experiment. The number of queries having
empty skyline increases as the number of matched key-
words increases. This is because there are only few objects
whose textual descriptions contain all the query keywords.
Hence, the skyline result size decreases dramatically. When
computing the average textual relevance, for queries with
empty skyline, the textual relevance is set to 0. The average
textual relevance goes up and then down mainly due to
the increasing number of queries with empty skyline. Al-
though the average textual relevance remains high, a big
disadvantage of KBFF is the difficulty in determining the
required number of matched keywords. Small values of this
threshold make KBFF less effective than STD (as shown

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 7

TABLE 4
Varying the Number of Matched Keywords in KBFF

Matched Result Textual Queries with
Keywords Size Relevance Empty Skyline (%)
1 29381.25 0.0184 0
2 5280.77 0.0289 0
3 1028.34 0.0427 0
4 406.36 0.0713 0
5 152.24 0.0982 3
6 41.35 0.121 14
7 7.3 0.121 30
8 3.16 0.109 49
9 0.95 0.0939 63
10 0.36 0.0804 71

in the previous experiments), while large values result in
having more queries with empty skyline.

4 ALGORITHMS FOR STD-BASED STS
In this section, we focus on designing efficient algorithms for
STD, which was found in Section 3 to be the most effective
STS model. A naive algorithm for computing STD is a
sequential scan based algorithm (SS), based on the paradigm
of [12]. Given a query, SS first materializes the values of all
derived dimensions for each object. Then, all the objects are
sorted in ascending order of the sum of the values of their
derived dimensions. Algorithm SS scans the sorted list and
checks whether each object is in the skyline by comparing it
with the previously found skyline objects. The disadvantage
of SS lies in the computation, materialization and sorting the
values of all derived dimensions for all objects.

For the sake of efficiency, we now propose a basic and
an advanced algorithm for STD. We firstly briefly review
the IR-tree index, which is used by our algorithms, in
Section 4.1. The basic algorithm for STD is presented in
Section 4.2. The advanced and more efficient algorithm for
STD, which utilizes a data structure for bookkeeping the
discovered skyline objects, is described in Section 4.3.

4.1 Preliminary: the IR-Tree

Our algorithms can be applied on any hierarchical spatio-
textual index, which facilitates efficient search based on both
spatial distance and textual relevance to a reference object
q (e.g., see [1], [5]). The IR-tree [3] is the state-of-the-art
index in this class. Figure 7 illustrates the basic structure
of an exemplary IR-tree. In our context, the objects fromP are grouped into the leaf nodes of the index; each leaf
node also has a pointer to an inverted file, which indexes
the text descriptions of all the objects in it. An inverted file
has two main components: (i) a vocabulary of all distinct
terms appearing in the descriptions of objects and (ii) a
posting list for each term t, i.e., a sequence of pairs (id ,w),
where id is the identifier of the object in the leaf node
whose description contains t and w is the weight of t in
the description. Each non-leaf node contains the MBRs of
its children nodes and also a pointer to an inverted file
indexing the pseudo-descriptions of its children nodes (i.e.,
for each node, the union of all text descriptions of the objects
indexed under it). Given a query q, comprising of a spatial

location and a textual description q.ψ, the MBR of an IR-
tree entry can be used to compute a lower bound of the
Euclidean distance between q and any object indexed under
the entry. The pseudo-description of the entry can be used to
compute an upper bound on the textual relevance between
q.ψ and any objects indexed under the entry.

R1 R2
R3 R4

R5 R6
InvFile- root

p1 p2
p3 p4 p8 p5 p9 p6 p7

InvFile- R1 InvFile- R2 InvFile- R3 InvFile- R4

InvFile- R5
InvFile- R6

Fig. 7. IR-Tree

4.2 Basic Algorithm for STD
We first introduce definitions and lemmas that can facilitate
pruning when using the STD model in Section 4.2.1. The
basic algorithm is presented in Section 4.2.2.

4.2.1 Definitions and Lemmas
In order to compute the skyline, we must apply a dominance
test for each object. The dominance test compares the target
object with other objects in all dimensions. The objects
that pass this test (i.e., they are not dominated by other
objects) are reported as the skyline objects. The objects that
fail the test are non-skyline objects and they are pruned.
Since dominance tests can be computationally expensive,
we identify dominance regions for objects, based on Q, and
simplify the test for an object to a simple inclusion test in
the dominance regions of other objects.

Specifically, for any object p ∈ P and query location qk ∈
Q, let Cpqk be the circle centered at qk with radius st(qk, p).
Let U be the MBR of the whole data set P . Then:
Definition 3. The uncertainty region of an object p is

Ru(p) = ⋃qk∈QCpqk . The dominance region of an object
p is Rd(p) = U −Ru(p).

Lemma 1. Given a query Q, the objects inside the dom-
inance region Rd(p) of p are dominated by p, i.e.,∀p′ ∈ Rd(p), p domQ p′.

Proof: For any p′ ∈ Rd(p), we have ∀qk ∈
Q,d(qk, p′) > st(qk, p). Since w(Q.ψ, p′.ψ) ∈ [0,1],
st(qk, p′) = d(qk, p′)/w(Q.ψ, p′.ψ) ≥ st(qk, p). Therefore,∀p′ ∈ Rd(p), p domQ p′.

On the other hand, for any p′ ∈ Ru(p), we cannot confirm
whether p dominates p′.

Example 4 In Figure 8(a), given query Q with three
query locations q1, q2, and q3, the three circles are Cp1q1 ,C

p1
q2 ,

and Cp1q3 , respectively. The white region is the uncertainty
region Ru(p1) of p1 and the gray region is the dominance
region Rd(p1) of p1. Since object p′ ∈ Rd(p1), p′ is domi-
nated by p1. Similarly, p′′ is dominated by p1 according to
Lemma 1.

The shapes of the uncertainty and dominance regions of
an object are irregular. For the sake of easy implementation
and efficiency, we approximate the uncertainty regionRu(p)

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 8

of a point p by its MBR R̂u(p), as illustrated by the solid
rectangle in Figure 8(a). This way, the dominance region can
be approximated by R̂d(p) = U−R̂u(p). Obviously, Lemma 1
holds for R̂d(p), since R̂d(p) ⊆ Rd(p). In Figure 8(a), since
p′ ∈ R̂d(p1), p′ is dominated by p1. On the other hand, p′′ ∈
R̂u(p1), which means that we cannot determine whether
p′′ is dominated or not solely by applying Lemma 1 using
R̂d(p1).

Lemma 1 can be used to prune a non-skyline object p′

based on the dominance region of a single object p. We now
introduce Lemma 2 that prunes non-skyline objects using
the dominance region of a set of objects. The dominance
region of a set is larger than that of a single object, therefore
its pruning effectiveness is higher.

Lemma 2. Given a query Q, consider a set of objects
S = {p1, p2, . . .}. The uncertainty region of S is Ru(S) =⋂pi∈S R̂u(pi). The dominance region of S is Rd(S) =U −Ru(S). The objects inside Rd(S) are not part of the
skyline.

Proof: Suppose ∃p′ ∈ Rd(S), such that p′ is not
dominated by any object in S. This means that ∀pi ∈ S, p′ ∈
Ru(pi) Ô⇒ p′ ∈ ⋂pi∈S Ru(pi) ⊂ ⋂pi∈S R̂u(pi) = Ru(S).
This contradicts the assumption that p′ ∈ Rd(S) = U−Ru(S).

Example 5 Figure 8(b) shows a set of objects S ={p1, p2} and a query Q with three locations q1, q2, and q3.
The approximate uncertainty regions of p1 and p2 are the
two solid rectangles R̂u(p1) and R̂u(p2). The uncertainty
region Ru(S) of S is the white region, i.e., R̂u(p1)∩ R̂u(p2).
The dominance region Rd(S) = U −Ru(S) of S is the gray
region. Obviously, ∀pi ∈ S,Rd(pi) ⊆ Rd(S). Any object p′

located in Rd(S) is not a skyline object. The same holds
for p′′, while, as we have seen before, p′′ cannot be pruned
solely by R̂d(p1).

q1
q2

q3

p

pB

q1
q2

q3

p

pB

1pB

1p

B

pC
q1

q2

q3

p

q1
q2

q3

1()uR p

'p

2p

q1
q2

q3

'p

pB1
ˆ ()uR p

1p

1p

1
ˆ ()uR p

2
ˆ ()uR p

()uR S ''p

''p

(a) Lemma 1

q1
q2

q3

p

pB

q1
q2

q3

p

pB

1pB

1p

B

pC
q1

q2

q3

p

q1
q2

q3

1()uR p

'p

2p

q1
q2

q3

'p

pB1
ˆ ()uR p

1p

1p

1
ˆ ()uR p

2
ˆ ()uR p

()uR S ''p

''p

(b) Lemma 2
Fig. 8. Lemma Examples

4.2.2 Algorithm BSTD

We propose a basic algorithm BSTD for computing the
STD-based spatio-textual skyline. It adopts the IR-tree and
utilizes the lemmas introduced in the previous section.
Algorithm 1 shows a pseudo code of BSTD. Initially, the
skyline result S is empty. B is the uncertainty region of the
set of skyline objects found so far, initialized to be the entire
space U , i.e., to contain the whole data set P . B is used
to prune non-skyline objects, according to Lemmas 1 and
2. Region B is updated whenever a new skyline object is
found (lines 10 and 19). The algorithm processes the objects
in ascending order of ∑qi∈Q st(qi, p) with the help of a
minimum heap H .

The elements in H can be leaf entries (i.e., objects) or
non-leaf entries of IR-tree. Let e = ⟨Ω, ψ⟩ be a non-leaf
entry in the IR-tree where Ω is the MBR bounding the
objects in the subtree pointed to by e and ψ is the pseudo
text description of e. According to the properties of the
IR-tree, given query Q, the minimum Euclidean distance
d(qi,Ω) between qi and Ω is a lower bound on the Euclidean
distance between qi and the objects bounded in Ω, while
w(Q.ψ,ψ) is a upper bound on the textual relevance of the
objects inside. Thus, we can associate each non-leaf entry e
in the IR-tree with ∣Q∣ derived dimensions. The value of each
dimension is d(qi,Ω)/w(Q.ψ,ψ) (i.e., st(qi, e)). Obviously,
the derived dimensions of the non-leaf entry stand for the
best case of the objects in the subtree. Then e can be ordered
in H based on ∑qi∈Q d(qi,Ω)/w(Q.ψ,ψ).

The first object reported from the heap is guaranteed to
be a skyline object [12] (lines 8–10). In the beginning, the
root of the IR-tree is added to heapH . Algorithm BSTD then
repeats the following procedure until the heap is empty. The
first element e is removed from the heap and evaluated. It
may refer to an object or a non-leaf entry that points to a
subtree of objects. If e does not intersect B, meaning that the
object(s) referred by e are dominated by the current found
skyline objects and can be pruned (line 6). Otherwise, if e
refers to an object, it is checked against each of the found
skyline objects. If none of the skyline objects dominate it,
the object is added to the skyline. Otherwise, it is pruned
(lines 11–19). If e is a non-leaf entry, the node N pointed to
by e is loaded. For each entry e′ in N , if e′ does not intersect
B, it is pruned. Otherwise, it is added to the heap (lines
20–24).
Correctness. The objects are evaluated in ascending order
of ∑qi∈Q st(qi, p). Hence, the objects accessed later cannot
dominate the objects found earlier (see [12], [13]). Thus,
for the currently accessed object from the heap, if it is
not dominated by the currently found skyline objects, it is
guaranteed to be in the skyline. The algorithm discovers
skyline objects progressively and in the end returns the
correct result.
Analysis. Although the algorithm can prune objects using
the uncertainty region B, for the objects that cannot be
pruned, an expensive dominance test has to be conducted,
comparing with all the derived dimensions of all the current
found skyline points. For example, assume that the algo-
rithm has found m = 1000 skyline objects so far, each of
which has n = 10 derived dimensions. If there are l = 10000
objects that cannot be pruned, the algorithm will conduct
m × n × l = 108 comparisons.

4.3 Advanced Algorithm for STD

We now propose an advanced algorithm that utilizes an
in-memory data structure, the skyRtree, and three pruning
rules, so that the I/O and CPU cost during the verification
of candidate skyline points is reduced.

4.3.1 skyRtree
The skyRtree is an in-memory R-tree that indexes all the
discovered skyline objects in the space of ∣Q∣ derived di-
mensions (e.g., see Figure 2(d)). When a new skyline object
is identified, it is inserted into the skyRtree.

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 9

Algorithm 1 BSTD(Query Q, Dataset P , Index IRTree)
1: S = ∅; B = U
2: MinHeap H = ∅
3: Add root of IRTree to H
4: while H is not empty do
5: e = deHeap(H)
6: if e.MBR ∩B ≠ ∅ then ▷ Lemmas 1 and 2
7: if e is an object then
8: if S = ∅ then
9: Add e to S

10: B = B ∩Ru(e)
11: else
12: isSkyline = True
13: for each p ∈ S do
14: if p domQ e then
15: isSkyline = False
16: break
17: if isSkyline then
18: Add e to S
19: B = B ∩Ru(e)
20: else ▷ e is a non-leaf entry
21: N = readNode(e)
22: for each entry e′ in N do
23: if e′.MBR ∩B ≠ ∅ then ▷ Lemmas 1 and 2
24: Add (e′,∑qi∈Q

st(qi, e′)) to H
25: return S

4.3.2 Pruning using the skyRtree

The MBRs of the skyRtree nodes serve as summaries for
the skyline objects stored in the subtrees defined by them.
Given query Q, let S = {p1, p2, . . .} be a group of already
discovered skyline objects indexed by a skyRtree node. Let
Λ be the MBR of S in the ∣Q∣-dimensional derived space
(i.e., the MBR of a skyRtree node). Let puΛ be the upper-
most corner of Λ, defined by the maximum values in all ∣Q∣
dimensions of the skyline objects. Formally, the kth value of
puΛ is equal to max∀pi∈S st(qk, pi). Proposition 1 utilizes puΛ
to prune non-skyline objects.

Proposition 1. If object p is dominated by puΛ, p is not a
skyline object.

Proof: Point puΛ stands for the worst case of the skyline
objects inside MBR Λ. If an object is dominated by puΛ, it
must be dominated by all the skyline objects inside the MBR.

The pruning power of an MBR at a lower level, using
Proposition 1, is stronger than that of an MBR at a higher
level. The proposition allows us to compare an object p with
the upper-most corner of an MBR Λ to prune p, rather than
performing comparisons between p and every skyline object
inside Λ.

Let plΛ be the lower-most corner of MBR Λ bounding S.
Formally, the k-th value of plΛ is equal to min∀pi∈S st(qk, pi).
Proposition 2 uses plΛ of the root MBR of the skyRtree to
confirm whether an object is in the skyline.

Proposition 2. Let plr be the lower-most corner of the root
MBR. If plr cannot dominate object p, p is a skyline object.

Proof: Point plr stands for the best case of all the
discovered skyline objects. If an object cannot be dominated
by plr , none of the discovered skyline objects can dominate
it. Hence, it is a skyline object.

Proposition 3 uses plΛ of the MBRs of non-leaf skyRtree
entries to avoid comparing the skyRtree points indexed
under them with candidate skyline objects.

Proposition 3. Let plΛ be the lower-most corner of the MBR
bounding S. If plΛ does not dominate a candidate skyline
object p, then p is not dominated by any skyline object in
S and needs not be compared with them.

The proof is trivial and omitted. The common goal of
Propositions 1, 2, and 3 is to reduce the comparisons (dom-
inance tests) required for any candidate skyline object p.
Proposition 1 can also be applied to prune a set of objects,
whose MBR in the derived space is dominated by puΛ. We
now proceed to introduce the derived dimensions of the
non-leaf entries in the IR-tree. Using this transformation, an
IR-subtree containing a set of objects may be pruned using
Proposition 1.

As stated in Section 4.2.2, every non-leaf entry e in
the IR-tree can be associated with ∣Q∣ derived dimensions
that stand for the best case of the objects in the subtree.
Proposition 1 can then be easily applied on the derived
dimensions of non-leaf entries to prune IR subtrees.

4.3.3 Algorithm ASTD

We now present an advanced algorithm (ASTD), which
computes the skyline based on the STD model. ASTD
follows the framework of algorithm BSTD, but it utilizes
the skyRtree to save computational cost. Algorithm 2 is a
pseudocode of ASTD.

Algorithm 2 ASTD(Query Q, Dataset P , Index IRTree)
1: S = ∅; B = U
2: MinHeap H = ∅
3: skyRtree = ∅
4: Add root of IRTree to H
5: while H is not empty do
6: e = deHeap(H)
7: if e.MBR ∩B ≠ ∅ then ▷ Lemmas 1 and 2
8: if e is an object then
9: if S = ∅ or ¬ SKYRTREEPRUNES(e) then

10: Add e to S
11: B = B ∩Ru(e)
12: Insert e into skyRtree
13: else ▷ e is a non-leaf entry
14: Compute the derived dimensions of e
15: if ¬ SKYRTREEPRUNES(e) then
16: N = readNode(e)
17: for each entry e′ in N do
18: if e′.MBR ∩B ≠ ∅ then ▷ Lemmas 1 and

2
19: Add (e′,∑qi∈Q

st(qi, e′)) to H
20: return S

Each time a new skyline object is discovered, it is in-
serted into the skyRtree (line 12). Function SKYRTREEP-
RUNES (Algorithm 3) is used to check whether a single
object or a subtree can be pruned (lines 9 and 15). It utilizes
the skyRtree and the pruning techniques of Section 4.3.2
to decide whether the input parameter p (a single object
or a set of objects in a subtree) can be dominated or not.
The skyRtree indexes all the skyline objects known so far.
Function SKYRTREEPRUNES returns true if the input p is

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 10

dominated. The skyRtree is traversed in a breadth first man-
ner. In the beginning, the input parameter p is compared
with the corners plr and pur of the root MBR. If plr does
not dominate p, then none of the skyline objects in the
skyRtree can dominate p and false is returned according
to Proposition 2. If pur dominates p, then all the skyline
objects in the skyRtree can dominate p and true is returned
according to Proposition 1. If neither of the above cases
holds, a Queue is created containing the root of the skyRtree.

SKYRTREEPRUNES repeats the following procedure until
Queue is empty. The first element N in Queue is removed
for evaluation. If N is a non-leaf node, for each entry e in
N , if pue of e dominates p, then p must be dominated by the
skyline points in the subtree rooted at e according to Propo-
sition 1. Therefore, the function returns true. Otherwise, if
ple of e dominates p, which means there may exist skyline
objects in the subtree rooted at e that dominate p, e is added
to the end of Queue for further exploration. If ple does not
dominate p, the subtree rooted at e can be discarded without
any further processing according to Proposition 3. If N is a
leaf node, all the entries in N are skyline objects and we
check whether p is dominated by these skyline objects. In
this case, the function returns true. When Queue becomes
empty, this means that p is not dominated by any skyline
object and false is returned.

Algorithm 3 SKYRTREEPRUNES(p)

1: Get plr and pur of the root MBR in the skyRtree
2: if plr not domQ p then return False ▷ Proposition 2
3: if pur domQ p then return True ▷ Proposition 1
4: Add the root of skyRtree to Queue
5: while Queue is not empty do
6: Remove the first element N from Queue
7: if N is a non-leaf node of skyRtree then
8: for each entry e in node N do
9: Get ple and pue of e

10: if pue domQ p then return True ▷ Proposition 1
11: if ple domQ p then
12: Add e to Queue ▷ Proposition 3
13: else
14: for each entry e in node N do
15: if e domQ p then return True

16: return False

5 EFFICIENCY ANALYSIS

In this section, we evaluate the efficiency of BSTD and
ASTD under various parameter settings, i.e., varying the
number of query locations, the number of query keywords,
the spatial coverage of query locations, and the database
size.

5.1 Methods
BSTD and ASTD can be applied on any hierarchical hybrid
index which facilitates search based on Euclidean distance
and textual relevance. We adopt the state-of-the-art IR-
tree [3]; we assert that the improvement of ASTD over BSTD
is similar if alternative indexes are used instead. We denote
the version of BSTD that applies on the original IR-tree by
BSTD-IR. However, by experimentation, we observed that
BSTD and ASTD on the IR-tree incur too many I/O accesses.

The reason is that for each IR-tree node, there is a separate
inverted file. This means that, during STS computation, for
each accessed node N and for each term t in Q.ψ we need
(i) a random access to locate the posting list of t in the file of
N and (ii) another random access to access the posting list.
Since these posting lists are quite short, the incurred I/O
cost is not compensated by the information processed. In or-
der to alleviate this problem, we designed and implemented
a variant of the IR-tree, the IR+-tree, which includes only
one inverted file. For each term t, there is a single posting
list indexing all (non-leaf and leaf) entries, for which the
(pseudo-)descriptions contain t. Given the query keywords
Q.ψ, before traversing the IR+-tree structure, we locate the∣Q.ψ∣ posting lists and load them into memory. Each posting
list is implemented as a hash table whose keys are the ids of
entries and the values are the corresponding term weights.
Thus, when a node N is accessed, we can easily get the term
weights for N ’s entries, without incurring any I/O accesses.
We denote the implementations of the proposed algorithms
that apply on the IR+-index simply by BSTD and ASTD.

5.2 Datasets and Settings

For the evaluation we used two datasets, Flickr-LDN (de-
scribed in Section 3) and Flickr-NY, which contains 1,505,243
pictures in New York crawled from Flickr with a dictionary
of 726,958 terms. Each picture is associated with a GPS
coordinate and a set of terms extracted from its tags and
title. The average number of terms per object is 10.51. All
tested methods were implemented in Java and the exper-
iments were conducted on a 3.4 GHz quad-core machine
running Ubuntu 12.04 with 16 GBytes memory. The page
size of the IR-tree is 8KB that is translated to a fanout of
184. An LRU buffer that caches at most 500 pages is used. In
order to remove the caching effects by the operating system,
we drop the system cache before executing each query. We
generated queries by varying the number of query locations
(default ∣Q∣ = 10), the number of query keywords (default∣Q.ψ∣ = 10), and the spatial coverage of the query locations
(default 0.4%). We measure the average runtime, I/Os, and
number of dominance tests over generated workloads of 100
queries for each parameter setting.

5.3 Experiments

5.3.1 Varying the Number of Query Locations
In the first experiment, we vary the number ∣Q∣ of query
locations from 1 to 40, while keeping the other parameters
to their default values. As Figure 9 shows, ASTD is 2 to
4 times faster than BSTD, while BSTD outperforms BSTD-
IR by an order of magnitude. The I/O costs of the three
methods are proportional to the runtime. ASTD conducts 2
to 10 times fewer dominance tests compared to BSTD. This
is due to use of skyRtree by ASTD and its pruning power.
BSTD-IR performs the same number of dominance tests as
BSTD, since they are based on the same algorithm. BSTD
is faster than BSTD-IR, because of the compact storage of
the posting lists in the inverted file and the efficient strategy
adopted for locating the required posting lists, as described
in Section 5.1. The runtime, I/O cost, and the number of
dominance tests of all methods increase as the number of

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 11

query locations increases since the dimensionality of the
problem increases and so does the result size (shown in
Figure 4(a)).

5.3.2 Varying the Number of Query Keywords
We now test the effect of varying the number ∣Q.ψ∣ of
query keywords. As Figure 10(a) shows, the runtime of all
methods in general increases with the number of query
keywords. BSTD is faster than BSTD-IR by a factor of
around 10. ASTD is 3 to 4 times faster than BSTD, which
is consistent with the improvement in the I/O cost and
the number of dominance tests shown in Figures 10(b) and
10(c), respectively. ASTD outperforms BSTD by a factor of
(i) 3 to 6 in terms of I/O cost and (ii) 3 to 20 in terms of
dominance tests. This is because the skyRtree prunes objects
and groups of objects, avoiding unnecessary dominance
tests and I/O accesses.

The cost of ASTD slightly decreases when the keywords
increase from 1 to 2 and then increases. When ∣Q.ψ∣=1, many
objects have high textual relevance, which leads to relatively
high I/O cost (Figure 10(b)), large number of dominance
tests (Figure 10(c)), and large result size (Figure 5(a)). Con-
sequently, the computational and I/O cost of ASTD is rela-
tively high. Given two query keywords, much fewer objects
have high textual relevance and these dominate numerous
other objects, decreasing the cost of ASTD and the size of the
skyline. Interestingly, for ∣Q.ψ∣ >2, the discriminative power
of the textual relevance becomes weaker, which conversely
leads to a larger number of skyline candidates, higher I/O
cost and more dominance tests. Therefore, the runtimes of
BSTD-IR and BSTD increase monotonically with ∣Q.ψ∣ be-
cause these methods have high I/O cost, which dominates
their savings in dominance tests from ∣Q.ψ∣ = 1 to ∣Q.ψ∣ = 2.

5.3.3 Varying the Spatial Coverage of Q
We vary the spatial coverage of the query locations from
0.05% to 12.8%, while keeping ∣Q∣ = 10 and ∣Q.ψ∣ = 10.
In Figure 11(a), ASTD is 3 to 4 times faster than BSTD,
which is more than 10 times faster than BSTD-IR. The
runtime slightly increases when the spatial coverage in-
creases, which is consistent with I/O performance (Figure
11(b)) and the number of dominance tests (Figure 11(c)).
In Figure 11(b), the I/O difference between BSTD-IR and
BSTD is due to the use of the IR+-tree by BSTD, while the
5 times I/O reduction from BSTD to ASTD is due to the
pruning power of the skyRtree. In Figure 11(c), the number
of dominance tests by ASTD is 2–4 times lower than that
of BSTD. The number of dominance tests decreases when
spatial coverage varies from 1.6 to 12.8. The reason is that
as the spatial coverage of the query locations increases,
most skyline objects are near the query locations; thus, a
lot of distant objects are dominated and, consequently, the
number of dominance tests is reduced. On the other hand,
the increase of the spatial coverage causes higher I/O cost
(Figure 11(b)), since the query locations cover a larger area
and more index nodes need to be loaded to evaluate the
objects around them.

5.3.4 Scalability
We randomly sample 100K, 500K, and 1M objects from
Flickr-NY data set to form data sets of various sizes for

scalability evaluation purposes. The other parameters are
fixed (∣Q∣ = 10, ∣Q.ψ∣ = 10, and 0.4% spatial coverage of Q).
Figure 12(a) compares the runtimes of the three methods
for various data sizes. The runtime increases linearly as
the database size increases and the algorithms maintain
their relative performance difference. BSTD needs 3 to 4
times more I/Os and 2 to 7 times more dominance tests
than ASTD does on large data (as shown in Figures 12(b)
and 12(c)). This indicates that the skyRtree is powerful
for pruning objects. Table 5 shows the result size and the
spatial coverage of the skylines of the four datasets. Note
that the result size and the spatial coverage of the skyline
increases at a much lower pace compared to the database
size, which is consistent with our observation that the STD
model produces skylines of manageable size. Due to this
effect, the memory overhead of the skyRtree is negligible (at
most 10KB in all settings).

TABLE 5
Skyline Size and Spatial Coverage

Data Set Size 100K 500K 1000K 1500K
Skyline Size 84.77 200.6 334.8 429.1
Spatial Coverage (%) 0.114 0.130 0.127 0.139

6 RELATED WORK

Previous work can be classified into static and dynamic
skyline computation. A static skyline is computed from a
set of objects with static dimensional values, which do not
depend on a query input. In contrary, a dynamic skyline
is computed based on derived dimensional values for the
objects w.r.t. some query input.
Static Skyline. The skyline query was first studied by
the database community in [6], where a divide and conquer
(D&C) approach was compared to a block nested loop (BNL)
method for non-indexed data. In order to reduce the cost
of skyline evaluation over large datasets, sort filter skyline
(SFS) [12] sorts all the objects before applying BNL; the sort
order guarantees an object can only dominate other objects
that follow it in the order. SaLSa [14] and LESS [13] are
optimized versions of SFS. The object-based space partitioning
(OPS) algorithm [15] reduces the dominance checks during
skyline computation by organizing the skyline found so far
in a left-child/right-sibling tree. The skyRtree used by ASTD in
this paper shares the same motivation, but uses a different
indexing technique and pruning rules compared to OPS.

Static skyline techniques have also been designed for
indexed data, e.g., [6], [16], [17], [18], [19]. Besides proposing
BNL, Borzsonyi et al. [6] also discuss how to computing a
static skyline from data indexed by a B-tree or an R-tree.
The branch and bound skyline (BBS) algorithm [16] operates
on an R-tree and identifies skyline objects progressively by
accessing nodes and objects according to their distances to
the origin of the axes. BBS is shown to be I/O optimal and
superior to previous approaches. BSTD and ASTD follow
the intuition of BBS but are for dynamic spatio-textual sky-
line computation that is beyond static skyline. ZBtree [18]
indexes objects based on the Z-order curve. This order
helps to avoid redundant dominance checks. The keyword-
matched skyline query [11] computes a static skyline using

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 12

1 2 5 10 15 20 25 30 35 40
Number of Query Locations

102

103

104

105

R
un

tim
e

(m
s)

BSTD-IR
BSTD
ASTD

(a) Runtime

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

Number of Query Locations

100

101

102

103

104

105

106

I/O

1.0 2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
Rtree I/O
Inverted Index I/O

(b) I/O

1 2 5 10 15 20 25 30 35 40
Number of Query Locations

102

103

104

105

106

107

D
om

in
an

ce
 te

st
s

BSTD-IR
BSTD
ASTD

(c) Dominance Tests

Fig. 9. Varying the Number of Query Locations

1 2 4 6 8 10 15 20
Number of Query Keywords

102

103

104

105

106

R
un

tim
e

(m
s)

BSTD-IR
BSTD
ASTD

(a) Runtime

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

Number of Query Keywords

100

101

102

103

104

105

I/O

1.0 2.0 4.0 6.0 8.0 10.0 15.0 20.0
Rtree I/O
Inverted Index I/O

(b) I/O

1 2 4 6 8 10 15 20
Number of Query Keywords

104

105

106

107

D
om

in
an

ce
 te

st
s

BSTD-IR
BSTD
ASTD

(c) Dominance Tests

Fig. 10. Varying the Number of Query Keywords

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Spatial Coverage of Query Locations (%)

102

103

104

105

R
un

tim
e

(m
s)

BSTD-IR
BSTD
ASTD

(a) Runtime

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

B
S

TD
-IR

B
S

TD
A

S
TD

Spatial Coverage of Query Locations (%)

100

101

102

103

104

105

I/O

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Rtree I/O
Inverted Index I/O

(b) I/O

0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.4 12.8
Spatial Coverage of Query Locations (%)

105

106

107

D
om

in
an

ce
 te

st
s

BSTD-IR
BSTD
ASTD

(c) Dominance Tests

Fig. 11. Varying the Spatial Coverage of Query Locations

100 500 1000 1500
Data Set Size (x1000)

102

103

104

105

106

R
un

tim
e

(m
s)

BSTD-IR
BSTD
ASTD

(a) Runtime

B
S

TD
-IR

B
S

TD

A
S

TD

B
S

TD
-IR

B
S

TD

A
S

TD

B
S

TD
-IR

B
S

TD

A
S

TD

B
S

TD
-IR

B
S

TD

A
S

TD

Data Set Size (×1000)

100

101

102

103

104

105

106

I/O

100.0 500.0 1000.0 1500.0
Rtree I/O
Inverted Index I/O

(b) I/O

100 500 1000 1500
Data Set Size (x1000)

105

106

107

108

D
om

in
an

ce
 te

st
s

BSTD-IR
BSTD
ASTD

(c) Dominance Tests

Fig. 12. Varying the Database Size

only the objects that qualify a boolean keyword search. This
is similar to our proposed KBFF model, which has been
proved less effective than STD.
Dynamic Skyline. Dynamic skyline computation finds im-
portant applications in business planning, trip advising,
and recommender systems. It has been studied in various
spaces, e.g., Euclidean space [7], metric space [20], [21],
transportation/road networks [22], [23], and large graphs
[24]. The most relevant work to ours is the spatial skyline
query (SSQ) [7]. In our work, we extend the SSQ model
to integrate dynamically computed distances to the query
locations with dynamically computed textual relevance to
a set of query keywords. In order to compute SSQ effi-
ciency, precomputed indexes based on Voronoi Diagrams
have been used in [7], [25]. However, the properties of

Voronoi Diagrams do not hold in our integrated spatio-
textual derived space. Our experimental analysis (Section
3), besides showing that the spatial only skyline computed
by SSQ does not consider textual relevance, demonstrates
that our STD model computes a skyline, which is small in
size and thus more useful.

Preference queries on multi-cost transportation networks
can be modeled as a dynamic skyline problem, by consid-
ering the multiple costs from a query point to the nodes
of the network [22]. A specialized method for computing
the spatial skyline in a grid network, based on Manhat-
tan distances is proposed in [26]. Given multiple query
locations in a road network, a spatial skyline where Eu-
clidean distance is replaced by shortest path distance can be
computed [23]. A filter-and-refine framework with pruning

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 13

rules and a carefully-designed index structure [24] was
proposed for such dynamic skylines in large graphs based
on shortest path distance. Dynamic skyline queries in metric
spaces where the triangular inequality holds were studied
in [20]; efficient pruning techniques using Metric indexes
(e.g., M-tree [21]) were proposed and used. Two optimiza-
tion techniques, called dynamic indexing and k-dispersion
extensions were proposed in [27] to further improve the
efficiency of dynamic skyline computation in metric spaces.
The distance measurement st() in our problem does not
obey the triangular inequality. Therefore, these techniques
are not applicable to our problem.

The collaborative expansion based algorithms used
in [22], [23] consider each query location in a round-robin
manner and expand the search space around them until the
first skyline object is discovered. These algorithms guaran-
tee that all the skyline objects are included in the explored
space when the first skyline object is determined. Then,
in a shrinking stage, the candidates in the explored space
are refined to obtain the final skyline results. Collaborative
expansion is not efficient for our problem, since it requires
retrieving all the possible candidates when the first skyline
is discovered, which means that a large percentage of the
search space has to be accessed (i.e., high I/O cost), without
any pruning. Besides, an expensive verification phase is
required.

The spatial skyline operator has also been extended for
objects with augmented type information [28]. Specifically,
given a set of objects belonging to m types, for each object
o, the value of its i-th derived dimension is the minimum
Euclidean distance between o and all objects belonging to
type i. The skyline result is evaluated on the m-dimensional
space. The Location-based Textual Skyline (LTS) query [29]
has a similar intuition to our spatio-textual skyline; it is
based on the preferences on the spatial distance to a user’s
location and relevance to the a set of keywords specified
by the user. LTS is similar to the DDA model studied
in this paper, which considers spatial and textual dimen-
sions separately. An important difference is that LTS only
considers a single query location. Another work relevant
to our DDA model is the spatial skyline with static non-
spatial attributes [7]. The difference is that textual relevance
in our problem is dynamically calculated based on query
keywords, making it impossible to apply a one-time general
skyline computation independently to the query on the
static non-spatial attributes to get a subset of the result as
[7] did. Direction-based spatial skyline (DSS) queries [30]
find the result not only by comparing the distances to the
query point but also considering the directions of the query
point. DSS queries also take only one point as a query.
A recommendation algorithm [31] suggests items, such as
restaurants, to a mobile user based on skyline queries,
taking into account user’s current location and preferences.
It also takes only one point as query. The above techniques
differ from our proposal in both the application scenario
and problem definition. On the other hand, they support
our argument that integrating non-spatial attributes into the
spatial skyline finds many important applications in place
recommendation, trip planning, and advertisement.

A related query to dynamic skylines, finding applica-
tion in multi-decision making, is the Group Nearest Group

(GNG) query [32]. Given a data set D, a query point set Q,
and an integer k, GNG finds a subset of ω (∣ω∣ ≤ k) of points
in D, such that the total distance from all points in Q to
the nearest point in ω is not greater than any other subset
ω′ (∣ω′∣ ≤ k) of points in D. The Reverse Skyline Query [33]
returns the objects whose dynamic skyline contains a given
query object. Finally, a cache-aware algorithm [34] uses the
results of past dynamic skyline queries to help reducing the
computation cost of future queries.
Spatial keyword Search. Spatial keyword search extends
classic keyword search to retrieve objects (e.g., documents)
considering relevance to a set of input keywords as well
as proximity to the location of the query issuer. This prob-
lem has been extensively studied during the past decade.
A comprehensive comparison of indexing techniques for
spatial keyword search appears in [2]. The IR-tree [3], one
of the most popular indexes, supports the ranking of objects
based on a weighted sum of spatial distance and textual rele-
vance. In our work, we use the aggregate distance proposed
in [4], which is parameter-free and has no normalization
problems compared to weight sum. Several variants to
the basic spatial-keyword search problem, include boolean
spatial keyword search [35], [36], collective spatial keyword
search [37], joint spatial keyword queries [1], and continu-
ously moving spatial keyword queries [4]. The similarity
join was extended in [38] to have spatio-textual relevance as
the join predicate. Our spatio-textual skyline query takes as
input a set of query locations and a set of query keywords
and returns the objects which are not dominated by others
based on their distance to the query locations and their
relevance to the query keywords. Our problem definition
and algorithms differ significantly from previously studied
spatial keyword search problems and their solutions. To the
best of our knowledge, no previous work has studied the
combination of spatial skyline queries and keyword search.

7 CONCLUSION

In this paper, we proposed a novel Spatial-Textual Skyline
(STS) operator, which integrates textual relevance into the
spatial skyline, so that the retrieved objects are spatially
close and textually relevant to the query input. To imple-
ment STS, we propose and study three models DDA, KBFF,
and STD. After a thorough analysis of the results produced
by these models, we recommend STD as the most effective
one. Specifically, the skyline objects returned by STD are
spatially close to the query locations and textually relevant
to the query keywords. Moreover, the skyline size of STD
is significantly smaller compared to the ones of the other
models (and the spatial-only skyline). Besides showing the
effectiveness of STD, we also propose algorithms for com-
puting the STD-based skyline efficiently. A basic algorithm
BSTD adopts a hierarchical hybrid index (IR-tree is used as
a demonstration) and pruning rules to discover skyline ob-
jects progressively. We also propose an advanced algorithm
ASTD that uses a main-memory skyRtree to organize the
discovered skyline objects and employs a number of prun-
ing rules to reduce the dominance tests and I/O accesses
incurred by BSTD. Our experimental evaluation confirms
the efficiency of ASTD over BSTD.

IEEE TRANSACTIONS ON KNOWLEDGE DISCOVERY AND DATA ENGINEERING (TKDE) 14

In the definition of STS studied in this paper, all query
locations share the same set of query keywords Q.ψ. In the
future, we plan to consider a variant of STS, where each
query location has its own query keywords and the textual
relevance to each query location is computed independently.
In this case, textual relevance varies in each of the derived
dimensions. It would be interesting to compare this variant
with our STS definition qualitatively and also extend our
pruning rules and algorithms to apply for this variant. In
addition, we plan to explore alternative DDA-like models
which augment to SSQ alternative dimensions for textual
relevance and test their effectiveness.

REFERENCES

[1] D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top-k spatial
keyword query processing,” IEEE TKDE, vol. 24, no. 10, pp. 1889–
1903, 2012.

[2] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial keyword query
processing: An experimental evaluation,” PVLDB, vol. 6, no. 3, pp.
217–228, 2013.

[3] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of the top-
k most relevant spatial web objects,” PVLDB, vol. 2, no. 1, pp.
337–348, 2009.

[4] D. Wu, M. L. Yiu, C. S. Jensen, and G. Cong, “Efficient continu-
ously moving top-k spatial keyword query processing,” in ICDE,
2011, pp. 541–552.

[5] D. Wu, G. Cong, and C. S. Jensen, “A framework for efficient
spatial web object retrieval,” The VLDB Journal, vol. 21, no. 6, pp.
797–822, Dec. 2012.

[6] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,”
in ICDE, 2001, pp. 421–430.

[7] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in
VLDB, 2006, pp. 751–762.

[8] G. Salton, A. Wong, and C. S. Yang, “A vector space model for
automatic indexing,” Commun. ACM, vol. 18, no. 11, pp. 613–620,
1975.

[9] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to
Information Retrieval. New York, NY, USA: Cambridge University
Press, 2008.

[10] J. M. Ponte and W. B. Croft, “A language modeling approach to
information retrieval,” in SIGIR, 1998, pp. 275–281.

[11] H. Choi, H. Jung, K. Y. Lee, and Y. D. Chung, “Skyline queries on
keyword-matched data,” Inf. Sci., vol. 232, pp. 449–463, 2013.

[12] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
presorting: Theory and optimizations,” in IIPWM, 2005, pp. 595–
604.

[13] P. Godfrey, R. Shipley, and J. Gryz, “Algorithms and analyses for
maximal vector computation,” VLDB J., vol. 16, no. 1, pp. 5–28,
2007.

[14] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline
evaluation,” ACM Trans. Database Syst., vol. 33, no. 4, 2008.

[15] S. Zhang, N. Mamoulis, and D. W. Cheung, “Scalable skyline
computation using object-based space partitioning,” in SIGMOD,
2009, pp. 483–494.

[16] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 41–82, 2005.

[17] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky:
An online algorithm for skyline queries,” in VLDB, 2002, pp. 275–
286.

[18] K. C. K. Lee, B. Zheng, H. Li, and W. Lee, “Approaching the
skyline in Z order,” in VLDB, 2007, pp. 279–290.

[19] K. Tan, P. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in VLDB, 2001, pp. 301–310.

[20] L. Chen and X. Lian, “Dynamic skyline queries in metric spaces,”
in EDBT, 2008, pp. 333–343.

[21] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: An efficient access
method for similarity search in metric spaces,” in VLDB, 1997, pp.
426–435.

[22] K. Mouratidis, Y. Lin, and M. L. Yiu, “Preference queries in large
multi-cost transportation networks,” in ICDE, 2010, pp. 533–544.

[23] K. Deng, X. Zhou, and H. T. Shen, “Multi-source skyline query
processing in road networks,” in ICDE, 2007, pp. 796–805.

[24] L. Zou, L. Chen, M. T. Özsu, and D. Zhao, “Dynamic skyline
queries in large graphs,” in DASFAA, 2010, pp. 62–78.

[25] W. Son, M. Lee, H. Ahn, and S. Hwang, “Spatial skyline queries:
An efficient geometric algorithm,” in SSTD, 2009, pp. 247–264.

[26] W. Son, S. Hwang, and H. Ahn, “MSSQ: manhattan spatial skyline
queries,” Inf. Syst., vol. 40, pp. 67–83, 2014.

[27] D. Fuhry, R. Jin, and D. Zhang, “Efficient skyline computation in
metric space,” in EDBT, 2009, pp. 1042–1051.

[28] Q. Lin, Y. Zhang, W. Zhang, and A. Li, “General spatial skyline
operator,” in DASFAA, 2012, pp. 494–508.

[29] A. Regalado, M. Goncalves, and S. Abad-Mota, “Evaluating sky-
line queries on spatial web objects,” in DEXA, 2012, pp. 416–423.

[30] X. Guo, Y. Ishikawa, and Y. Gao, “Direction-based spatial sky-
lines,” in MobiDE, 2010, pp. 73–80.

[31] K. Kodama, Y. Iijima, X. Guo, and Y. Ishikawa, “Skyline queries
based on user locations and preferences for making location-based
recommendations,” in LBSN, 2009, pp. 9–16.

[32] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and Y. Lu,
“On group nearest group query processing,” IEEE TKDE, vol. 24,
no. 2, pp. 295–308, 2012.

[33] E. Dellis and B. Seeger, “Efficient computation of reverse skyline
queries,” in VLDB, 2007, pp. 291–302.

[34] D. Sacharidis, P. Bouros, and T. K. Sellis, “Caching dynamic skyline
queries,” in SSDBM, 2008, pp. 455–472.

[35] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial
databases,” in ICDE, 2008, pp. 656–665.

[36] C. Zhang, Y. Zhang, W. Zhang, and X. Lin, “Inverted linear
quadtree: Efficient top k spatial keyword search,” in ICDE, 2013,
pp. 901–912.

[37] C. Long, R. C. Wong, K. Wang, and A. W. Fu, “Collective spatial
keyword queries: a distance owner-driven approach,” in SIG-
MOD, 2013, pp. 689–700.

[38] P. Bouros, S. Ge, and N. Mamoulis, “Spatio-textual similarity
joins,” PVLDB, vol. 6, no. 1, pp. 1–12, 2012.

Jieming Shi is a PhD candidate at the Depart-
ment of Computer Science, University of Hong
Kong. He received his Bachelor’s Degree of Sci-
ence from the Department of Computer Science
and Technology in Nanjing University, 2011. His
research interests include query processing on
spatial-textual data, and geo-social network min-
ing and management.

Dingming Wu received the bachelor’s and the
master’s degrees in computer science from the
Huazhong University of Science and Technology
and Peking University in 2005 and 2008, respec-
tively. She received the PhD degree in computer
science from Aalborg University in 2011. She is
a post-doc fellow at the University of Hong Kong.
She was a post-doc teaching fellow at Hong
Kong Baptist University from 2011 to 2013. Her
research concerns spatial keyword search, geo-
social networks, and recommendation systems.

Nikos Mamoulis received his diploma in com-
puter engineering and informatics in 1995 from
the University of Patras, Greece, and his PhD in
computer science in 2000 from the Hong Kong
University of Science and Technology. Since
2001, he is a professor at the Department of
Computer Science, University of Hong Kong. His
research focuses on the management and min-
ing of complex data types, privacy and security
in databases, and uncertain data management.

