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Abstract 

Maintaining air-quality standards has been a priority for transportation planners and policy makers 

worldwide. However, most existing system optimum dynamic traffic assignment (SO-DTA) models do 

not accommodate environmental objectives. In this paper, we use the link transmission model (LTM) 

to develop SO-DTA models that minimize total system emissions (TSE) in single destination networks. 

We use step functions to approximate cumulative flow curves for individual links, and to decompose 

link inflow into sub-flows according to time intervals at which they leave the link. The decomposed 

link inflows are used to estimate link emissions. Dynamic network constraints, non-vehicle holding 

constraints and link decomposition constraints are considered, and SO-DTA problems with 

environmental objectives are formulated as mixed integer linear programming (MILP) problems. Any 

average speed based emission functions can be used for our models. Finally, numerical examples are 

provided to demonstrate the property of the proposed models. 

Keywords: Dynamic traffic assignment; system optimum; link transmission model; emission. 
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1. Introduction 

Dynamic traffic assignment (DTA) has long been recognized as a key component of network planning 

and transport policy evaluation, in addition to real-time traffic operation and management (Szeto and 

Lo, 2006). System-optimum DTA (SO-DTA), a special case of DTA based on a dynamic extension of 

Wardrop’s (1952) second principle, is used to predict a time-dependent traffic state with optimal 

network performance, and to provide a benchmark for controlling and managing dynamic traffic 

networks. For example, SO-DTA models are used in road congestion pricing (e.g., Yang and Meng, 

1998; Carey and Watling, 2012), signal control (e.g., Lo, 2001; Lin and Wang, 2004), network design 

(e.g., Waller and Ziliaskopoulos, 2001; Waller et al., 2006), and emergency evacuation traffic 

management (e.g., Liu et al., 2006; Chiu et al., 2007). 

Existing SO-DTA models can be classified into continuous-time models (e.g., Friesz et al., 1989; 

Chow, 2007, 2009a, b; Ma et al., 2014, 2015) and discrete-time models (e.g., Merchant and 

Nemhauser, 1978a, b; Carey, 1987; Ziliaskopoulos, 2000; Nie, 2011; Zheng and Chiu, 2011; Long and 

Szeto, 2015), depending on whether the modeling period is discretized into time steps. Both categories 

of model have advantages and disadvantages. Continuous-time models can provide analytical insights 

(such as the closed form externality analysis), but cannot be efficiently solved due to their complex 

structure (Nie, 2011). Discrete-time models are usually formulated as mathematical programming 

problems, such as linear programming (LP) problems (e.g., Ziliaskopoulos, 2000) and mixed integer 

linear programming (MILP) problems (e.g., Lin and Wang, 2004; Pavlis and Recker, 2009), and can 

thus be more easily solved than continuous-time SO-DTA models. However, this category of models 

also compromise computational tractability in large-scale network applications due to the presence of 

numerous decision variables and constraints. 

There are three major types of objectives in existing SO-DTA models: minimizing total system 

travel time (TSTT) (e.g., Merchant and Nemhauser, 1978a, b; Carey, 1987; Ghali and Smith, 1995; 

Ziliaskopoulos, 2000; Li et al., 2003; Lin and Wang, 2004; Munoz and Laval, 2006; Shen et al., 2007; 

Chow, 2007, 2009a,b; Pavlis and Recker, 2009; Nie, 2011; Zheng and Chiu, 2011; Zhu and Ukkusuri, 

2013; Ma et al., 2014; Long and Szeto, 2015; Zheng et al., 2015), minimizing total system emissions 

(TSE) (e.g., Aziz and Ukkusuri, 2012), and minimizing both TSTT and TSE for a whole network in an 

integrated manner (e.g., Aziz and Ukkusuri, 2012; Ma et al., 2015). Most existing SO-DTA models 

accommodate only network mobility, and are used to meet the first of the above objectives: to 

minimize the TSTT spent by travelers in a network. SO-DTA models designed to address TSTT are 

usually based on linear or convex functions of link flow. This leads to mathematical programming 

formulations that are computationally efficient and solvable for reasonably sized networks. The 
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objective of minimizing TSE has long been integrated with static traffic assignment problems (e.g., 

Rilett and Benedek, 1994; Benedek and Rilett, 1998; Nagurney, 2000; Yin and Lawphongpanich, 

2006). However, few researchers have considered SO-DTA problems in terms of TSE. To the best of 

our knowledge, Aziz and Ukkusuri (2012) were the first to propose a SO-DTA model with an 

environmental objective. Aziz and Ukkusuri (2012) integrated an emissions-based objective with a 

traditional SO-DTA framework, and formulated the SO-DTA problem in terms of TSE as a non-linear 

and non-convex mathematical function. The proposed model was further approximated by quadratic 

programming (QP) model. However, the accuracy of the approximation is only high when the network 

is very congested, and the model is limited to a particular carbon monoxide (CO) emission function. 

To address the third objective, SO-DTA models are developed with weighted TSTT and TSE 

components and capture the trade-off between emissions and travel time (e.g., Aziz and Ukkusuri, 

2012; Ma et al., 2015). 

Dynamic network constraints are generally used to formulate feasible domains for existing 

SO-DTA models. There are four categories of dynamic network constraints: mass balance constraints, 

flow conservation constraints, flow propagation constraints, and definitional constraints. The 

constraints used are highly dependent on the underlying DNL model, such as point queue models (Ban 

et al., 2012), exit flow models (e.g., Merchant and Nemhauser, 1978a, b; Carey and Srinivasan, 1993; 

Lam and Huang, 1995; Wie and Tobin, 2002), and advanced exit flow models (e.g., Kuwahara and 

Akamatsu, 2001; Lo and Szeto, 2002; Yperman, 2007; Nie, 2011; Meng and Khoo, 2012; Zheng et al., 

2015). The traffic flow models used in DTA problems should also have certain desirable properties, 

such as queue spillback (e.g., Daganzo, 1995; Lo and Szeto, 2002; Szeto and Lo, 2004; Ma et al., 

2014), first-in-first-out (FIFO) (e.g., Astarita, 1996; Huang and Lam, 2002; Long and Szeto, 2015), 

and non-vehicle holding (NVH) (e.g., Ziliaskopoulos, 2000; Shen et al., 2007; Nie, 2011; Zheng and 

Chiu, 2011; Zhu and Ukkusuri, 2013). Queue spillback occurs when the end of a queue spills 

backward in the network. This property can be easily captured in a SO-DTA model by incorporating a 

physical queue traffic flow model. FIFO implies that vehicles that enter a link earlier will leave it 

sooner (Wu et al. 1998; Lo and Szeto, 2002; Long et al., 2011). The FIFO constraint on traffic flow in 

a single-destination network is usually assumed to be satisfied by nature, and the constraint becomes 

necessary when multi-commodity flow is addressed. Vehicle holding (VH) implies that drivers are 

reluctant to move forward from upstream links to downstream links even if there are vacant spaces in 

the downstream links. In many discrete SO-DTA models, the problem of VH stems from relaxation 

and linearization (e.g., Merchant and Nemhauser, 1978a; Carey and Subrahmanian, 2000; 

Ziliaskopoulos, 2000; Nie, 2011). 

In this paper, we use step functions to approximate a cumulative-flow curve for each link, and 
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decompose link inflow into sub-flows according to time of departure from the link. Based on the travel 

times estimated from the decomposed link inflows, we develop two methods of evaluating link 

emissions. In contrast with existing methods (e.g., Aziz and Ukkusuri, 2012; Ma et al., 2015), the 

proposed methods of estimating link emissions can be integrated with any average speed based 

emission functions. In addition, we use Yperman’s (2007) link transmission model (LTM) to represent 

dynamic network constraints and NVH constraints on SO-DTA problems in single-destination 

networks. The LTM combines Daganzo’s (1995) cell transmission model (CTM) with a triangular 

fundamental diagram and Newell’s (1993) cumulative curves. As each link can be treated as a single 

cell, the LTM has a much higher computational efficiency than the Lighthill-Whitham-Richards model, 

a classical numerical solution scheme, while retaining the latter’s accuracy (Yperman, 2007). We also 

develop link inflow decomposition constraints to represent the relationship between cumulative 

decomposed link flow and cumulative link inflow and outflow. Integrating the LTM-based dynamic 

network constraints, NVH constraints, link inflow decomposition constraints and TSE derived from 

the estimated link emissions, we formulate SO-DTA models with environmental objectives as MILP 

problems. Four SO-DTA models are proposed. Two of them are with single objective, and the other 

two models are with bi-objective.  

The main contributions made in our research are as follows.  

First, we develop a novel method of estimating link emissions and TSE using decomposed link 

inflow. The TSE obtained is a linear function with respect to cumulative link flow. 

Second, we propose link inflow decomposition constraints for SO-DTA problems with 

environmental objectives, which represent the relationship between cumulative decomposed link 

inflow and cumulative link inflow and outflow. 

Third, we develop link-based MILP formulations for SO-DTA problems with environmental 

objectives, in which link transmission model is used as the traffic flow model. The proposed 

link-based models are more accurate and computationally efficient than existing cell-based models, 

and can achieve a global optimum. 

The rest of the paper is organized as follows. In the next section, we provide an overview of 
discrete-time link travel time and propose methods of estimating discrete-time link emissions. In 
Section 3, LTM-based dynamic network constraints, NVH constraints, and link inflow decomposition 
constraints are applied to SO-DTA models, and four SO-DTA problems with environmental objectives 
are formulated as MILP problems. Numerical examples are provided in Section 4, and conclusions are 
drawn in Section 5. 
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2. Estimation of link travel time and emissions 

2.1. Continuous-time link travel times and emissions 

Let )(tUa  ( )(tVa ) be the cumulative number of vehicles that enter (exit) link a at time t. As 

shown in Fig. 1, link travel time is related to cumulative vehicle number as follows: 

))(()( ttVtU aaa τ+= , where )(taτ  is the link travel time with respect to time t. If )(tUa  and 

)(tVa  are strictly increasing with respect to t and the FIFO condition is met, the dynamic link travel 

time can be formulated as follows (Long et al., 2011): 

ttUVt aaa −= − ))(()( 1τ , (1) 

where )(1 ⋅−
aV  is the inverse function of )(⋅aV . 

Following Penic and Upchurch (1992), the emission rate of a link is assumed to be a function of 

the average speed of the vehicles traveling through the link, i.e. / ( )a aL tτ . We thus obtain the total 

emissions caused by travelers using link a for the whole period under study as follows: 

( )
0

/ ( ) ( ) ( )
T

a a a a a aE L t t u t dtφ τ τ= ∫ , (2) 

where ( )aφ ⋅  is the emission-rate function for link a, measured in grams per vehicle per second, T  

is the period under study, and ( )au t  is the rate of inflow to link a at time t. 
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Fig. 1. Cumulative vehicle numbers as a function of time. 

2.2. Estimation of discrete-time link travel time 

In DTA models, time t is usually discretized into small time intervals. In this paper, t∆  denotes 

interval length. The average travel time of the vehicles entering a link during interval ],( ttt ∆+  can 

be calculated as follows (Long et al., 2011): 
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, (3) 

where )(1 ⋅−
aU  is the inverse function of )(⋅aU . The numerator on the right hand side of Eq. (3) is 

equal to the shadowed area in Fig. 1, and the denominator is the number of vehicles that enter link a 
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during this interval. 

We discretize a given period T into a finite set of time intervals: { 1,2, , }K k K= =  . Let δ  be 

the interval length, such that K Tδ = . To simplify the definition, let ( )aU k  and ( )aV k  be the 

cumulative numbers of vehicles that enter and leave link a during interval k, respectively. As shown in 

Fig. 2, we use step functions to approximate the profiles of the cumulative flows ( )aU k  and ( )aV k  

for link a. It is clear from the figure that not all of the vehicles that enter link a during interval k (i.e., 

( )ay k ) can exit link a during the same discretized time tick; instead, the full packet must be 

decomposed to give several sub-packets that leave the link at different intervals. Let ( , )ay k l  be the 

number of vehicles entering link a during interval k and exiting the link during interval l, and let 

( , )aY k l  be the cumulative number of vehicles entering link a during interval k and exiting the link at 

the end of interval l. By definition, the following is true: 

( 1)
( ) ( ) ( ) ( 1),

k

a a a ak
y k u t dt U k U k k K

δ

δ−
= = − − ∀ ∈∫ , (4) 

( ) ( , ),a a
l K

y k y k l k K
∈

= ∀ ∈∑ , and (5) 

( , ) ( , ) ( , 1), ,a a ay k l Y k l Y k l k K l K= − − ∀ ∈ ∈ . (6) 

According to Long et al. (2011), the cumulative flow ( , )aY k l  can be formulated as follows: 
1

1

0,                               if ,

( , ) ( ) ( 1),       if ,
( ) ( 1),     otherwise,

k
a

k k
a a a a a

a a

l n
Y k l V l U k n l n

U k U k

−

−

 <


= − − ≤ <
 − −

 (7) 

where k
an  is the critical outflow interval with respect to interval k, and is defined as follows: 

min{ | ( ) ( ), / }k
a a a an l U k V l l k ι δ= ≤ > +


, (8) 

where aι


 is the free flow travel time of vehicles on link a, and we assume that /aι δ
 is an integer. 

 

k
an1k

an −1−k k

)1( −kUa

)(kUa

)(kya
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a ay k n −

1( )k
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( )l k δ−
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Fig. 2. Decomposition of link inflow. 

As shown in Fig. 1, when the cumulative inflow has a steeper slope, and the cumulative outflow has a 

less steep one, the inflow in one time step can be divided into several time steps at the outflow side. In this 

case, we have 1k k
a an n− < . We may also have another case: the cumulative inflow has a less steep slope and 

the outflow has a steeper slope. The inflow in one time step can leave the link during one time step at the 

outflow side. In this case, we have 1k k
a an n− = . 

Any sub-packet ( , )ay k l  that enters link a during interval k and leaves link a during interval l 

has an estimated travel time of ( )l k δ−  and a total travel time of ( , )( )ay k l l k δ− . The total travel 

time of the entire packet )(kya , which is obtained by summing the travel times of individual 

sub-packets, is equal to the shadowed area in Fig. 2. Therefore, we can formulate the average travel 

time of the vehicles that enter link a during interval k as follows: 

( ) ( , )( ) / ( )a a a
l K

t k y k l l k y kδ
∈

= −∑ . (9) 

Substituting Eqs. (4) and (6) into Eq. (9) gives the following: 

( ) [ ( , ) ( , 1)]( )
[ ( ) ( 1)]

a a
a

l K a a

l k Y k l Y k lt k
U k U k
δ

∈

− − −
=

− −∑ . (10) 

Assumption 1. The continuous-time link travel time is continuous with respect to time instant t. 

Lemma 1. Under Assumption 1, the link travel times calculated by Eq. (10) converge to the 

continuous-time link travel times calculated by Eq. (1). 
The proof is similar to the proof provided for Proposition 10 by Long et al. (2013). The detailed 

proof is presented in Appendix A. 

Note that Assumption 1 may not be satisfied if queue spillback happens. In this case, the link travel 

times estimated by Eq. (10) will never converge to the continuous-time link travel times calculated by 

Eq. (1). 

2.3. Estimation of discrete-time link emissions 

2.3.1. Estimate link emissions from entire packet 

We assume that all vehicles entering link a during the same interval travel through the link at the 

same constant speed. The estimated travel time of the entire packet )(kya  can be used to estimate 

average vehicle speed, as follows: 

( )
a

ak
a

Ls
t k

= , (11) 

where aL  is the length of link a. 

Therefore, the emission rate of the entire packet )(kya  can be obtained as follows: 

( )( ) / ( )ak a ak a a as L t kφ φ φ= = . (12) 
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We estimate the total emissions arising from travelers using link a during the period under study 

by summing the total emissions for each packet, as follows: 

( )( ) ( ) / ( ) ( )[ ( ) ( 1)]a ak a a a a a a a a
k K k K

E t k y k L t k t k U k U kφ φ
∈ ∈

= = − −∑ ∑ . (13) 

Assumption 2. The emission rate function ( )aφ ⋅  is continuous with respect to vehicle speed. 

Proposition 1. Under Assumptions 1 and 2, the link emissions obtained from Eq. (13) converge to the 

continuous-time link emissions obtained from Eq. (2) when the length of interval δ  approaches 0. 
The proof is presented in Appendix B. 

2.3.2. Estimate link emissions from sub-packets 

As stated above, the sub-packet ( , )ay k l  has an estimated travel time of ( )l k δ− . The average 

speed of vehicles in this sub-packet can be estimated as follows: 

( )
a

akl
Ls

l k δ
=

−
. (14) 

The average vehicle speed can be used to estimate the emission rate of sub-packet ( , )ay k l , as 

follows:  

( )akl a aklsφ φ= . (15) 

We estimate the total emissions of the packet ( )ay k  by summing the total emissions of each 

sub-packet, i.e., ( )( ) ( , )a akl al K
s l k y k lφ δ

∈
−∑ . We estimate the total emissions arising from travelers 

using link a during the period under study by summing the total emissions of individual packets, as 

follows: 

( , ) [ ( , ) ( , 1)]a akl a akl a a
k K l K k K l K

E y k l Y k l Y k lφ φ
∈ ∈ ∈ ∈

= = − −∑∑ ∑∑  . (16) 

where aklφ  is a positive constant and 

( )( ) ( )( ) / ( ) ( )akl akl a akl a al k s l k L l k l kφ φ δ φ δ φ δ δ= − = − = − − .  

Proposition 2. Under Assumptions 1 and 2, the link emissions obtained from Eq. (16) converge to the 

link emissions obtained from Eq. (13) and the continuous-time link emissions obtained from (2) when 

the length of interval δ  approaches 0. 

The proof is presented in Appendix C. 

3. LTM-based SO-DTA problems with environmental objectives 

3.1. Notations 

We consider a network G (N, A) with multiple origins and a single destination. N  and A  

denote sets of nodes and arcs (links), respectively. The links in the network are classified into three 
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categories: source links, destination links, and general links. It is assumed that each source (destination) 

link is connected to a single origin (destination) node, and that each source (destination) node is 

connected to a single origin (destination) link. The source and destination links are both dummy links. 

All of the source and destination links have an infinite inflow capacity and an infinite storage capacity, 

and vehicles remain at destination links on arrival. As the network has a single destination, there is 

only one destination link. The following additional notation is used throughout the paper: 

Sets  
R  set of origin nodes 

RA  set of origin links 
A  set of links excluding destination link 

( )aΓ  
set of successor links of link a (downstream links directly connected to 
link a) 

1( )a−Γ  
set of predecessor links of link a (upstream links directly connected to 
link a) 

Parameters  

av  free flow speed of vehicles on link a 

aw  backward shock-wave speed of traffic on link a 

aι


 
travel time required by the backward shock-wave from the exit to the 
entrance of link a 

jamρ  jam density  
( )aQ k  link inflow capacity during interval k 
( )aC k  link outflow capacity during interval k 

( )aD k  
cumulative demand generated by the entrance of origin link a at the end 
of interval k 

Variables  

( )abW k  
cumulative number of vehicles that leave link a and enter link b by the 
end of interval k 

Vectors  
U  [ ( ), , ]aU k a A k K∈ ∈  
V  [ ( ), , ]aV k a A k K∈ ∈  
W  [ ( ), , ( ), ]abW k a A b a k K∈ ∈Γ ∈  
Y  [ ( , ), , , ]aY k l a A k K l K∈ ∈ ∈  
x  [ , , ]=x U V W  

    Acronyms of SO-DTA problems  
TSTT-SO-DTA SO-DTA problem with efficiency objective and without NVH 

constraints 
TSTT-NVH-SO-DTA SO-DTA problem with efficiency objective and NVH constraints 

TSE-SO-DTA SO-DTA problem with environmental objective and without NVH 
constraints 
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TSE-NVH-SO-DTA SO-DTA problem with environmental objective and NVH constraints 
TSTT-TSE-SO-DTA SO-DTA problem with efficiency and environmental objectives and 

without NVH constraints 
TSTT-TSE-NVH-SO-DTA SO-DTA problem with efficiency and environmental objectives and 

NVH constraints 

3.2. Overview of LTM dynamic network constraints 

The LTM is based on a triangular fundamental diagram (Yperman, 2007) and defined by three 

parameters: fixed free-flow speed ( v ), maximum flow or capacity ( maxq ), and jam density ( jamρ ) (see 

Fig. 3). Both critical density, critρ , and backward shock wave speed, w , can be derived from these 

three parameters, as follows: vqcrit /max=ρ  and )/( maxmax vqvqw jamρ−= . Newell’s simplified 

method is used to determine sending and receiving flow. 

q

maxq

ρjamρcritρ

v
w

 
Fig. 3. Triangular fundamental diagram (Yperman, 2007). 

 

The sending flow of a link is constrained by both the boundary conditions at the upstream end of 

the link and the outflow capacity of the link. According to Newell’s (1993) simplified theory, a 

free-flow traffic state observed at the downstream link boundary at the end of interval k must have 

been emitted from the upstream boundary /a aL vδ  time units earlier (i.e., with a free-flow travel 

time of aι


). The sending flow of link a during interval k can be mathematically expressed as follows 

(Yperman, 2007): 
( ) min{ ( ) ( 1), ( )}a a a a aS k U k V k C kι= − − −

 . (17) 

The receiving flow of a link is constrained by both the boundary conditions at the downstream end 

of the link and the inflow capacity of the link. According to Newell’s (1993) simplified theory, a 

congested traffic state observed at the upstream boundary at the end of interval k must have been 

emitted from the downstream boundary /a aL wδ−  time units earlier (i.e., with a backward shock 

wave travel time of aι


), as congested traffic travels at a (negative) speed of aw . The receiving flow 

of link a during interval k can be mathematically expressed as follows (Yperman, 2007): 



 

 10 

( ) min{ ( ) ( 1), ( )}a a a a jam a aR k V k L U k Q kι ρ= − + − −
 . (18) 

The outflow of an ordinary link a with only one successor link b can be obtained as follows: 

{ }( ) ( 1) min ( ), ( )a a a bV k V k S k R k− − = . (19) 

In the LTM, Eq. (19) is a disjunctive function, and its feasible region contains a non-convex set, as 

in the CTM (Zhang and Chiu, 2011). Similar to the CTM-based SO-DTA model reported by 

Ziliaskopoulos (2000), the LTM-based SO-DTA model enables Eqs. (17)-(19) to be relaxed into the 

following system of linear LTM-based flow constraints (Long and Szeto, 2015): 

( ) ( ), , ,
( ) ( 1) ( ), , ,
( ) ( ) , , ( ), ,

( ) ( 1) ( ), , ( ), .

a a a

a a a

b b b b jam

b b b

V k U k a A k K
V k V k C k a A k K
U k V k L a A b a k K

U k U k Q k a A b a k K

ι

ι ρ

 ≤ − ∀ ∈ ∈


− − ≤ ∀ ∈ ∈


≤ − + ∀ ∈ ∈Γ ∈
 − − ≤ ∀ ∈ ∈Γ ∈



  (20) 

The LTM also requires traffic flow to satisfy flow conservation and definitional constraints. Under 

flow conservation constraints, all traffic entering a node (except a destination node), together with the 

demand generated at this node, must exit from the node. We use the following flow conservation 

constraints: 

( ) ( ), ,a a RU k D k a A k K= ∀ ∈ ∈ , (21) 

1 ( )

( ) ( ), \ ,a ba R
b a

U k W k a A A k K
−∈Γ

= ∀ ∈ ∈∑ , and (22) 

( )
( ) ( ), ,a ab

b a
V k W k a A k K

∈Γ

= ∀ ∈ ∈∑ . (23) 

In addition, all vehicles should arrive at their destinations during the studied period. Equivalently, 
beside the destination link, the number of vehicles on all links should be zero at the end of the studied 
period. Hence, we have 

[ ( ) ( )] 0,a a
a A

U K V K
∈

− =∑ , (24) 

Definitional constraints are used to describe the initial conditions and the non-negative and no
n-decreasing properties of the cumulative flow. We use the following constraints:

( ) ( 1) 0, , ( ),ab abW k W k a A b a k K− − ≥ ∀ ∈ ∈Γ ∈ , and (25) 

(0) 0, , ( )abY a A b a= ∀ ∈ ∈Γ . (26) 

Constraints (25) and (26) imply that the cumulative transfer flow is non-negative. Constraints (22)-(26) 

imply that the cumulative link inflow and outflow are non-decreasing, non-negative, and are initially 

equal to 0.Definition 1 (basic feasible flow set). Constraints (20)-(26) form a basic feasible flow set 

for an LTM-based SO-DTA problem in a network with a single destination . The set is formulated as 

follows:  
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{ |Ω = x Subject to constraints (20)-(26)}. (27) 

3.3. NVH constraints 

In the LTM-based SO-DTA model, constraint (18) in the LTM is relaxed to constraint (20), which 

is a set of “less than or equal to” constraints. An optimal solution to the SO-DTA model is obtained if a 

link-interval pair exists such that all of the constraints in condition (20) fall into the inequality region. 

As a result, vehicles are likely to be held in the link without moving forward, even if there is enough 

capacity in the successor link. This solution property is known as VH (Zheng and Chiu, 2011). 

Therefore, VH phenomenon can be avoided such that at least one of the following less than or equal to 

inequalities is equal for each a A∈  and k K∈ (Long and Szeto, 2015): 
( ) ( ),
( ) ( 1) ( ),
( ) ( ) , ( ),

( ) ( 1) ( ), ( ).

a a a

a a a

b b b b jam

b b b

V k U k
V k V k C k
U k V k L b a
U k U k Q k b a

ι

ι ρ

≤ −
 − − ≤
 ≤ − + ∀ ∈Γ
 − − ≤ ∀ ∈Γ



  (28) 

For any non-destination link a with | ( ) |aΓ  successor links, the first two inequalities in system 

(28) restrict the sending flow of link a, and the last two inequalities in system (28) restrict the 

receiving flow of all of link a’s successor links. Therefore, the number of constraints in system (28) 

with respect to interval k is 2 2 | ( ) |a+ Γ . The NVH conditions require that an equality holds for at 

least one of the 2 2 | ( ) |a+ Γ  constraints. Accordingly, the NVH conditions can be formulated as the 

following mixed-integer constraints (Long and Szeto, 2015): 

0

1
( ) ( ) ( ) ( ), ,

am
i

a a a a a
i

k k M V k U k a A k Kθ θ ι
=

 
− + ≤ − − ∀ ∈ ∈ 
 

∑ 
, (29a) 

0

1
1 ( ) ( ) ( ) ( 1) ( ), ,

am
i

a a a a a
i

k k M V k V k C k a A k Kθ θ
=

 
− − + ≤ − − − ∀ ∈ ∈ 
 

∑ , (29b) 

0

1 1
( ) (2 1) ( ) ( ) ( ) , , , ,

a a

j j j j

m m
j j i

i a i a b b b b jam a
i i

k k M U k V k L a A k K j Jσ θ σ θ ι ρ
= =

 
− + − − ≤ − − − ∀ ∈ ∈ ∈ 
 
∑ ∑ 

,

 (29c) 

0

1 1
1 ( ) (2 1) ( ) ( ) ( 1) ( ), , ,

a a

j j j

m m
j j i

i a i a b b b a
i i

k k M U k U k Q k a A k K j Jσ θ σ θ
= =

 
− + − − − ≤ − − − ∀ ∈ ∈ ∈ 
 
∑ ∑ ,

 (29d) 

0
2 ( ) 1 2 | ( ) |, ,

am
i i

a
i

k a a A k Kθ
=

≤ + Γ ∀ ∈ ∈∑ , (29g) 

( ) {0,1}, , , , 0,1, ,i
a ak a A k K i mθ ∈ ∀ ∀ ∈ ∈ =  . (29h) 

where M is a very large positive value, {1, 2, ,| ( ) |}aJ a= Γ  is an index set for link a’s successor 

links, jb  is the jth link in ( )aΓ , { }1arg min 2 2 2 | ( ) |m
a m

m a+= ≥ + Γ , and j
iσ  is 0 or 1, such that 
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1
1
2am i i

ji
jσ−

=
=∑ . System (29) contains 1am +  integer variables, which can form 12 am +  

combinations. System (28) contains 2 2 | ( ) |a+ Γ  LTM-based flow constraints, and constraint (29g) 
implies that only 2 2 | ( ) |a+ Γ  combinations of the integer variables can be used. 
 

3.4. Link inflow decomposition constraints 

As link emissions are estimated using decomposed link inflow, link inflow decomposition 

constraints are developed to formulate a relationship between cumulative link sub-flow and 

cumulative link inflow and outflow. As shown in Fig. 2, Eq. (7) can also be formulated as follows: 

0, if ( ) ( 1),
( , ) ( ) ( 1), if ( 1) ( ) ( ), , ,

( ) ( 1), if ( ) ( ).

a a

a a a a a a

a a a a

V l U k
Y k l V l U k U k V l U k a A k K l K

U k U k V l U k

≤ −
= − − − < < ∀ ∈ ∈ ∈
 − − ≥

. (30) 

We offer the following proposition: 

Proposition 3. For any given vectors U  and V , vector Y  satisfies Eq. (30) if and only if it 

fulfills the following conditions: 

( , ) 0, , ,aY k l a A k K l K≥ ∀ ∈ ∈ ∈ , (31) 

( , ) ( ) ( 1), , ,a a aY k l U k U k a A k K l K≤ − − ∀ ∈ ∈ ∈ , (32) 

( , ) ( ), ,a a
k

Y k l V l a A l K= ∀ ∈ ∈∑ , (33) 

( , ) 0, if ( ) ( 1), , ,a a aY k l V l U k a A k K l K= ≤ − ∀ ∈ ∈ ∈ , and (34) 

( , ) ( ) ( 1), if ( ) ( ), , ,a a a a aY k l U k U k V l U k a A k K l K= − − ≥ ∀ ∈ ∈ ∈ . (35) 

The proof is presented in Appendix D. 

The conditional constraints (34) and (35) can be reformulated within the mixed integer 

programming framework using the well-known “Big M” method, which introduces a large positive 

coefficient, M. We offer the following proposition: 

Proposition 4. Constraints (31)-(35) can be equivalently formulated as follows: 

( , ) 0, , , ,aY k l a A k K l K≥ ∀ ∈ ∈ ∈  (36a) 

( , ) ( ) ( 1), , ,a a aY k l U k U k a A k K l K≤ − − ∀ ∈ ∈ ∈ , (36b) 

( , ) ( ), ,a a
k K

Y k l V l a A l K
∈

= ∀ ∈ ∈∑ , (36c) 

( , ) ( 1, ) , , , ,a aY k l k l M a A k K l Kϖ≤ − ∀ ∈ ∈ ∈  (36d) 

( , ) ( ) ( 1) [1 ( 1, )] , , , ,a a a aY k l U k U k k l M a A k K l Kϖ≥ − − − − − ∀ ∈ ∈ ∈  (36e) 
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( ) ( ) ( , ) , , , ,a a aV l U k k l M a A k K l Kϖ− ≤ ∀ ∈ ∈ ∈  (36f) 

( ) ( ) [ ( , ) 1] , , , ,a a aV l U k k l M a A k K l Kϖ− ≥ − ∀ ∈ ∈ ∈  (36g) 

( , ) {0,1}, , ,a k l a A k K l Kϖ ∈ ∀ ∈ ∈ ∈ . (36h) 

The proof is presented in Appendix E. 
 

3.5. Overview of SO-DTA models in terms of TSTT 

The TSTT for the whole network is the sum of link travel times of all vehicles in the network, and 

can be formulated as follows: 

( ) ( )a a
a A k K

TSTT y k t k
∈ ∈

= ∑∑ . (37) 

Assumption 3. All vehicles arrive at their destinations during the studied period. 

Proposition 5: Under Assumption 3, Eq. (37) can be equivalently formulated as follows: 

[ ( ) ( )]a a
a A k K

TSTT U k V kδ
∈ ∈

= −∑∑ . (38) 

The proof is presented in Appendix F. 

Because ( ) ( )a aU k V k−  is the number of vehicles on link a at the end of interval k, the TSTT 

obtained from Eq. (38) is consistent with Ziliaskopoulos’ (2000) formulation. The objective of an 

LTM-based TSTT-SO-DTA model is to minimize TSTT in a network, which equals the sum of the 

number of vehicles on all links within the modeling horizon. Therefore, a TSTT-SO-DTA problem can 

be formulated as the following LP problem (Long and Szeto, 2015): 

[ ]min ( ) ( )a a
a A k K

TSTT U k V kδ
∈Ω

∈ ∈

= −∑∑x
. (39) 

According to Long and Szeto (2015), a TSTT-NVH-SO-DTA problem can be formulated as the 

following LP problem: 

\
max ( ) ( )a a

a A A k K a A k K
U k V kϖ α

∈Ω
∈ ∈ ∈ ∈

= +∑ ∑ ∑∑x
 , (40) 

where α  is a sufficiently small positive constant. The first term on the right hand side of Eq. (40) is 

to achieve an earliest arrival flow (EAF) pattern. According to Zheng and Chiu (2011), the R-SO-DTA 

problem is equivalent to the EAF problem. The second term on the right hand side of Eq. (40) is a 

penalty term. Long and Szeto (2015) proved that if the positive constant α  is sufficiently small, the 

optimal solution of LP problem (40) is an NVH-SO flow pattern in terms of the TSTT. 

3.6. SO-DTA models with environmental objectives 

3.6.1. TSE-SO-DTA problems 

The TSE of the whole network is estimated by summing the emissions from all of the links in the 
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network. Either Eq. (13) or Eq. (16) below can be used to compute TSE: 

( )1 / ( ) ( )[ ( ) ( 1)]a a a a a a
a A k K

TSE L t k t k U k U kφ
∈ ∈

= − −∑∑ , and  (41) 

2 ( , ) [ ( , ) ( , 1)]akl a akl a a
a A k K l K a A k K l K

TSE y k l Y k l Y k lφ φ
∈ ∈ ∈ ∈ ∈ ∈

= = − −∑∑∑ ∑∑∑  . (42) 

According to Eq. (10), ( )at k  is a nonlinear and nonconvex function with respect to link 

cumulative flows. If Eq. (41) is used, TSE is a non-linear and non-convex function with respect to 

cumulative link flow (comprising cumulative link inflow, outflow, and sub-flow). In contrast, Eq. (42) 

gives a linear TSE function with respect to cumulative link flow. Therefore, we use the latter as the 

objective function for the TSE-SO-DTA problem. Combining this objective function with LTM-based 

dynamic network constraints and link inflow decomposition constraints, we formulate the 

TSE-SO-DTA problem as the following MILP problem: 

, ,
min [ ( , ) ( , 1)]akl a a

a A k K l K
TSE Y k l Y k lφ

∈Ω
∈ ∈ ∈

= − −∑∑∑x Y ω
 , (43) 

Subject to Constraints (36),  

where [ ]( , )a k lϖ=ω . 

3.6.2. TSE-NVH-SO-DTA problem 

If NVH constraints are also considered, the TSE-NVH-SO-DTA problem can be formulated as the 

following MILP problem: 

, , ,
min [ ( , ) ( , 1)]akl a a

a A k K l K
TSE Y k l Y k lφ

∈Ω
∈ ∈ ∈

= − −∑∑∑x Y θ ω
 , (44) 

Subject to Constraints (29) and (36),  

where [ ( )]i
a kθ=θ . 

3.6.3. The TSTT-TSE-SO-DTA problem 

The TSTT-TSE-SO-DTA problem aims to predict an optimal time-dependent traffic state that 

simultaneously minimizes network-wide congestion and vehicle emissions for the whole network. The 

TSTT-TSE-SO-DTA problem can be formulated as a bi-objective MILP problem: 

[ ]
, ,

min [ , ] ( ) ( ) , [ ( , ) ( , 1)]a a akl a a
a A k K a A k K l K

TSTT TSE U k V k Y k l Y k lδ φ
∈Ω

∈ ∈ ∈ ∈ ∈

 = − − −  
∑∑ ∑∑∑x Y ω

 , (45) 

Subject to Constraint (36).  

3.6.4. The TSTT-TSE-NVH-SO-DTA problem 

If NVH constraints are also considered, the TSTT-TSE-NVH-SO-DTA problem can be formulated 

as the following bi-objective MILP problem: 
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[ ]
, , ,

min [ , ] ( ) ( ) , [ ( , ) ( , 1)]a a akl a a
a A k K a A k K l K

TSTT TSE U k V k Y k l Y k lδ φ
∈Ω

∈ ∈ ∈ ∈ ∈

 = − − −  
∑∑ ∑∑∑x Y θ ω

 , (46) 

Subject to Constraints (29) and (36).  

4. Numerical examples 

In this section, four numerical examples are presented to illustrate the performance of the proposed 

models. In the first example, a single link network is used to evaluate the accuracy of the proposed 

method to estimate TSEs. The second example uses a merged network to demonstrate better modeling 

accuracy of the proposed SO-DTA model than existing models. The third example uses 

Ziliaskopoulos’s (2000) network to compare the optimal solutions provided by various SO-DTA 

models. The last example uses the modified Nguyen and Dupuis (1984) network to demonstrate that 

the proposed LTM-based models are more computational efficiency than the CTM-based models. All 

of the experiments are run on a computer with an Intel® Core™ 2 Quad Q9550 2.83 GHz central 

processing unit and 3.5 GB random-access memory. All of the LP and MILP problems are solved 

using the commercial software package Gurobi (version 6.0). 

In all experiments, we focus on CO emissions, and use the following CO emission rate function 

(Stein and Walker, 2003; Aziz and Ukkusuri, 2012): 

( )2( ) 0.064 0.0056 0.00026 50V V Vφ = − + + − , (47) 

where ( )Vφ  is the emission rate function (in grams of CO per vehicle per second) and V  is the 

speed of the vehicle in miles per hour (mph). 

Example 1. A single link network: evaluating the accuracy of the estimated TSEs. 

In this example, we adopted a network with single link to evaluate the accuracy of the TSEs 

obtained from Eqs. (13) and (16), respectively. We assumed that the link is empty initially. The input 

parameters for the LTM are given as follows: 133 vehicles (veh)/km for jam density, 20 m/s for free 

flow speed, 10 m/s for backward shockwave speed; 36 veh/min for flow capacity, and 2.4 km for link 

length. Following Carey and Ge (2005) and Long et al (2011), the traffic demand lasts 24 min, and the 

following demand function is adopted: 

5

32sin( /10),                         if 0 5,
( ) 32,                                          if 5 10,

20 12sin ( ( 4) / 28),      if 10 24,

t t
d t t

t t

π

π

 ≤ <
= ≤ <
 + + ≤ ≤

                    (45) 

where ( )d t  is the demand rate at time t in veh/min. We set a constant outflow capacity at 25.2 

veh/min. 

We set a very short interval length (0.01 seconds), use the LTM to obtain the cumulative-flow 

curves for the links, and obtain the theoretical value of TSE using Eq. (13), which gives 30810.76 gm. 
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The theoretical value of TSE offers a very useful means of evaluating the accuracy of the proposed 

methods of estimating TSE. We vary the length of the interval from 0.1 seconds to 20 seconds, 

generate cumulative flow curves from the LTM, and use the two proposed methods to estimate TSE 

for different interval lengths. The relative error of the two TSE-estimation methods is provided in 

Table 1. Both methods exhibit a very high accuracy, and relative estimation error increases uniformly 

for both methods with an increase in δ . These findings indicate that shortening interval length can 

improve the accuracy of TSE estimation. We also observe from the table that TSE is slightly 

under-estimated using Eq. (13) and slightly over-estimated using Eq. (16). 

 
Table 1. Relative error of TSE estimation. 
Interval length δ (s) 0.1 1 5 10 20 

1TSE  (g) 30810.76 30810.73 30809.12 30806.2 30789.07 

Error of 1TSE  (%) 0.00 -9.74E-05 -5.32E-03 -1.48E-02 -7.04E-02 

2TSE  (g) 30810.76 30810.85 30812.05 30817.63 30835.53 

Error of 2TSE  (%) 0.00 2.92E-04 4.19E-03 2.23E-02 8.04E-02 

 

Example 2. TSE-SO-DTA problem in a merged network: comparing the performance of the proposed 

model with existing models. 

In this example, a merged network (see Fig. 4) consisting of six nodes, five links, and two 
origin-destination (OD) pairs (from Nodes 1r  and 2r  to Node s ) is considered. The length of each 
link is the same and is 200 m. The interval length is 10δ = s. Both the free flow and backward 
shockwave speeds are 72 km/h (i.e., 20 m/s). Hence, the free-flow travel times on all links are one 
interval long, and the LTM is equivalent to the CTM in this example. The initial state of the network is 
empty. Table 2 provides the maximum occupancy and flow capacity of each link. The flow capacity is 
20 veh/interval for Links 1, 2, and 5, and 12 veh/interval for other two links. The traffic demands of 
both OD pairs are the same. To demonstrate the accuracy of the proposed TSE-SO-DTA model, we 
construct three scenarios with different levels of traffic demands. The traffic demand in the three 
scenarios comprises 3, 6, and 16 vehicles for each OD pair, respectively, during the first three intervals, 
and 0 vehicles during the other intervals. 

 

3

3

s

1
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4

5
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2  
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Fig. 4. A merge network for Example 2. 
 

Table 2. Setting for the merge network. 
Link 1 2 3 4 5 

aN  100 100 20 20 100 

aC  20 20 12 12 20 

 

In this example, we compared our LTM-based model (i.e., proposed model (43)) with the 

CTM-based model with approximation proposed by Aziz and Ukkusuri (2012). In our model, the 

emission rate is estimated by the speed deduced from average link travel times. However, in the 

models proposed by Aziz and Ukkusuri (2012), the emission rate is estimated by vehicle instantaneous 

speed of each cell, and the obtained TSE from this emission rate (denoted as 3TSE ) is a nonlinear 

nonconvex function with respect to cell flows. As a result, the SO-DTA model taking 3TSE  as the 

objective in the study of Aziz and Ukkusuri (2012) is nonlinear and nonconvex mathematical program. 

Aziz and Ukkusuri (2012) proposed a formulation to approximate 3TSE . The approximated TSE 

(denoted as 4TSE ) is a quadratic function of cell flows, and the SO-DTA model taking 4TSE  as the 

objective in the study of Aziz and Ukkusuri (2012) is a QP model. 

Both the proposed model (43) in this paper and the QP model proposed by Aziz and Ukkusuri 

(2012) were used to solve the TSE-SO-DTA problems in this example. The TSEs corresponding to the 

optimal solutions of each model are provided in Table 3, where 1TSE  and 2TSE  were obtained by 

Eqs. (41) and (42), respectively; and 3TSE  and 4TSE  were obtained by Eqs. (6) and (7) in the study 

of Aziz and Ukkusuri (2012), respectively. One can observe from Table 3 that 1TSE , 2TSE , and 

3TSE  have very close values for all scenarios. In contrast, the value of 4TSE  is obviously less than 

the values of 1TSE , 2TSE , and 3TSE , and even can be negative when traffic demand is light. This 

implies that the approximation based on 4TSE  can be very inaccurate. In addition, one can also 

observe from Table 3 that all the values of 1TSE , 2TSE , and 3TSE  obtained from the optimal 

solutions to the proposed model are less than the TSEs obtained from the corresponding optimal 

solution to the QP model proposed by Aziz and Ukkusuri (2012). This implies that proposed model 

outperforms their QP model in terms of obtaining lower TSEs for TSE-SO-DTA problems. 

 
Table 3. Comparison of TSE values obtained from different models and estimation methods. 

Scenario Model 1TSE (g) 2TSE (g) 3TSE (g) 4TSE (g) 

Scenario 1 
This paper 232.48 232.48 232.48 -17.31 

Aziz and Ukkusuri 239.69 247.08 240.64 -26.59 

Scenario 2 
This paper 563.40 594.13 573.19 354.67 

Aziz and Ukkusuri 568.23 594.13 575.05 353.01 
Scenario 3 This paper 1171.27 1198.85 1200.70 1050.15 
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Aziz and Ukkusuri 1201.20 1223.93 1207.01 1010.90 

 

Example 3. SO-DTA problems in Ziliaskopoulos’s (2000) network: comparing the optimal solutions 

provided by various SO-DTA models. 

The test network shown in Fig. 5 is derived from Ziliaskopoulos (2000) and contains 9 nodes, 10 

links, and 1 OD pair (from Node r to Node s). Same as Example 2, interval length is 10 s; the length of 

each link is 200m; the free flow and backward shockwave speeds are 72 km/h (i.e., 20 m/s). The initial 

state of the network is empty. Table 4 provides the maximum occupancy and flow capacity of each 

link. The flow capacity is 12 veh/interval for Links 2 and 6 veh/interval for other links except Link 4. 

Following Ziliaskopoulos (2000), we assumed an accident occurred on Link 4 and that the flow 

capacity of Link 4 is thus time-varying: 0 veh/interval for the first four time intervals; 3 veh/interval 

for time intervals 5 and 6; and 6 veh/interval for the remaining time intervals. The traffic demands are 

eight vehicles for intervals 1 and 3, 16 for interval 2, and 0 vehicle for the rest of intervals. The 

parameter for LP problem (40) is 0.0001α = .  

1 2 9

8

10

4

6

7

5

3

r s1 2

3

4 5

6 7

 
Fig. 5. The Ziliaskopoulos (2000) network for Example 3. 

 

Table 4. Setting for the Ziliaskopoulos (2000) network. 
Link 1 2 3 4 5 6 7 8 9 10 

aN  100 20 10 10 10 10 10 10 20 100 

aC  12 12 6 - 6 6 6 6 12 12 

We firstly solved the TSTT-, TSTT-NVH-, TSE-, and TSE-NVH-SO-DTA problems, and 

calculated the TSTTs and TSEs corresponding to their optimal solutions, which are provided in rows 3 

and 4 of Table 5. One can observe that the SO-DTA problems either considering or not considering 

NVH constraints can have the same objectives. We fixed the TSTT (TSE) at the minimal TSTT (TSE), 

and solved the revised SO-DTA models that minimize or maximize TSE (TSTT). The TSTTs and 

TSEs corresponding to the optimal solutions to those revised SO-DTA problems are provided in the 

last four rows of Table 5. One can observe that the values of minimum and maximum TSE (TSTT) are 
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different when the value of TSTT (TSE) is fixed at the minimal TSTT (TSE). For example, the values 

of TSE can be varied from 450.86 g to 482.70 g when the TSTT is restricted to be its minimum value 

(i.e., 215 intervals), and the values of TSTT can be varied from 218 intervals to 221 intervals when 

TSE is restricted to be its minimum value (i.e., 446.90 g). This implies that the TSTT-, TSTT-NVH-, 

TSE-, and TSE-NVH-SO-DTA problems can have multiple optimal solutions.  

We further solved the bi-objective SO-DTA models (45) and (46), and graphically showed the 

Pareto frontiers of the two models in Fig. 6. One can clearly observe a trade-off between improving 

traffic efficiency (i.e., lowering TSTT) and mitigating traffic-induced environment pollution (i.e., 

lowering TSE). One can also observe that the Pareto frontier moves away from the origin when NVH 

constraints are considered, and the Pareto frontier of the TSTT-TSE-NVH-SO-DTA model can be 

discontinuous. The former is because the feasible region of the resultant SO-DTA problem is reduced 

after NVH constraints are incorporated into the TSTT-TSE-SO-DTA problem. The latter is because 

the resultant feasible region becomes a non-convex set. 
 

Table 5. TSTTs and TSEs obtained from different SO-DTA models in Example 3. 

Case 
Models Without NVH constraints With NVH constraints 

TSTT TSE TSTT (intervals) TSE (g) TSTT (intervals) TSE (g) 
1a Min - 215 466.22 215 464.90 
2b - Min 221 446.90 221 446.90 
3c Min* Min 215 450.86 215 463.58 
4d Min* Max 215 482.70 215 464.90 
5e Min Min* 218 446.90 218 446.90 
6f Max Min* 221 446.90 221 446.90 

a The SO-DTA models that minimize TSTT. 
b The SO-DTA models that minimize TSE. 
c The SO-DTA models that minimize TSE subject to the minimal TSTT constraint. 
d The SO-DTA models that maximize TSE subject to the minimal TSTT constraint. 
e The SO-DTA models that minimize TSTT subject to the minimal TSE constraint. 
f The SO-DTA models that maximize TSTT subject to the minimal TSE constraint. 
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Fig. 6. The Pareto frontiers of the bi-objective SO-DTA problems in Example 3. 

Example 4. SO-DTA problems in the modified Nguyen and Dupuis (1984) network: comparing the 

efficiency of the LTM-based models with that of the CTM-based models. 

In this example, we adopt a modified Nguyen and Dupuis network (see Fig. 7) to illustrate the 

efficiency of the proposed LTM-based models. The network has 17 nodes, 24 links, and 2 OD pairs 

(form Nodes 1r  and 2r  to Node s ). The length of time interval is 10 s. The input parameter values 

of the LTM are the same as those in Example 1. Both OD pairs have the same OD demands, which are 

15 veh/interval and last for 10 intervals. The maximum link occupancies and flow capacities of links 

r1-1, r2-4, and 14-s are infinite. The numbers of lanes are: 1 for Links 8-2 and 13-3, 2 for Links 12-8, 

3-14, 2-14, and 9-13, and 3 for other 18 links. The length of each link is provided in Table 6, and the 

modeling horizon is set to be 35 intervals. 
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Fig. 7. The modified Nguyen and Dupuis (1984) network for Example 4. 

 

Table 6. The length of each link in the modified Nguyen and Dupius network in Example 4. 
Link length (m) 200 600 800 800 1000 
 r1-1 1-12 1-5 4-5  
 r2-4 3-14 4-9 5-6  

Link 
14-s 2-14 5-9 6-7 

12-8 
 7-8 6-10 9-10 

  7-11 11-2 11-3  
  9-13 12-6 13-3  
  8-2    
  10-11    

 

We both adopted the LTM and the CTM as the traffic flow models, and solved the corresponding 

TSTT-, TSTT-NVH-, TSE-, and TSE-NVH-SO-DTA problems. The TSTTs, the TSEs, and the CPU 

times required to solve different SO-DTA models are provided in Table 7. The results show that both 

the LTM-based and the CTM-based SO-DTA models give the same TSTT and similar TSEs. One can 

also observe from Table 7 that the LTM-based models have smaller problem size and obviously 

outperform the CTM-based models in terms of computational efficiency. 

 

Table 7. The performance of both LTM-based and CTM-based models in Example 4. 

Models Number of 
Variables  

Number of 
Constraints  

CPU Time 
(s) 

TSTT 
(s) 

TSE 
(g) 

TSTT-SO-DTA 
LTM 2988 7454 0.41 54413.33 10618.49 
CTM 9036 23497 1.45 54413.33 10667.61 
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TSTT-NVH-SO-DTA 
LTM 5514 12215 1.38 54413.33 10566.61 
CTM 17442 38253 3.96 54413.33 10704.55 

TSE-SO-DTA 
LTM 63468 84974 6.29 54413.33 10524.21 
CTM 210636 329701 83.91 54500.00 10568.18 

TSE-NVH-SO-DTA 
LTM 65994 89735 30.33 54413.33 10536.06 
CTM 219042 344457 112.09 54510.00 10568.80 

5. Conclusions 

In this paper, the LTM was adopted as the traffic flow model, and step functions were used to 

approximate link cumulative flow curves for individual links and decompose link inflow into 

sub-flows. We used the sub-flows to obtain the average travel time for each link inflow and sub-flow. 

The average link inflow travel time and the average sub-flow travel time were used to estimate 

average vehicle speed. We integrated average speed based emission functions to develop two methods 

of estimating link emissions. We proved that the link emissions obtained using the two methods 

converge to the same value when interval length approaches 0. The numerical results revealed that 

both methods exhibit a desirable level of accuracy. Link inflow decomposition constraints were 

developed to retrieve sub-flows from link cumulative inflow and outflow. Considering various 

combinations of NVH constraints and TSTT objectives, four SO-DTA problems with environmental 

objectives were formulated. Examples were given to show the performance of the proposed models. 

The results show that the proposed SO-DTA models are more accurate than existing models, the 

TSTT-, TSTT-NVH-, TSE-, and TSE-NVH-SO-DTA problems can have multiple optimal solutions 

and the proposed the bi-objective SO-DTA models can capture the trade-off between emissions and 

travel time. The proposed link-based SO-DTA models also outperform cell-based models in terms of 

computational efficiency. 

In this study, SO-DTA models were developed for single destination network applications. In 

future work, we will extend the proposed models to general network contexts and consider vehicle 

FIFO requirements. In addition, we will consider the application of the proposed SO-DTA models to 

the management of network wide traffic flow, such as road congestion pricing, signal control, and 

speed limit determination. 
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Appendix A: Proof of Lemma 1 

Proof. The definition of k
an  in Eq. (8) gives the following: 

( 1) ( ) ( )k k
a a a a aV n U k V n− ≤ ≤ . (48) 

Based on the relationship between the cumulative departure flow and arrival flow of link a, we obtain 
the following: 

( 1) ( ) ( )k k
a a an k k n kδ τ δ δ− − ≤ ≤ − . (49) 

where ( )a kτ δ  is the link travel time for vehicles entering link a at time instant kδ . 

The first and second inequalities in Eq. (49), respectively, imply the following: 

( ) ( )k
a an k kδ τ δ δ− ≤ + , and (50) 

1(( 1) ) ( )k
a ak n kτ δ δ δ−− − ≤ − . (51) 

Eq. (18) gives the following: 

11
( ) ( )( ) ( ) ( )( ) ( )

k
a

k
a

nK

a ak a ak a
l l n

t k y l l k y k y l l k y kδ δ
−= =

= − = −∑ ∑ . (52) 

Therefore, 

1

1 1( ) ( )( ) ( ) ( )
k
a

k
a

n
k k

a ak a a a
l n

t k y l n k y k n kδ δ
−

− −

=

≥ − = −∑ , and  (53) 

1

( ) ( )( ) ( ) ( )
k
a

k
a

n
k k

a ak a a a
l n

t k y l n k y k n kδ δ
−=

≤ − = −∑ . (54) 

Substituting Eqs. (50) and (51) into Eqs. (53) and (54), respectively, gives the following: 
1(( 1) ) ( ) ( ) ( ) ( )k k

a a a a ak n k t k n k kτ δ δ δ δ τ δ δ−− − ≤ − ≤ ≤ − ≤ + . (55) 

Let t δ∆ = , t kδ= , and ( , ) ( )a at t t t k∆ = , where ( , )at t t∆  is a function of t∆ . Accordingly, 

Eq. (55) can be rewritten as follows: 

( ) ( , ) ( )a a at t t t t t t tτ τ− ∆ −∆ ≤ ∆ ≤ + ∆ . (56) 

According to Assumption 1, the continuous-time link travel time is continuous with respect to time 
instant t. Therefore, 

0 0 0
lim[ ( ) ] lim ( ) ( ) lim[ ( ) ]a a a at t t

t t t t t t t tτ τ τ τ
∆ → ∆ → ∆ →

−∆ −∆ = −∆ = = + ∆ . (57) 

Combining Eqs. (56) and (57) gives the following: 

0
lim ( , ) ( )a at

t t t tτ
∆ →

∆ = . (58) 

This implies that the link travel times calculated by Eq. (9) or (10) converge to the continuous-time 
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link travel times. This completes the proof. □ 

Appendix B: Proof of Proposition 1 

Proof. The following is true by definition: 

( ) ( )

( )

0 ( 1)0

( 1)0

/ ( ) ( ) ( ) lim / ( ) ( ) ( )

lim / ( ) ( ) ( ) .

T k

a a a a a a a a a a ak
k K

k

a a a a ak
k K

E L t t u t dt L t t u t dt

L k k u t dt

δ

δδ

δ

δδ

φ τ τ φ τ τ

φ τ δ τ δ

−→
∈

−→
∈

= =

=

∑∫ ∫

∑ ∫
 (59) 

According to Lemma 1, he link travel times calculated by Eq. (9) converge to the continuous-time 
link travel times. Therefore, 

( )

( )
( 1)0

0 0

lim / ( ) ( ) ( )

lim / ( ) ( ) ( ) lim .

k

a a a a a ak
k K

a a a a a a
k K

E L t k t k u t dt

L t k t k y k E

δ

δδ

δ δ

φ

φ

−→
∈

→ →
∈

=

= =

∑ ∫
∑

 (60) 

This completes the proof. □ 

Appendix C: Proof of Proposition 2 

Proof. The following is true by definition: 

( )

( )
1

0 0

0

0

lim lim ( , )

lim / ( ) ( ) ( , )

lim / ( ) ( ) ( , ).
k
a

k
a

a akl a
k K l K

a a a
k K l K

n

a a a
k K l n

E y k l

L l k l k y k l

L l k l k y k l

δ δ

δ

δ

φ

φ δ δ

φ δ δ
−

→ →
∈ ∈

→
∈ ∈

→
∈ =

=

= − −

= − −

∑∑

∑∑

∑ ∑



 (61) 

According to Lemma 1, the link travel times calculated by Eq. (9) converge to the continuous-time 
link travel times. Therefore, 

0 0 0 0
lim[ (( 1) ) ] lim (( 1) ) lim ( ) lim[ ( ) ]a a a ak k k k
δ δ δ δ

τ δ δ τ δ τ δ τ δ δ
→ → → →

− − = − = = + . (62) 

Combining Inequality (55) with Eq. (62) gives the following: 
1

0
lim( ) ( ), [ , ]k k

a a al k k l n n
δ

δ τ δ −

→
− = ∀ ∈ . (63) 

Substituting Eq. (63) into Eq. (61) gives the following: 
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( )

( )

( )

( )

1

1

0 0

0

0

0

0

lim lim / ( ) ( ) ( , )

lim / ( ) ( ) ( , )

lim / ( ) ( ) ( )

lim / ( ) ( ) ( )

lim .

k
a

k
a

k
a

k
a

n

a a a a a
k K l n

n

a a a a
k K l n

a a a a a
k K

a a a a a
k K

a

E L k l k y k l

L k l k y k l

L k t k y k

L t k t k y k

E

δ δ

δ

δ

δ

δ

φ τ δ δ

φ τ δ δ

φ τ δ

φ

−

−

→ →
∈ =

→
∈ =

→
∈

→
∈

→

= −

= −

=

=

=

∑ ∑

∑ ∑

∑

∑



 (64) 

Therefore, the link emissions obtained from Eq. (16) converge to the link emissions obtained from Eq. 

(13). According to Proposition 1, the link emissions obtained by Eq. (13) converge to the 

continuous-time link emissions obtained from (2). Therefore, the link emissions obtained from Eq. (16) 

converge to the continuous-time link emissions obtained from (2). This completes the proof. □ 

Appendix D: Proof of Proposition 3 

Proof. We first prove that if Y  satisfies conditions (31)-(35), then Y  also satisfies Eq. (30). Eqs. 

(34) and (35) directly imply the first and third conditions in Eq. (30) are satisfied. We need only to 

prove that vector Y  satisfies the second condition in Eq. (30) if Y  satisfies conditions (31)-(35). 

As ( )aU k  denotes a monotonically non-decreasing cumulative inflow, ( ) ( 1)a aU k U k′≤ −  for 

all 1k k′ ≥ +  and ( 1) ( )a aU k U k′− ≥  for all 1k k′ ≤ − . For any interval k  that satisfies 

( 1) ( ) ( )a a aU k V l U k− ≤ ≤ , ( ) ( ) (( 1) 1) ( 1)a a a aV l U k U k U k′≤ = + − ≤ −  for all 1k k′ ≥ + , and 

( ) ( 1) ( )a a aV l U k U k′≥ − ≥  for all 1k k′ ≤ − . According to Eqs. (34) and (35), ( , ) 0aY k l′ =  for all 

1k k′ ≥ +  and ( , ) ( ) ( 1)a a aY k l U k U k′ ′ ′= − −  for all 1k k′ ≤ − . Therefore, according to Eq. (33), 

for any intervals k  that satisfies ( 1) ( ) ( )a a aU k V l U k− ≤ ≤ , the following is true: 
1

1 1
1

1

( , ) ( ) ( , ) ( , )

( ) [ ( ) ( 1)]

( ) ( 1) (0)
( ) ( 1).

Kk

a a a a
k k k

k

a a a
k

a a a

a a

Y k l V l Y k l Y k l

V l U k U k

V l U k U
V l U k

−

′ ′= = +

−

′=

′ ′= − −

′ ′= − − −

= − − +
= − −

∑ ∑

∑ .  

We then prove that if Y  satisfies Eq. (30), then Y  also satisfies conditions (31)-(35). Eq. (30) 

directly implies that conditions (31), (32) (34) and (35) are satisfied. We only need to prove that 

condition (33) is satisfied for Y . Because the cumulative link inflows and outflows are 

monotonically increasing, there are two cases should be considered: (i) an interval k′  exists such that 

( ) ( )a aV l U k′= , (ii) ( ) ( )a aV l U k≠  for all k K∈ .  
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In case (i), ( ) ( ) ( 1)a a aV l U k U k′= ≤ −  for all k k′> , and ( ) ( ) ( )a a aV l U k U k′= ≥  for all 

k k′≤ . According to Eq. (30), the following is true: 

1 1 1
( , ) ( , ) ( , ) [ ( ) ( 1)] ( ) ( )

Kk k

a a a a a a a
k K k k k k

Y k l Y k l Y k l U k U k U k V l
′ ′

′∈ = = + =

′= + = − − = =∑ ∑ ∑ ∑ .  

In case (ii), an interval k′  exists such that ( 1) ( ) ( )a a aU k V l U k′ ′− < < , and 

( ) ( ) ( 1)a a aV l U k U k′< ≤ −  for all k k′>  and ( ) ( 1) ( )a a aV l U k U k′> − ≥  for all k k′< . 

According to Eq. (30), the following is true: 
1

1 1
1

1

( , ) ( , ) ( , ) ( , )

[ ( ) ( 1)] ( ) ( 1)

( ).

Kk

a a a a
k K k k k

k

a a a a
k

a

Y k l Y k l Y k l Y k l

U k U k V l U k

V l

′−

′∈ = = +

′−

=

′= + +

′= − − + − −

=

∑ ∑ ∑

∑   

Condition (33) is satisfied for both cases. This completes the proof.□ 

Appendix E: Proof of Proposition 4 

Proof. We first prove that if a vector [ , , ]U V Y  satisfies constraints (31)-(35), then a vector ω  

exists such that the vector [ , , , ]U V Y ω  satisfies constraint (36). Constraints (36a)-(36c) directly 

follows constraints (31)-(33). We set ( , ) 0a k lϖ =  if ( ) ( ) 0a aV l U k− ≤ , and ( , ) 1a k lϖ = , 

otherwise. This definition of vector ω  implies that constraint (36h) is satisfied. We consider two 

cases: (i) ( , ) 0a k lϖ =  and (ii) ( , ) 1a k lϖ = . In case (i), ( , ) 0a k lϖ = , 

( , ) ( ) ( 1) ( ) ( 1) [1 ( , )]a a a a a aY k l U k U k M U k U k k l Mϖ≥ − − − = − − − − , 

( ) ( ) 0 ( , )a a aV l U k k l Mϖ− ≤ = , and ( ) ( ) [ ( , ) 1]a a aV l U k M k l Mϖ− ≥ − = − . These relationships 

imply that constraints (36e), (36f), and (36g) are satisfied. In case (ii), ( , ) 1a k lϖ = , 

( ) ( ) 0 [ ( , ) 1]a a aV l U k k l Mϖ− > = −  and ( ) ( ) ( , )a a aV l U k k l Mϖ− ≤ . These relationships imply 

that constraints (36f) and (36g) are satisfied. According to condition (35), 

( , ) ( ) ( 1)a a aY k l U k U k= − − . This condition implies that ( , ) ( ) ( 1)a a aY k l U k U k≥ − −  

( ) ( 1) [1 ( , )]a a aU k U k k l Mϖ= − − − − , and thus that constraints (36e) is satisfied. Therefore, 

constraints (36e), (36f), and (36g) are satisfied in both cases. Next, we consider two similar cases: (i) 

( 1, ) 0a k lϖ − =  and (ii) ( 1, ) 1a k lϖ − = . In case (i), ( 1, ) 0a k lϖ − = , ( ) ( 1) 0a aV l U k− − ≤ . 

According to condition (34), ( , ) 0aY k l = . This implies that ( , ) 0 ( 1, )a aY k l k l Mϖ≤ = − , and 

constraint (36d) is satisfied. In case (i), ( 1, ) 1a k lϖ − = , constraint (36d) is also satisfied because 

( , ) ( 1, )a aY k l M k l Mϖ≤ = − . Therefore, constraint (36d) is satisfied in both cases. In sum, the 

vector [ , , , ]U V Y ω  satisfies constraint (36). 
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We then prove that the vector [ , , ]U V Y  satisfies constraints (31)-(34) if the vector [ , , , ]U V Y ω  

satisfies constraint (36).We consider three cases: (i) ( ) ( 1)a aV l U k< − , (ii) ( ) ( )a aV l U k> , and 

( 1) ( ) ( )a a aU k V l U k− ≤ ≤ . In case (i), ( ) ( 1) 0a aV l U k− − < . Constraints (36g) and (36h) implies 

that ( 1, )a k lϖ −  equals 0. If not, ( 1, ) 1a k lϖ − =  and ( ) ( 1) [ ( 1, ) 1] 0a a aV l U k k l Mϖ− − ≥ − − = , 

which contradicts the condition that ( ) ( 1) 0a aV l U k− − < . Substituting ( 1, ) 0a k lϖ − =  into 

constraint (36d) gives ( , ) ( ) ( 1)a a aY k l U k U k≥ − − . According to constraint (36b), 

( , ) ( ) ( 1)a a aY k l U k U k≤ − − . Therefore, ( , ) ( ) ( 1)a a aY k l U k U k= − − .  

Similarly, in case (ii), ( ) ( ) 0a aV l U k− > . Constraints (36g) and (36h) imply that ( , )a k lϖ  is 1. 

If not, ( , ) 0a k lϖ =  and ( ) ( ) ( , ) 0a a aV l U k k l Mϖ− ≤ = , which contradicts the condition that 

( ) ( ) 0a aV l U k− > . Substituting ( , ) 1a k lϖ =  into constraint (36e) gives ( , ) 0aY k l ≤ . According to 

constraint (36a), ( , ) 0aY k l ≥ . 

In case (iii), ( 1) ( ) ( )a a aU k V l U k− ≤ ≤ . Let 1 max{ | ( ) ( )}a ak k U k V l′ ′= <  and 

2 min{ | ( ) ( )}a ak k U k V l′ ′= > . As ( )aU k  denotes a monotonically non-decreasing cumulative 

inflow, ( ) ( )a aU k V l′ <  for all 1k k′ ≤ , ( ) ( )a aU k V l′ =  for all 1 2k k k′< < , and ( ) ( )a aU k V l′ >  

for all 2k k′ ≥ . Four more cases are considered: (iii.i) ( 1) ( ) ( )a a aU k V l U k− = < , (iii.ii) 

( 1) ( ) ( )a a aU k V l U k− < = , (iii.iii) ( 1) ( ) ( )a a aU k V l U k− < < , and (iii.iv) 

( 1) ( ) ( )a a aU k V l U k− = = . 

In case (iii.i), 1 1k k< − , ( ) ( )a aU k V l′ =  for all 1 1 1k k k′+ ≤ ≤ − , and 2k k= . This implies 

that ( ) ( 1) 0a aU k U k′ ′− − =  for all 1 2 1k k k′+ ≤ ≤ − . According to constraint (36b), ( , ) 0aY k l′ =  

for all 1 2 1k k k′+ ≤ ≤ − . According to constraint (36c), the following is true: 

1

1 2

1

1

1

1 1
1 1

1 2 1

1

1
1

1

1

( , ) ( ) ( , ) ( , )

( ) ( , ) ( , ) ( , )

( ) ( , )

( ) [ ( ) ( 1)]

( ) ( 1)
( ) ( 1)

0.

Kk

a a a a
k k k

k Kk

a a a a
k k k k k

k

a a
k
k

a a a
k

a a

a a

Y k l V l Y k l Y k l

V l Y k l Y k l Y k l

V l Y k l

V l U k U k

V l U k
V l U k

−

′ ′= = +

+ −

′ ′ ′= = + = +

+

′=

+

′=

′ ′= − −

′ ′ ′= − − −

′= −

′ ′= − − −

= − +
= − −
=

∑ ∑

∑ ∑ ∑

∑

∑   

In case (iii.ii), 1 1k k= − , ( ) ( )a aU k V l′ =  for all 2 1k k k′≤ ≤ − , and 2 1k k= + . This implies 

that ( ) ( 1) 0a aU k U k′ ′− − =  for all 21 1k k k′+ ≤ ≤ − . According to constraint (36b), ( , ) 0aY k l′ =  

for all 21 1k k k′+ ≤ ≤ − . According to constraint (36c), the following is true: 
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1 2

2

1

1 2

1

1

1 1
1

1 1

1

1 2 1

1

( , ) ( ) ( , ) ( , )

( ) ( , ) ( , ) ( , )

( ) ( , ) ( , ) ( , )

( ) [ ( ) ( 1)]

(

Kk

a a a a
k k k

k k K

a a a a
k k k k k

k Kk

a a a a
k k k k k

k

a a a
k

a

Y k l V l Y k l Y k l

V l Y k l Y k l Y k l

V l Y k l Y k l Y k l

V l U k U k

V

−

′ ′= = +

−

′ ′ ′= = + =

−

′ ′ ′= = + = +

′=

′ ′= − −

′ ′ ′= − − −

′ ′ ′= − − −

′ ′= − − −

=

∑ ∑

∑ ∑ ∑

∑ ∑ ∑

∑
) ( 1)

( ) ( 1).
a

a a

l U k
U k U k

− −
= − −

  

In case (iii.iii), 1 1k k= − , and 2k k= . According to constraint (36c), the following is true: 

1

2

1

1

1 1

1 1

1

( , ) ( ) ( , ) ( , )

( ) ( , ) ( , )

( ) [ ( ) ( 1)]

( ) ( 1).

Kk

a a a a
k k k

k K

a a a
k k k

k

a a a
k

a a

Y k l V l Y k l Y k l

V l Y k l Y k l

V l U k U k

V l U k

−

′ ′= = +

′ ′= = +

′=

′ ′= − −

′ ′= − −

′ ′= − − −

= − −

∑ ∑

∑ ∑

∑

  

In case (iii.iv), ( 1) ( ) ( )a a aU k V l U k− = = , according to constraints (36a) and (36b), 

( , ) 0 ( ) ( 1)a a aY k l V l U k= = − − . 

In sum, the above four cases imply that ( , ) ( ) ( 1)a a aY k l V l U k= − −  if 

( 1) ( ) ( )a a aU k V l U k− ≤ ≤ . Therefore, ( , ) ( ) ( 1)a a aY k l U k U k= − −  if ( ) ( 1)a aV l U k≤ − , and 

( , ) 0aY k l =  if ( ) ( )a aV l U k≥ . Equivalently, [ , , ]U V Y  satisfies constraints (34) and (35). In 

addition constraints (31)-(33) directly follows constraints (36a)-(36c). Therefore, [ , , ]U V Y  satisfies 

constraints (31)-(35). □ 

Appendix F: Proof of Proposition 5 

Proof. According to Eqs. (6), (30) and (33), we have 

( , ) [ ( , ) ( , 1)] ( , ) ( ) ( 1)a a a a a a
l K l K

y k l Y k l Y k l Y k K U k U k
∈ ∈

= − − = = − −∑ ∑ , and (65) 

( , ) [ ( , ) ( , 1)] ( , ) ( , 1) ( ) ( 1).a a a a a a a
k K k K k K k K

y k l Y k l Y k l Y k l Y k l V l V l
∈ ∈ ∈ ∈

= − − = − − = − −∑ ∑ ∑ ∑  (66) 

Substituting Eq. (9) into Eq. (37) gives the following: 

( , )( ) ( , ) ( , ) .a a a
a A l K k K a A l K k K k K l K

TSTT y k l l k l y k l k y k lδ δ
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

 = − = −  
∑∑∑ ∑ ∑ ∑ ∑ ∑  (67) 
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Substituting Eqs. (65) and (66) into Eq. (67) gives the following: 

[ ( ) ( 1)] [ ( ) ( 1)]

[ ( ) ( 1)] [ ( ) ( 1)] .

a a a a
a A l K k K

a a a a
a A k K k K

TSTT l V l V l k U k U k

k V k V k k U k U k

δ

δ

∈ ∈ ∈

∈ ∈ ∈

 = − − − − − 
 

 = − − − − − 
 

∑ ∑ ∑

∑ ∑ ∑
 (68) 

Under Assumption 3, all vehicles arrive at destination during the studied period. This implies that 

all links beside destination link is empty at the end of interval K , and ( ) ( )a aU K V K=  for all 

a A∈ . Therefore,  

1 1
1 1

1 1

[ ( ) ( 1)] [ ( ) ( 1)]

[ ( 1) ( 1)] [ ( ) ( )]

[ ( 1) ( 1)] [ ( ) ( )]

( 1)[ ( ) ( )] [ ( ) ( )] [ ( ) ( )]

[ ( )

a a a a
k K k K

a a a a
k K k K

K K

a a a a
k k
K K

a a a a a a
k k

a a

k V k V k k U k U k

k U k V k k U k V k

k U k V k k U k V k

k U k V k k U k V k K U K V K

U k V

∈ ∈

∈ ∈

= =

− −

= =

− − − − −

= − − − − −

= − − − − −

= + − − − − −

= −

∑ ∑

∑ ∑

∑ ∑

∑ ∑
1

1

1

( )] [ ( ) ( )]

[ ( ) ( )]

[ ( ) ( )].

K

a a
k
K

a a
k

a a
k K

k U K V K

U k V k

U k V k

−

=

=

∈

+ −

= −

= −

∑

∑

∑

 (69) 

Substituting Eq. (69) into Eq. (68) gives [ ( ) ( )].a a
a A k K

TSTT U k V kδ
∈ ∈

= −∑∑  This completes the proof. 

□ 
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