<table>
<thead>
<tr>
<th>Title</th>
<th>On Finite Blaschke Products Sharing Preimages of Sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ng, TW</td>
</tr>
<tr>
<td>Citation</td>
<td>International Centre for Mathematical Sciences (ICMS) workshop: The role of complex analysis in complex dynamics workshop, The University of Edinburgh, Edinburgh, UK, 20-25 May 2013</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/227922</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
On Finite Blaschke Products Sharing Preimages of Sets

The role of complex analysis in complex dynamics in ICMS

Tuen Wai Ng
(joint work with Chiu Yin Tsang)

The University of Hong Kong

23 May 2013
Problem

Given two compact sets $E_1, E_2 \subset \mathbb{D}$, how to characterize all the finite Blaschke products B_1, B_2 satisfying

$$B_1^{-1}(E_1) = B_2^{-1}(E_2)?$$

Will solve this problem when E_1 and E_2 are connected compact sets of positive hyperbolic capacity.
Problem

Given two compact sets $E_1, E_2 \subset \mathbb{D}$, how to characterize all the finite Blaschke products B_1, B_2 satisfying

$$B_1^{-1}(E_1) = B_2^{-1}(E_2)?$$

Will solve this problem when E_1 and E_2 are connected compact sets of positive hyperbolic capacity.
Background

B is a finite Blaschke product of degree n if

$$B(z) = e^{i\theta} \frac{z - z_1}{1 - \overline{z}_1 z} \cdot \frac{z - z_2}{1 - \overline{z}_2 z} \cdot \ldots \cdot \frac{z - z_n}{1 - \overline{z}_n z},$$

where $z_i \in \mathbb{D}$ and $\theta \in \mathbb{R}$.

- Fatou (1923) proved that $B : \mathbb{D} \to \mathbb{D}$ is analytic and n-valent (i.e., every point in \mathbb{D} has precisely n preimages in \mathbb{D} counted with multiplicity) iff B is a finite Blaschke product of degree n.

- Walsh (1952) suggested that finite Blaschke products should be considered as “non-euclidean polynomials” in \mathbb{D} and he proved a version of Gauss-Lucas Theorem for finite Blaschke products.
Background

B is a finite Blaschke product of degree n if

$$B(z) = e^{i\theta} \frac{z - z_1}{1 - \overline{z_1}z} \cdot \frac{z - z_2}{1 - \overline{z_2}z} \cdots \frac{z - z_n}{1 - \overline{z_n}z},$$

where $z_i \in \mathbb{D}$ and $\theta \in \mathbb{R}$.

- Fatou (1923) proved that $B : \mathbb{D} \to \mathbb{D}$ is analytic and n-valent (i.e., every point in \mathbb{D} has precisely n preimages in \mathbb{D} counted with multiplicity) iff B is a finite Blaschke product of degree n.

- Walsh (1952) suggested that finite Blaschke products should be considered as “non-euclidean polynomials” in \mathbb{D} and he proved a version of Gauss-Lucas Theorem for finite Blaschke products.
Background

B is a finite Blaschke product of degree n if

$$B(z) = e^{i\theta} \frac{z - z_1}{1 - z_1 z} \cdot \frac{z - z_2}{1 - z_2 z} \cdots \frac{z - z_n}{1 - z_n z},$$

where $z_i \in \mathbb{D}$ and $\theta \in \mathbb{R}$.

- Fatou (1923) proved that $B : \mathbb{D} \to \mathbb{D}$ is analytic and n-valent (i.e., every point in \mathbb{D} has precisely n preimages in \mathbb{D} counted with multiplicity) iff B is a finite Blaschke product of degree n.

- Walsh (1952) suggested that finite Blaschke products should be considered as “non-euclidean polynomials” in \mathbb{D} and he proved a version of Gauss-Lucas Theorem for finite Blaschke products.
These two kinds of finite maps share many similar properties and hence we can establish a dictionary between these two kinds of finite maps.

Let \(f : X \to X \) be a finite map with \(\deg f > 1 \), \(X = \mathbb{C}, \mathbb{D} \).

Definition

A polynomial/finite Blaschke product \(f \) is said to be *prime* if there do not exist two polynomials/finite Blaschke products \(f_1, f_2 \) with \(\deg f_1, \deg f_2 \geq 2 \) s.t.

\[
 f(z) = f_1[f_2(z)].
\]

Otherwise, \(f \) is called *composite*.

Given a polynomial/finite Blaschke product \(f \), we can factorize it as a composition of prime polynomials/finite Blaschke products only, and this factorization will be called a *prime factorization*.
Finite Blaschke Products vs Polynomials

Dictionary

These two kinds of finite maps share many similar properties and hence we can establish a dictionary between these two kinds of finite maps.

Let $f : X \to X$ be a finite map with $\deg f > 1$, $X = \mathbb{C}, \mathbb{D}$.

Definition

A polynomial/finite Blaschke product f is said to be prime if there do not exist two polynomials/finite Blaschke products f_1, f_2 with $\deg f_1, \deg f_2 \geq 2$ s.t.

$$f(z) = f_1[f_2(z)].$$

Otherwise, f is called composite.

Given a polynomial/finite Blaschke product f, we can factorize it as a composition of prime polynomials/finite Blaschke products only, and this factorization will be called a prime factorization.
Finite Blaschke Products vs Polynomials

Dictionary

These two kinds of finite maps share many similar properties and hence we can establish a dictionary between these two kinds of finite maps.

Let \(f : X \to X \) be a finite map with \(\deg f > 1, X = \mathbb{C}, \mathbb{D} \).

Definition

A polynomial/finite Blaschke product \(f \) is said to be **prime** if there do not exist two polynomials/finite Blaschke products \(f_1, f_2 \) with \(\deg f_1, \deg f_2 \geq 2 \) s.t.

\[
f(z) = f_1[f_2(z)].
\]

Otherwise, \(f \) is called **composite**.

Given a polynomial/finite Blaschke product \(f \), we can factorize it as a composition of prime polynomials/finite Blaschke products only, and this factorization will be called a **prime factorization**.
Theorem (Ritt, 1922)

A nonlinear polynomial P is composite if and only if the monodromy group of P is imprimitive.

Theorem (Ritt, 1922)

Any two prime factorizations of P have the same number of prime polynomial factors.

Theorem (Ritt, 1922)

Given two prime factorizations of a nonlinear $P \in \mathbb{C}[z]$, one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{P} \circ \hat{P} = (\tilde{P} \circ L) \circ (L^{-1} \circ \hat{P})$, with polynomials \tilde{P}, \hat{P} and linear polynomial L;

2) $T_m \circ T_n = T_n \circ T_m$, where T_n is the degree n Chebyshev polynomial;

3) $z^r[P_0(z)]^k \circ z^k = z^k \circ [z^r P_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and $P_0 \in \mathbb{C}[z]$.
Theorem (Ritt, 1922)

A nonlinear polynomial P is composite if and only if the monodromy group of P is imprimitive.

Theorem (Ritt, 1922)

Any two prime factorizations of P have the same number of prime polynomial factors.

Theorem (Ritt, 1922)

Given two prime factorizations of a nonlinear $P \in \mathbb{C}[z]$, one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{P} \circ \hat{P} = (\tilde{P} \circ L) \circ (L^{-1} \circ \hat{P})$, with polynomials \tilde{P}, \hat{P} and linear polynomial L;

2) $T_m \circ T_n = T_n \circ T_m$, where T_n is the degree n Chebyshev polynomial;

3) $z^r[P_0(z)]^k \circ z^k = z^k \circ [z^r P_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and $P_0 \in \mathbb{C}[z]$.
Theorem (Ritt, 1922)

A nonlinear polynomial P is composite if and only if the monodromy group of P is imprimitive.

Theorem (Ritt, 1922)

Any two prime factorizations of P have the same number of prime polynomial factors.

Theorem (Ritt, 1922)

Given two prime factorizations of a nonlinear $P \in \mathbb{C}[z]$, one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{P} \circ \hat{P} = (\tilde{P} \circ L) \circ (L^{-1} \circ \hat{P})$, with polynomials \tilde{P}, \hat{P} and linear polynomial L;

2) $T_m \circ T_n = T_n \circ T_m$, where T_n is the degree n Chebyshev polynomial;

3) $z^r[P_0(z)]^k \circ z^k = z^k \circ [z^r P_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and $P_0 \in \mathbb{C}[z]$.
Theorem (Ritt, 1922)

A nonlinear polynomial P is composite if and only if the monodromy group of P is imprimitive.

Theorem (Ritt, 1922)

Any two prime factorizations of P have the same number of prime polynomial factors.

Theorem (Ritt, 1922)

Given two prime factorizations of a nonlinear $P \in \mathbb{C}[z]$, one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{P} \circ \hat{P} = (\tilde{P} \circ L) \circ (L^{-1} \circ \hat{P})$, with polynomials \tilde{P}, \hat{P} and linear polynomial L;

2) $T_m \circ T_n = T_n \circ T_m$, where T_n is the degree n Chebyshev polynomial;

3) $z^r[P_0(z)]^k \circ z^k = z^k \circ [z^rP_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and $P_0 \in \mathbb{C}[z]$.
Theorem (Ritt, 1922)

A nonlinear polynomial P is composite if and only if the monodromy group of P is imprimitive.

Theorem (Ritt, 1922)

Any two prime factorizations of P have the same number of prime polynomial factors.

Theorem (Ritt, 1922)

Given two prime factorizations of a nonlinear $P \in \mathbb{C}[z]$, one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{P} \circ \hat{P} = (\tilde{P} \circ L) \circ (L^{-1} \circ \hat{P})$, with polynomials \tilde{P}, \hat{P} and linear polynomial L;

2) $T_m \circ T_n = T_n \circ T_m$, where T_n is the degree n Chebyshev polynomial;

3) $z^r[P_0(z)]^k \circ z^k = z^k \circ [z^r P_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and $P_0 \in \mathbb{C}[z]$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
Theorem (Ritt, 1922)

A nonlinear polynomial P is composite if and only if the monodromy group of P is imprimitive.

Theorem (Ritt, 1922)

Any two prime factorizations of P have the same number of prime polynomial factors.

Theorem (Ritt, 1922)

Given two prime factorizations of a nonlinear $P \in \mathbb{C}[z]$, one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{P} \circ \hat{P} = (\tilde{P} \circ L) \circ (L^{-1} \circ \hat{P})$, with polynomials \tilde{P}, \hat{P} and linear polynomial L;

2) $T_m \circ T_n = T_n \circ T_m$, where T_n is the degree n Chebyshev polynomial;

3) $z^r[P_0(z)]^k \circ z^k = z^k \circ [z^rP_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and $P_0 \in \mathbb{C}[z]$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product \(B \) (\(\deg B > 1 \)) is composite if and only if the monodromy group of \(B \) is imprimitive.

Theorem (N. & M.X. Wang, 2011)

The number of prime factors is independent of its prime factorizations.

Theorem (N. & M.X. Wang, 2011)

Given two prime factorizations of a finite Blaschke product \(B \) (\(\deg B > 1 \)), one can pass from one to the other by repeatedly use of the following operations:

1) \(\tilde{B} \circ \hat{B} = (\tilde{B} \circ M) \circ (M^{-1} \circ \hat{B}) \), with finite Blaschke products \(\tilde{B}, \hat{B} \) and a Möbius transformation \(M \);

2) \(f_{m,n\tau} \circ f_{n,\tau} = f_{n,m\tau} \circ f_{m,\tau} \), where \(f_{n,\tau} \) is the Chebyshev Blaschke product of degree \(n \);

3) \(z^r[B_0(z)]^k \circ z^k = z^k \circ [z^r B_0(z^k)] \), with \(r, k \in \mathbb{Z}^+ \) and a finite Blaschke product \(B_0 \).
Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product B (deg $B > 1$) is composite if and only if the monodromy group of B is imprimitive.

Theorem (N. & M.X. Wang, 2011)

The number of prime factors is independent of its prime factorizations.

Theorem (N. & M.X. Wang, 2011)

Given two prime factorizations of a finite Blaschke product B (deg $B > 1$), one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{B} \circ \hat{B} = (\tilde{B} \circ M) \circ (M^{-1} \circ \hat{B})$, with finite Blaschke products \tilde{B}, \hat{B} and a Möbius transformation M;

2) $f_{m,n\tau} \circ f_{n,\tau} = f_{n,m\tau} \circ f_{m,\tau}$, where $f_{n,\tau}$ is the Chebyshev Blaschke product of degree n;

3) $z^r[B_0(z)]^k \circ z^k = z^k \circ [z^rB_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and a finite Blaschke product B_0.

Tuen Wai Ng (joint work with Chiu Yin Tsang) Finite Blaschke Products Sharing Preimages 23 May 2013 5 / 1
Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product B (deg $B > 1$) is composite if and only if the monodromy group of B is imprimitive.

Theorem (N. & M.X. Wang, 2011)

The number of prime factors is independent of its prime factorizations.

Theorem (N. & M.X. Wang, 2011)

Given two prime factorizations of a finite Blaschke product B (deg $B > 1$), one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{B} \circ \hat{B} = (\tilde{B} \circ M) \circ (M^{-1} \circ \hat{B})$, with finite Blaschke products \tilde{B}, \hat{B} and a Möbius transformation M;

2) $f_{m,n,\tau} \circ f_{n,\tau} = f_{n,m,\tau} \circ f_{m,\tau}$, where $f_{n,\tau}$ is the Chebyshev Blaschke product of degree n;

3) $z^r[B_0(z)]^k \circ z^k = z^k \circ [z^r B_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and a finite Blaschke product B_0.
Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product B ($\deg B > 1$) is composite if and only if the monodromy group of B is imprimitive.

Theorem (N. & M.X. Wang, 2011)

The number of prime factors is independent of its prime factorizations.

Theorem (N. & M.X. Wang, 2011)

Given two prime factorizations of a finite Blaschke product B ($\deg B > 1$), one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{B} \circ \hat{B} = (\tilde{B} \circ M) \circ (M^{-1} \circ \hat{B})$, with finite Blaschke products \tilde{B}, \hat{B} and a Möbius transformation M;

2) $f_{m, n\tau} \circ f_{n, \tau} = f_{n, m\tau} \circ f_{m, \tau}$, where $f_{n, \tau}$ is the Chebyshev Blaschke product of degree n;

3) $z^r[B_0(z)]^k \circ z^k = z^k \circ [z^r B_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and a finite Blaschke product B_0.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)

Finite Blaschke Products Sharing Preimages

23 May 2013 5 / 1
Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product B ($\text{deg } B > 1$) is composite if and only if the monodromy group of B is imprimitive.

Theorem (N. & M.X. Wang, 2011)

The number of prime factors is independent of its prime factorizations.

Theorem (N. & M.X. Wang, 2011)

Given two prime factorizations of a finite Blaschke product B ($\text{deg } B > 1$), one can pass from one to the other by repeatedly use of the following operations:

1) $\tilde{B} \circ \hat{B} = (\tilde{B} \circ M) \circ (M^{-1} \circ \hat{B})$, with finite Blaschke products \tilde{B}, \hat{B} and a Möbius transformation M;

2) $f_{m,n} \circ f_{n,n} = f_{n,m} \circ f_{m,n}$, where $f_{n,n}$ is the Chebyshev Blaschke product of degree n;

3) $z^r [B_0(z)]^k \circ z^k = z^k \circ [z^r B_0(z^k)]$, with $r, k \in \mathbb{Z}^+$ and a finite Blaschke product B_0.
Theorem (N. & M.X. Wang, 2011)

A finite Blaschke product \(B \) (\(\deg B > 1 \)) is composite if and only if the monodromy group of \(B \) is imprimitive.

Theorem (N. & M.X. Wang, 2011)

The number of prime factors is independent of its prime factorizations.

Theorem (N. & M.X. Wang, 2011)

Given two prime factorizations of a finite Blaschke product \(B \) (\(\deg B > 1 \)), one can pass from one to the other by repeatedly use of the following operations:

1) \(\tilde{B} \circ \tilde{B} = (\tilde{B} \circ M) \circ (M^{-1} \circ \hat{B}) \), with finite Blaschke products \(\tilde{B}, \hat{B} \) and a Möbius transformation \(M \);

2) \(f_{m, n\tau} \circ f_{n, \tau} = f_{n, m\tau} \circ f_{m, \tau} \), where \(f_{n, \tau} \) is the Chebyshev Blaschke product of degree \(n \);

3) \(z^r [B_0(z)]^k \circ z^k = z^k \circ [z^r B_0(z^k)] \), with \(r, k \in \mathbb{Z}^+ \) and a finite Blaschke product \(B_0 \).
Chebyshev Blaschke Products

Definition

The Chebyshev polynomial \(T_n(z) \) is a polynomial of degree \(n \), defined by

\[
T_n(\cos \theta) = \cos n\theta.
\]

To define Chebyshev Blaschke products:

- \(\cos \theta \) is replaced by \(cd(u, \tau) := \frac{cn(u, \tau)}{dn(u, \tau)} \) for \(\tau \in \mathbb{R}_+i \).
- Note that \(cd(u, \tau) = sn(u + \frac{\omega_1}{2}, \tau) \).

\[\therefore cd \text{ is an elliptic function with the periods } 2\omega_1 \text{ and } \omega_2, \text{ where} \]

\[
\omega_1(\tau) = \pi \vartheta_3^2(0, \tau) = \pi (1 + 2q + 2q^4 + \cdots)^2, \quad q = e^{\pi i \tau}
\]

\[
\omega_2(\tau) = \tau \omega_1(\tau).
\]

- The elliptic modulus \(k(\tau) = \frac{\vartheta_2^2(0, \tau)}{\vartheta_3^2(0, \tau)} \), \(\sqrt{k(\tau)} := \frac{\vartheta_2(0, \tau)}{\vartheta_3(0, \tau)} \).
Chebyshev Blaschke Products

Definition

The Chebyshev polynomial $T_n(z)$ is a polynomial of degree n, defined by

$$T_n(\cos \theta) = \cos n\theta.$$

To define Chebyshev Blaschke products:

- $\cos \theta$ is replaced by $\text{cd}(u, \tau) := \frac{\text{cn}(u, \tau)}{\text{dn}(u, \tau)}$ for $\tau \in \mathbb{R} + i$.

- Note that $\text{cd}(u, \tau) = \text{sn}(u + \frac{\omega_1}{2}, \tau)$.

$$\therefore \text{cd} \text{ is an elliptic function with the periods } 2\omega_1 \text{ and } \omega_2,$$

where

$$\omega_1(\tau) = \pi \vartheta_3^2(0, \tau) = \pi (1 + 2q + 2q^4 + \cdots)^2, q = e^{\pi i \tau}$$

$$\omega_2(\tau) = \tau \omega_1(\tau).$$

- The elliptic modulus $k(\tau) = \frac{\vartheta_2^2(0, \tau)}{\vartheta_3^2(0, \tau)}$, $\sqrt{k(\tau)} := \frac{\vartheta_2(0, \tau)}{\vartheta_3(0, \tau)}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
Chebyshev Blaschke Products

Definition

The Chebyshev polynomial $T_n(z)$ is a polynomial of degree n, defined by

$$T_n(\cos \theta) = \cos n\theta.$$

To define Chebyshev Blaschke products:

- $\cos \theta$ is replaced by $\text{cd}(u, \tau) := \frac{\text{cn}(u, \tau)}{\text{dn}(u, \tau)}$ for $\tau \in \mathbb{R} + i$.
- Note that $\text{cd}(u, \tau) = \text{sn}(u + \frac{\omega_1}{2}, \tau)$.

\[\therefore \text{cd} \text{ is an elliptic function with the periods } 2\omega_1 \text{ and } \omega_2, \text{ where} \]

\[\omega_1(\tau) = \pi \vartheta_3^2(0, \tau) = \pi(1 + 2q + 2q^4 + \cdots)^2, \quad q = e^{\pi i \tau} \]

\[\omega_2(\tau) = \tau \omega_1(\tau). \]

- The elliptic modulus $k(\tau) = \frac{\vartheta_2^2(0, \tau)}{\vartheta_3^2(0, \tau)}$, $\sqrt{k(\tau)} := \frac{\vartheta_2(0, \tau)}{\vartheta_3(0, \tau)}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
The Chebyshev polynomial $T_n(z)$ is a polynomial of degree n, defined by $T_n(\cos \theta) = \cos n\theta$.

To define Chebyshev Blaschke products:

- $\cos \theta$ is replaced by $\text{cd}(u, \tau) := \frac{\text{cn}(u, \tau)}{\text{dn}(u, \tau)}$ for $\tau \in \mathbb{R} + i$.

- Note that $\text{cd}(u, \tau) = \text{sn}(u + \frac{\omega_1}{2}, \tau)$.
 $\therefore \text{cd}$ is an elliptic function with the periods $2\omega_1$ and ω_2, where
 $\omega_1(\tau) = \pi \vartheta^2_3(0, \tau) = \pi(1 + 2q + 2q^4 + \cdots)^2$, $q = e^{\pi i \tau}$
 $\omega_2(\tau) = \tau \omega_1(\tau)$.

- The elliptic modulus $k(\tau) = \frac{\vartheta^2_2(0, \tau)}{\vartheta^2_3(0, \tau)}$, $\sqrt{k(\tau)} := \frac{\vartheta_2(0, \tau)}{\vartheta_3(0, \tau)}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
Chebyshev Blaschke Products

Definition

The Chebyshev Blaschke product $f_{n,\tau}(z)$ is a finite Blaschke product of degree n, defined by

$$f_{n,\tau}(\sqrt{k(\tau) \cd(u \omega_1(\tau), \tau)}) = \sqrt{k(n\tau) \cd(nu \omega_1(n\tau), n\tau)}.$$

For example,

$$f_{1,\tau}(z) = z;$$

$$f_{2,\tau}(z) = \frac{z^2 - a}{1 - az^2} \text{, where } a = \sqrt{k(2\tau)} = \frac{\vartheta_2(0, 2\tau)}{\vartheta_3(0, 2\tau)};$$

$$f_{3,\tau}(z) = z \frac{z^2 - a}{1 - az^2} \text{, where } a = k(\tau) \cd^2\left(\frac{\omega_1(\tau)}{6}, \tau\right) = \frac{\vartheta_2^2(1/6, \tau)}{\vartheta_3^2(1/6, \tau)}.$$
Chebyshev Blaschke Products

Definition

The Chebyshev Blaschke product \(f_{n,\tau}(z) \) is a finite Blaschke product of degree \(n \), defined by

\[
f_{n,\tau}(\sqrt{k(\tau)} \, \text{cd}(u \omega_1(\tau), \tau)) = \sqrt{k(n\tau)} \, \text{cd}(nu \omega_1(n\tau), n\tau).
\]

For example,

\[
f_{1,\tau}(z) = z;
\]

\[
f_{2,\tau}(z) = \frac{z^2 - a}{1 - az^2}, \text{ where } a = \sqrt{k(2\tau)} = \frac{\vartheta_2(0, 2\tau)}{\vartheta_3(0, 2\tau)};
\]

\[
f_{3,\tau}(z) = z \frac{z^2 - a}{1 - az^2}, \text{ where } a = k(\tau) \, \text{cd}^2\left(\frac{\omega_1(\tau)}{6}, \tau\right) = \frac{\vartheta_2^2(1/6, \tau)}{\vartheta_3^2(1/6, \tau)}.
\]
<table>
<thead>
<tr>
<th></th>
<th>T_n</th>
<th>$f_{n,\tau}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition</td>
<td>$T_n(z) = \cos n\theta$, where $z = \cos \theta$</td>
<td>$f_{n,\tau}(z) = \sqrt{k(n\tau)} \cd(u\omega_1(n\tau), n\tau)$, where $z = \sqrt{k(\tau)} \cd(u\omega_1(\tau), \tau)$</td>
</tr>
<tr>
<td>Zeros</td>
<td>$z_p = \cos \frac{(2p-1)\pi}{2n}$ ($p = 1, \ldots, n$)</td>
<td>$z_p = \sqrt{k(\tau)} \cd(\frac{(2p-1)\omega_1(\tau)}{2n}, \tau)$ ($p = 1, \ldots, n$)</td>
</tr>
<tr>
<td>Critical points</td>
<td>$w_p = \cos \frac{p\pi}{n}$ ($p = 1, \ldots, n-1$)</td>
<td>$w_p = \sqrt{k(\tau)} \cd(\frac{p\omega_1(\tau)}{n}, \tau)$ ($p = 1, \ldots, n-1$)</td>
</tr>
<tr>
<td>Critical values</td>
<td>± 1 in \mathbb{C}</td>
<td>$\pm \sqrt{k(n\tau)}$ in \mathbb{D}</td>
</tr>
<tr>
<td>Preimage</td>
<td>$T_n^{-1}([-1, 1]) = [-1, 1]$</td>
<td>$f_{n,\tau}^{-1}([-\sqrt{k(n\tau)}, \sqrt{k(n\tau)}]) = [-\sqrt{k(\tau)}, \sqrt{k(\tau)}]$</td>
</tr>
<tr>
<td>Nesting property</td>
<td>$T_{mn} = T_m \circ T_n$</td>
<td>$f_{mn,\tau} = f_{m,n\tau} \circ f_{n,\tau}$</td>
</tr>
<tr>
<td>Julia set</td>
<td>$J(T_n) = [-1, 1]$</td>
<td>$J(f_{n,\tau}) = \partial \mathbb{D}$</td>
</tr>
</tbody>
</table>
Objective

Given two compact sets $E_1, E_2 \subset \mathbb{D}$, try to characterize all finite Blaschke products B_1, B_2 satisfying $B_1^{-1}(E_1) = B_2^{-1}(E_2)$.

Know how to do it for polynomials p_1, p_2 sharing compact $K_1, K_2 \subset \mathbb{C}$:

$$p_1^{-1}(K_1) = p_2^{-1}(K_2) = K.$$

The case $K_1 = K_2 = K = \text{Julia set of } p_1 \text{ and } p_2$ has been studied by, Baker & Eremenko (1987), Beardon (1992), Schmidt & Steinmetz (1995), Atela & Hu (1996), etc.
Objective

Given two compact sets $E_1, E_2 \subset \mathbb{D}$, try to characterize all finite Blaschke products B_1, B_2 satisfying $B_1^{-1}(E_1) = B_2^{-1}(E_2)$.

Know how to do it for polynomials p_1, p_2 sharing compact $K_1, K_2 \subset \mathbb{C}$:

$$p_1^{-1}(K_1) = p_2^{-1}(K_2) = K.$$

The case $K_1 = K_2 = K =$ Julia set of p_1 and p_2 has been studied by, Baker & Eremenko (1987), Beardon (1992), Schmidt & Steinmetz (1995), Atela & Hu (1996), etc.
Known Results for Polynomials

Sharing set problems \(f_1^{-1}(K_1) = f_2^{-1}(K_2) \) for \(f_1, f_2 \in \mathbb{C}[z] \) were studied:

- If \(K_1 = K_2 = \{-1, 1\} \) and \(\deg f_1 = \deg f_2 \), Pakovitch (1995) proved that \(f_1 = \pm f_2 \) which solved a problem of C.C. Yang (1978)
- Pakovitch made use of the uniqueness property of the least deviations from zero.
- If \(K_1 = K_2 \) is a compact set of positive (logarithmic) capacity, Dinh (2002) gave a complete description of \(f_1 \) and \(f_2 \) by using the uniqueness of logarithmic equilibrium measures.
- In 2008, Pakovitch gave the generalized result for any compact \(K_1, K_2 \): apart from the uniqueness of the least deviations from zero, he also made use of Ritt’s result on factorization of polynomials.
- Will follow Dinh’s approach.
Known Results for Polynomials

Sharing set problems \(f_1^{-1}(K_1) = f_2^{-1}(K_2) \) for \(f_1, f_2 \in \mathbb{C}[z] \) were studied:

- If \(K_1 = K_2 = \{-1, 1\} \) and \(\deg f_1 = \deg f_2 \), Pakovitch (1995) proved that \(f_1 = \pm f_2 \) which solved a problem of C.C. Yang (1978).

- Pakovitch made use of the uniqueness property of the least deviations from zero.

- If \(K_1 = K_2 \) is a compact set of positive (logarithmic) capacity, Dinh (2002) gave a complete description of \(f_1 \) and \(f_2 \) by using the uniqueness of logarithmic equilibrium measures.

- In 2008, Pakovitch gave the generalized result for any compact \(K_1, K_2 \): apart from the uniqueness of the least deviations from zero, he also made use of Ritt’s result on factorization of polynomials.

- Will follow Dinh’s approach.
Known Results for Polynomials

Sharing set problems $f_1^{-1}(K_1) = f_2^{-1}(K_2)$ for $f_1, f_2 \in \mathbb{C}[z]$ were studied:

- If $K_1 = K_2 = \{-1, 1\}$ and $\deg f_1 = \deg f_2$, Pakovitch (1995) proved that $f_1 = \pm f_2$ which solved a problem of C.C. Yang (1978).

- Pakovitch made use of the uniqueness property of the least deviations from zero.

- If $K_1 = K_2$ is a compact set of positive (logarithmic) capacity, Dinh (2002) gave a complete description of f_1 and f_2 by using the uniqueness of logarithmic equilibrium measures.

- In 2008, Pakovitch gave the generalized result for any compact K_1, K_2: apart from the uniqueness of the least deviations from zero, he also made use of Ritt’s result on factorization of polynomials.

- Will follow Dinh’s approach.
Known Results for Polynomials

Sharing set problems \(f_1^{-1}(K_1) = f_2^{-1}(K_2) \) for \(f_1, f_2 \in \mathbb{C}[z] \) were studied:

- If \(K_1 = K_2 = \{-1, 1\} \) and \(\deg f_1 = \deg f_2 \), Pakovitch (1995) proved that \(f_1 = \pm f_2 \) which solved a problem of C.C. Yang (1978).
- Pakovitch made use of the uniqueness property of the least deviations from zero.
- If \(K_1 = K_2 \) is a compact set of positive (logarithmic) capacity, Dinh (2002) gave a complete description of \(f_1 \) and \(f_2 \) by using the uniqueness of logarithmic equilibrium measures.
- In 2008, Pakovitch gave the generalized result for any compact \(K_1, K_2 \): apart from the uniqueness of the least deviations from zero, he also made use of Ritt’s result on factorization of polynomials.
- Will follow Dinh’s approach.
Known Results for Polynomials

Sharing set problems \(f_1^{-1}(K_1) = f_2^{-1}(K_2) \) for \(f_1, f_2 \in \mathbb{C}[z] \) were studied:

- If \(K_1 = K_2 = \{-1, 1\} \) and \(\deg f_1 = \deg f_2 \), Pakovitch (1995) proved that \(f_1 = \pm f_2 \) which solved a problem of C.C. Yang (1978).

- Pakovitch made use of the uniqueness property of the least deviations from zero.

- If \(K_1 = K_2 \) is a compact set of positive (logarithmic) capacity, Dinh (2002) gave a complete description of \(f_1 \) and \(f_2 \) by using the uniqueness of logarithmic equilibrium measures.

- In 2008, Pakovitch gave the generalized result for any compact \(K_1, K_2 \): apart from the uniqueness of the least deviations from zero, he also made use of Ritt’s result on factorization of polynomials.

- Will follow Dinh’s approach.
Related to $g_1 \circ f_1 = g_2 \circ f_2$

- Dinh showed that if $f_1^{-1}(K) = f_2^{-1}(K)$ for a compact set K of positive (logarithmic) capacity, then $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.

$$g_1 \circ f_1 = g_2 \circ f_2.$$

- The idea of his proof is to make use of the uniqueness of logarithmic equilibrium measures to obtain subharmonic functions u_1 and u_2 s.t.

$$u_1 \circ f_1 = u_2 \circ f_2.$$

- Then by considering the germ of conformal map near ∞, δ_{f_i} such that $f_i \circ \delta_{f_i} = f_i$, he showed that $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.

$$g_1 \circ f_1 = g_2 \circ f_2.$$

Finally the complete classification of f_1 and f_2 can be obtained by applying Ritt’s result for polynomials.
Dinh showed that if $f_1^{-1}(K) = f_2^{-1}(K)$ for a compact set K of positive (logarithmic) capacity, then $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.
\[g_1 \circ f_1 = g_2 \circ f_2. \]

The idea of his proof is to make use of the uniqueness of logarithmic equilibrium measures to obtain subharmonic functions u_1 and u_2 s.t.
\[u_1 \circ f_1 = u_2 \circ f_2. \]

Then by considering the germ of conformal map near ∞, δ_{f_i} such that $f_i \circ \delta_{f_i} = f_i$, he showed that $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.
\[g_1 \circ f_1 = g_2 \circ f_2. \]

Finally the complete classification of f_1 and f_2 can be obtained by applying Ritt’s result for polynomials.
Related to \(g_1 \circ f_1 = g_2 \circ f_2 \)

- Dinh showed that if \(f_1^{-1}(K) = f_2^{-1}(K) \) for a compact set \(K \) of positive (logarithmic) capacity, then \(\exists g_1, g_2 \in \mathbb{C}[z] \) s.t.

\[
g_1 \circ f_1 = g_2 \circ f_2.
\]

- The idea of his proof is to make use of the uniqueness of logarithmic equilibrium measures to obtain subharmonic functions \(u_1 \) and \(u_2 \) s.t.

\[
u_1 \circ f_1 = u_2 \circ f_2.
\]

- Then by considering the germ of conformal map near \(\infty \), \(\delta_f \) such that \(f_i \circ \delta_f = f_i \), he showed that \(\exists g_1, g_2 \in \mathbb{C}[z] \) s.t.

\[
g_1 \circ f_1 = g_2 \circ f_2.
\]

Finally the complete classification of \(f_1 \) and \(f_2 \) can be obtained by applying Ritt’s result for polynomials.
Related to $g_1 \circ f_1 = g_2 \circ f_2$

- Dinh showed that if $f_1^{-1}(K) = f_2^{-1}(K)$ for a compact set K of positive (logarithmic) capacity, then $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.

$$g_1 \circ f_1 = g_2 \circ f_2.$$

- The idea of his proof is to make use of the uniqueness of logarithmic equilibrium measures to obtain subharmonic functions u_1 and u_2 s.t.

$$u_1 \circ f_1 = u_2 \circ f_2.$$

- Then by considering the germ of conformal map near ∞, δ_{f_i} such that $f_i \circ \delta_{f_i} = f_i$, he showed that $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.

$$g_1 \circ f_1 = g_2 \circ f_2.$$

Finally the complete classification of f_1 and f_2 can be obtained by applying Ritt’s result for polynomials.
Related to $g_1 \circ f_1 = g_2 \circ f_2$

- Dinh showed that if $f_1^{-1}(K) = f_2^{-1}(K)$ for a compact set K of positive (logarithmic) capacity, then $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.

$$g_1 \circ f_1 = g_2 \circ f_2.$$

- The idea of his proof is to make use of the uniqueness of logarithmic equilibrium measures to obtain subharmonic functions u_1 and u_2 s.t.

$$u_1 \circ f_1 = u_2 \circ f_2.$$

- Then by considering the germ of conformal map near ∞, δ_{f_i} such that $f_i \circ \delta_{f_i} = f_i$, he showed that $\exists g_1, g_2 \in \mathbb{C}[z]$ s.t.

$$g_1 \circ f_1 = g_2 \circ f_2.$$

Finally the complete classification of f_1 and f_2 can be obtained by applying Ritt’s result for polynomials.
Theorem (N. & C.Y. Tsang)

Let B_1, B_2 be finite Blaschke products, $\deg B_1 = d_1$, $\deg B_2 = d_2$, $d_1 \leq d_2$, and $E_1, E_2 \subset \mathbb{D}$ be connected compact sets of positive hyperbolic capacity s.t.

$$\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$$

Then we have

(a) if $d_1 | d_2$, then there exists a finite Blaschke product g_1 s.t. $B_2 = g_1 \circ B_1$ and $E_1 = g_1^{-1}(E_2)$;

(b) if $d_1 \nmid d_2$, then there exist finite Blaschke products g_1, g_2, with $\deg g_1 = d_2/d$, $\deg g_2 = d_1/d$, where $d = \gcd(d_1, d_2)$ s.t.

$$g_1 \circ B_1 = g_2 \circ B_2,$$

and a compact connected set $E_3 \subset \mathbb{D}$ s.t.

$$E_1 = g_1^{-1}(E_3) \text{ and } E_2 = g_2^{-1}(E_3).$$
Theorem (N. & C.Y. Tsang)

Let B_1, B_2 be finite Blaschke products, $\deg B_1 = d_1$, $\deg B_2 = d_2$, $d_1 \leq d_2$, and $E_1, E_2 \subset \mathbb{D}$ be connected compact sets of positive hyperbolic capacity s.t.

$$\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$$

Then we have

(a) if $d_1 | d_2$, then there exists a finite Blaschke product g_1 s.t. $B_2 = g_1 \circ B_1$ and $E_1 = g_1^{-1}(E_2)$;

(b) if $d_1 \nmid d_2$, then there exist finite Blaschke products g_1, g_2, with $\deg g_1 = d_2/d$, $\deg g_2 = d_1/d$, where $d = \gcd(d_1, d_2)$ s.t.

$$g_1 \circ B_1 = g_2 \circ B_2,$$

and a compact connected set $E_3 \subset \mathbb{D}$ s.t.

$$E_1 = g_1^{-1}(E_3) \text{ and } E_2 = g_2^{-1}(E_3).$$
Theorem (N. & C.Y. Tsang)

Let B_1, B_2 be finite Blaschke products, $\deg B_1 = d_1$, $\deg B_2 = d_2$, $d_1 \leq d_2$, and $E_1, E_2 \subset \mathbb{D}$ be connected compact sets of positive hyperbolic capacity s.t.

$$\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$$

Then we have

(a) if $d_1 | d_2$, then there exists a finite Blaschke product g_1 s.t. $B_2 = g_1 \circ B_1$ and $E_1 = g_1^{-1}(E_2)$;

(b) if $d_1 \nmid d_2$, then there exist finite Blaschke products g_1, g_2, with $\deg g_1 = d_2 / d$, $\deg g_2 = d_1 / d$, where $d = \gcd(d_1, d_2)$ s.t.

$$g_1 \circ B_1 = g_2 \circ B_2,$$

and a compact connected set $E_3 \subset \mathbb{D}$ s.t.

$$E_1 = g_1^{-1}(E_3) \text{ and } E_2 = g_2^{-1}(E_3).$$
Theorem (N. & C.Y. Tsang)

Let B_1, B_2 be finite Blaschke products, $\deg B_1 = d_1$, $\deg B_2 = d_2$, $d_1 \leq d_2$, and $E_1, E_2 \subset \mathbb{D}$ be connected compact sets of positive hyperbolic capacity s.t.

$$\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$$

Then we have

(a) if $d_1 | d_2$, then there exists a finite Blaschke product g_1 s.t. $B_2 = g_1 \circ B_1$ and $E_1 = g_1^{-1}(E_2)$;

(b) if $d_1 \nmid d_2$, then there exist finite Blaschke products g_1, g_2, with $\deg g_1 = d_2 / d$, $\deg g_2 = d_1 / d$, where $d = \gcd(d_1, d_2)$ s.t.

$$g_1 \circ B_1 = g_2 \circ B_2,$$

and a compact connected set $E_3 \subset \mathbb{D}$ s.t.

$$E_1 = g_1^{-1}(E_3) \text{ and } E_2 = g_2^{-1}(E_3).$$
Theorem (Cont.)

\[g_1 \circ B_1 = g_2 \circ B_2 \]

Furthermore there exist finite Blaschke products \(\tilde{B}_1, \tilde{B}_2, W \), with \(\deg W = d \), s.t.

\[B_1 = \tilde{B}_1 \circ W, \quad B_2 = \tilde{B}_2 \circ W, \]

so that

\[g_1 \circ \tilde{B}_1 = g_2 \circ \tilde{B}_2 \]
Theorem (Cont.)

\[g_1 \circ B_1 = g_2 \circ B_2 \]

Furthermore there exist finite Blaschke products \(\tilde{B}_1, \tilde{B}_2, W \), with \(\deg W = d \), s.t.

\[B_1 = \tilde{B}_1 \circ W, \quad B_2 = \tilde{B}_2 \circ W, \]

so that

\[g_1 \circ \tilde{B}_1 = g_2 \circ \tilde{B}_2 \]
Theorem (Cont.)

\[g_1 \circ B_1 = g_2 \circ B_2 \]
\[g_1 \circ \tilde{B}_1 \circ W = g_2 \circ \tilde{B}_2 \circ W \]

\[g_1 \circ \tilde{B}_1 = g_2 \circ \tilde{B}_2 \]

Hence there exist Möbius transformations \(\tau_1, \tau_2 \) s.t. either

\[g_1 = z^c [R(z)]^{d_1/d} \circ \tau_1, \quad \tilde{B}_1 = \tau_1^{-1} \circ z^{d_1/d}, \]
\[g_2 = z^{d_1/d} \circ \tau_2, \quad \tilde{B}_2 = \tau_2^{-1} \circ z^c R(z^{d_1/d}) \]

for some finite Blaschke product \(R \) and for \(c \) being the remainder after division of \(d_2/d \) by \(d_1/d \), or

\[g_1 = f_{d_2/d,d_1 \tau/d} \circ \tau_1, \quad \tilde{B}_1 = \tau_1^{-1} \circ f_{d_1/d,\tau}, \]
\[g_2 = f_{d_1/d,d_2 \tau/d} \circ \tau_2, \quad \tilde{B}_2 = \tau_2^{-1} \circ f_{d_2/d,\tau} \]

for Chebyshev-Blaschke products \(f_{d_2/d,d_1 \tau/d}, f_{d_1/d,d_2 \tau/d}, f_{d_1/d,\tau}, f_{d_2/d,\tau} \).
Theorem (Cont.)

\[g_1 \circ B_1 = g_2 \circ B_2 \]
\[g_1 \circ \tilde{B}_1 \circ W = g_2 \circ \tilde{B}_2 \circ W \]

\[g_1 \circ \tilde{B}_1 = g_2 \circ \tilde{B}_2 \]

Hence there exist Möbius transformations \(\tau_1, \tau_2 \) s.t. either

\[g_1 = z^c [R(z)]^{d_1/d} \circ \tau_1, \quad \tilde{B}_1 = \tau_1^{-1} \circ z^{d_1/d}, \]
\[g_2 = z^{d_1/d} \circ \tau_2, \quad \tilde{B}_2 = \tau_2^{-1} \circ z^c R(z^{d_1/d}) \]

for some finite Blaschke product \(R \) and for \(c \) being the remainder after division of \(d_2/d \) by \(d_1/d \), or

\[g_1 = f_{d_2/d,d_1\tau/d} \circ \tau_1, \quad \tilde{B}_1 = \tau_1^{-1} \circ f_{d_1/d,\tau}, \]
\[g_2 = f_{d_1/d,d_2\tau/d} \circ \tau_2, \quad \tilde{B}_2 = \tau_2^{-1} \circ f_{d_2/d,\tau} \]

for Chebyshev-Blaschke products \(f_{d_2/d,d_1\tau/d}, f_{d_1/d,d_2\tau/d}, f_{d_1/d,\tau}, f_{d_2/d,\tau} \).
Hyperbolic Capacity

For a compact subset $E \subset \mathbb{D}$, the hyperbolic capacity $\text{cap}_h(E)$ can be defined in a similar way of the logarithmic capacity (by replacing the Euclidean metric $|z - \zeta|$ by the pseudohyperbolic metric

$$\rho(z, \zeta) = \left| \frac{z - \zeta}{1 - \bar{\zeta}z} \right|, \quad z, \zeta \in \mathbb{D}.$$

Let $\mathcal{P}(E)$ be the class of all probability measures on a compact set $E \subset \mathbb{D}$.

Definition

Let $E \subset \mathbb{D}$ be compact and $\mu \in \mathcal{P}(E)$. The **hyperbolic potential** of μ is the function $u^h_{\mu} : \overline{\mathbb{D}} \to (-\infty, +\infty]$ defined by

$$u^h_{\mu}(z) = \int_{E} \log \frac{1}{\rho(z, \zeta)} \, d\mu(\zeta).$$
Hyperbolic Capacity

For a compact subset $E \subset \mathbb{D}$, the hyperbolic capacity $\text{cap}_h(E)$ can be defined in a similar way of the logarithmic capacity (by replacing the Euclidean metric $|z - \zeta|$ by the pseudohyperbolic metric

$$\rho(z, \zeta) = \left| \frac{z - \zeta}{1 - \overline{\zeta}z} \right|, \ z, \zeta \in \mathbb{D}.$$

Let $\mathcal{P}(E)$ be the class of all probability measures on a compact set $E \subset \mathbb{D}$.

Definition

Let $E \subset \mathbb{D}$ be compact and $\mu \in \mathcal{P}(E)$. The *hyperbolic potential* of μ is the function $u^h_\mu : \overline{\mathbb{D}} \to (-\infty, +\infty]$ defined by

$$u^h_\mu(z) = \int_E \log \frac{1}{\rho(z, \zeta)} d\mu(\zeta).$$
Hyperbolic Capacity

For a compact subset $E \subset \mathbb{D}$, the hyperbolic capacity $\text{cap}_h(E)$ can be defined in a similar way of the logarithmic capacity (by replacing the Euclidean metric $|z - \zeta|$ by the pseudohyperbolic metric $\rho(z, \zeta)$.

$$\rho(z, \zeta) = \frac{|z - \zeta|}{|1 - \frac{z}{\bar{z}} \zeta|}, \ z, \zeta \in \mathbb{D}.$$

Let $\mathcal{P}(E)$ be the class of all probability measures on a compact set $E \subset \mathbb{D}$.

Definition

Let $E \subset \mathbb{D}$ be compact and $\mu \in \mathcal{P}(E)$. The hyperbolic potential of μ is the function $u^h_\mu : \overline{\mathbb{D}} \rightarrow (-\infty, +\infty]$ defined by

$$u^h_\mu(z) = \int_E \log \frac{1}{\rho(z, \zeta)} d\mu(\zeta).$$
Hyperbolic Capacity

Definition

Let $E \subset \mathbb{D}$ be compact. The *hyperbolic energy* $I_h : \mathcal{P}(E) \to (-\infty, +\infty]$ is defined by

$$I_h(\mu) = \int_E \int_E \log \frac{1}{\rho(z, \zeta)} \, d\mu(\zeta) \, d\mu(z) = \int_E u^h_{\mu}(z) \, d\mu(z).$$

Definition

Let $E \subset \mathbb{D}$ be compact. The *hyperbolic equilibrium energy* of E is defined by

$$V^h_E = \inf_{\mu \in \mathcal{P}(E)} I_h(\mu),$$

and the *hyperbolic capacity* of E is defined by

$$\text{cap}_h(E) = \exp(-V^h_E).$$
Definition

Let $E \subset \mathbb{D}$ be compact. The *hyperbolic energy* $I_h : \mathcal{P}(E) \to (-\infty, +\infty]$ is defined by

$$I_h(\mu) = \int_E \int_E \log \frac{1}{\rho(z, \zeta)} d\mu(\zeta) d\mu(z) = \int_E u^h_\mu(z) d\mu(z).$$

Definition

Let $E \subset \mathbb{D}$ be compact. The *hyperbolic equilibrium energy* of E is defined by

$$V^h_E = \inf_{\mu \in \mathcal{P}(E)} I_h(\mu),$$

and the *hyperbolic capacity* of E is defined by

$$\text{cap}^h(E) = \exp(-V^h_E).$$
Hyperbolic Equilibrium Measure

Theorem (M. Tsuji, 1947)

For each compact set $E \subset \mathbb{D}$ with $\text{cap}_h(E) > 0$, there exists a unique measure μ^h_E s.t. $V^h_E = I_h(\mu^h_E)$.

Such a measure μ^h_E is called the *hyperbolic equilibrium measure* for E.

Theorem (M. Tsuji, 1947)

Let $E \subset \mathbb{D}$ be compact and let μ^h_E be the hyperbolic equilibrium measure for E. Then its potential $u^h_{\mu^h_E}$ has the following properties:

(a) $u^h_{\mu^h_E}(z) \leq V^h_E$ in \mathbb{D} and

(b) $u^h_{\mu^h_E}(z) = V^h_E$ quasi-everywhere (q.e.) on E, i.e., except for a set of capacity zero.
Hyperbolic Equilibrium Measure

Theorem (M. Tsuji, 1947)

For each compact set $E \subset \mathbb{D}$ with $\text{cap}_h(E) > 0$, there exists a unique measure μ^h_E s.t. $V^h_E = I_h(\mu^h_E)$.

Such a measure μ^h_E is called the hyperbolic equilibrium measure for E.

Theorem (M. Tsuji, 1947)

Let $E \subset \mathbb{D}$ be compact and let μ^h_E be the hyperbolic equilibrium measure for E. Then its potential $u^h_{\mu^h_E}$ has the following properties:

(a) $u^h_{\mu^h_E}(z) \leq V^h_E$ in \mathbb{D} and

(b) $u^h_{\mu^h_E}(z) = V^h_E$ quasi-everywhere (q.e.) on E, i.e., except for a set of capacity zero.
Hyperbolic Equilibrium Measure

Theorem (M.Tsuji, 1947)

For each compact set $E \subset \mathbb{D}$ with $\text{cap}_h(E) > 0$, there exists a unique measure μ^h_E s.t. $V^h_E = I_h(\mu^h_E)$.

Such a measure μ^h_E is called the **hyperbolic equilibrium measure** for E.

Theorem (M.Tsuji, 1947)

Let $E \subset \mathbb{D}$ be compact and let μ^h_E be the hyperbolic equilibrium measure for E. Then its potential $u^h_{\mu^h_E}$ has the following properties:

(a) $u^h_{\mu^h_E}(z) \leq V^h_E$ in \mathbb{D} and

(b) $u^h_{\mu^h_E}(z) = V^h_E$ quasi-everywhere (q.e.) on E, i.e., except for a set of capacity zero.
Hyperbolic Equilibrium Measure

Theorem (M. Tsuji, 1947)

For each compact set $E \subset \mathbb{D}$ with $\text{cap}_h(E) > 0$, there exists a unique measure μ_E^h s.t. $V_E^h = I_h(\mu_E^h)$.

Such a measure μ_E^h is called the hyperbolic equilibrium measure for E.

Theorem (M. Tsuji, 1947)

Let $E \subset \mathbb{D}$ be compact and let μ_E^h be the hyperbolic equilibrium measure for E. Then its potential $u_{\mu_E^h}^h$ has the following properties:

(a) $u_{\mu_E^h}^h(z) \leq V_E^h$ in \mathbb{D} and

(b) $u_{\mu_E^h}^h(z) = V_E^h$ quasi-everywhere (q.e.) on E, i.e., except for a set of capacity zero.
Application of the Hyperbolic Equilibrium Measure

Theorem (A)

Let B_1 and B_2 be finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$ respectively, and let $E_1, E_2 \subset \mathbb{D}$ be compact. Suppose that $\text{cap}_h(E_1), \text{cap}_h(E_2) > 0$ and $\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$. Then

\[
\frac{u_{\mu_{E_1}}^h \circ B_1(z)}{d_1} = \frac{u_{\mu_{E_2}}^h \circ B_2(z)}{d_2}, \quad \text{for all } z \in \overline{\mathbb{D}}.
\]
Application of the Hyperbolic Equilibrium Measure

Theorem (A)

Let B_1 and B_2 be finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$ respectively, and let $E_1, E_2 \subset \mathbb{D}$ be compact.

Suppose that $\text{cap}_h(E_1), \text{cap}_h(E_2) > 0$ and $\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$. Then

$$\frac{u^h_{\mu_{E_1}} \circ B_1(z)}{d_1} = \frac{u^h_{\mu_{E_2}} \circ B_2(z)}{d_2}, \quad \text{for all } z \in \overline{\mathbb{D}}.$$
Pullback Measure

Definition

Given a probability measure μ on E, the *pullback measure* $B^*\mu$ is the probability measure on $B^{-1}(E)$ s.t. for all holomorphic functions f on $B^{-1}(E)$,

$$
\int_{B^{-1}(E)} f(\xi) d(B^*\mu)(\xi) = \int_E \sum_{\xi \in B^{-1}(\{\zeta\})} f(\xi) d\mu(\zeta),
$$

where the summation is over all the roots of $B(\xi) - \zeta$ and a root of multiplicity m is repeated m times. Indeed,

$$
B^*\mu(B^{-1}(E_0)) = \int_{E_0} \sum_{\xi \in B^{-1}(\{\zeta\})} 1 d\mu(\zeta) = d \cdot \mu(E_0), \quad E_0 \subset E.
$$
Definition

Given a probability measure μ on E, the pullback measure $B^*\mu$ is the probability measure on $B^{-1}(E)$ s.t. for all holomorphic functions f on $B^{-1}(E)$,

$$\int_{B^{-1}(E)} f(\xi)d(B^*\mu)(\xi) = \int_E \sum_{\xi \in B^{-1}\{\zeta\}} f(\xi)d\mu(\zeta),$$

where the summation is over all the roots of $B(\xi) - \zeta$ and a root of multiplicity m is repeated m times. Indeed,

$$B^*\mu(B^{-1}(E_0)) = \int_{E_0} \sum_{\xi \in B^{-1}\{\zeta\}} 1d\mu(\zeta) = d \cdot \mu(E_0), \ E_0 \subset E.$$
Equilibrium Measure on $B^{-1}(E)$

Proposition

Let B be a finite Blaschke product of degree d and $\Omega = B^{-1}(E)$. Suppose $\text{cap}_h(E) > 0$. If μ^h_E is the equilibrium measure on E, then the equilibrium measure μ^h_Ω on Ω is

$$\frac{B^* \mu^h_E}{d}$$
Equilibrium Measure on $B^{-1}(E)$

Proposition

Let B be a finite Blaschke product of degree d and $\Omega = B^{-1}(E)$. Suppose $\text{cap}_h(E) > 0$. If μ^h_E is the equilibrium measure on E, then the equilibrium measure μ^h_Ω on Ω is

$$\frac{B^* \mu^h_E}{d}$$
Proposition

Let B be a finite Blaschke product of degree d and $\Omega = B^{-1}(E)$. Suppose $\text{cap}_h(E) > 0$. If μ^h_E is the equilibrium measure on E, then the equilibrium measure μ^h_Ω on Ω is

$$B^* \frac{\mu^h_E}{d}$$
Recall that

Theorem (A)

Let B_1 and B_2 be finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$ respectively, and let $E_1, E_2 \subset \mathbb{D}$ be compact. Suppose that $\text{cap}_h(E_1), \text{cap}_h(E_2) > 0$ and $\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$. Then

$$
\frac{u_{\mu_{E_1}}^h \circ B_1(z)}{d_1} = \frac{u_{\mu_{E_2}}^h \circ B_2(z)}{d_2}, \quad \text{for all } z \in \overline{\mathbb{D}}.
$$

To prove this theorem, we need the following lemma.

Lemma

Let μ be a finite Borel measure on \mathbb{D} with compact support. Then

$$
\Delta u_{\mu}^h = -2\pi \mu,
$$

where Δ is the generalized Laplacian.
Recall that

Theorem (A)

Let B_1 and B_2 be finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$ respectively, and let $E_1, E_2 \subset \mathbb{D}$ be compact. Suppose that $\text{cap}_h(E_1), \text{cap}_h(E_2) > 0$ and $\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$. Then

$$
\frac{u^h_{\mu_{E_1}^h} \circ B_1(z)}{d_1} = \frac{u^h_{\mu_{E_2}^h} \circ B_2(z)}{d_2}, \quad \text{for all } z \in \overline{\mathbb{D}}.
$$

To prove this theorem, we need the following lemma.

Lemma

Let μ be a finite Borel measure on \mathbb{D} with compact support. Then

$$
\Delta u^h_\mu = -2\pi \mu,
$$

where Δ is the generalized Laplacian.
Recall that

Theorem (A)

Let B_1 and B_2 be finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$ respectively, and let $E_1, E_2 \subset \mathbb{D}$ be compact. Suppose that $\text{cap}_h(E_1), \text{cap}_h(E_2) > 0$ and $\Omega := B_1^{-1}(E_1) = B_2^{-1}(E_2)$. Then

$$u_{\mu_{E_1}}^h \circ B_1(z) = \frac{u_{\mu_{E_1}}^h \circ B_2(z)}{d_1} = \frac{u_{\mu_{E_2}}^h \circ B_2(z)}{d_2}, \quad \text{for all } z \in \overline{\mathbb{D}}.$$

To prove this theorem, we need the following lemma.

Lemma

Let μ be a finite Borel measure on \mathbb{D} with compact support. Then

$$\Delta u_{\mu}^h = -2\pi \mu,$$

where Δ is the generalized Laplacian.
Proof of Theorem A

Let $\mu^h_{E_j}$ be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1}B_1^*\mu^h_{E_1}$ and $d_2^{-1}B_2^*\mu^h_{E_2}$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1}B_1^*\mu^h_{E_1} = d_2^{-1}B_2^*\mu^h_{E_2}$.
- $\frac{u^h_{\mu^h_{E_i}}}{d_i} = \frac{u^h_{\mu^h_{B_i\cdot E_i}}}{d_i}$, $i = 1, 2$.
- By Lemma,

\[\Delta u^h_{\mu^h_{B_1^* E_1}} = -2\pi d_1^{-1}B_1^*\mu^h_{E_1} = -2\pi d_2^{-1}B_2^*\mu^h_{E_2} = \Delta u^h_{\mu^h_{B_2^* E_2}}.\]

- Let $\Psi = \frac{u^h_{\mu^h_{B_1^* E_1}}}{d_1} - \frac{u^h_{\mu^h_{B_2^* E_2}}}{d_2}$ on \overline{D}. As $\Delta \Psi = 0$, Ψ is harmonic on D.

As $\frac{u^h_{\mu^h_{B_i^* E_i}}}{d_i} \equiv 0$ on ∂D, $\Psi \equiv 0$ on ∂D.

- $\Psi \equiv 0$ on \overline{D}, which proves the Theorem A.
Proof of Theorem A

Let $\mu^h_{E_j}$ be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1}B_1^*\mu^h_{E_1}$ and $d_2^{-1}B_2^*\mu^h_{E_2}$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1}B_1^*\mu^h_{E_1} = d_2^{-1}B_2^*\mu^h_{E_2}$.
- $u^h_{B_i^*\mu^h_{E_i}} = \frac{u^h_{\mu^h_{E_i}} \circ B_i}{d_i}$, $i = 1, 2$.
- By Lemma,
 \[\Delta u^h_{B_1^*\mu^h_{E_1}} = -2\pi d_1^{-1}B_1^*\mu^h_{E_1} = -2\pi d_2^{-1}B_2^*\mu^h_{E_2} = \Delta u^h_{B_2^*\mu^h_{E_2}}. \]
- Let $\Psi = u^h_{B_1^*\mu^h_{E_1}} - u^h_{B_2^*\mu^h_{E_2}}$ on $\overline{\mathbb{D}}$. As $\Delta \Psi = 0$, Ψ is harmonic on \mathbb{D}.
- As $u^h_{B_i^*\mu^h_{E_i}} \equiv 0$ on $\partial \mathbb{D}$, $\Psi \equiv 0$ on $\partial \mathbb{D}$.
- $\Psi \equiv 0$ on $\overline{\mathbb{D}}$, which proves the Theorem A.
Proof of Theorem A

Let $\mu^h_{E_j}$ be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1}B_1^*\mu^h_{E_1}$ and $d_2^{-1}B_2^*\mu^h_{E_2}$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1}B_1^*\mu^h_{E_1} = d_2^{-1}B_2^*\mu^h_{E_2}$.

By Lemma,

$$\Delta u^h_{B_1^*\mu^h_{E_1}} = -2\pi d_1^{-1}B_1^*\mu^h_{E_1} = -2\pi d_2^{-1}B_2^*\mu^h_{E_2} = \Delta u^h_{B_2^*\mu^h_{E_2}}.$$

Let $\Psi = u^h_{B_1^*\mu^h_{E_1}} - u^h_{B_2^*\mu^h_{E_2}}$ on \overline{D}. As $\Delta \Psi = 0$, Ψ is harmonic on D.

As $u^h_{B^*_i\mu^h_{E_i}} \equiv 0$ on ∂D, $\Psi \equiv 0$ on ∂D.

$\Psi \equiv 0$ on \overline{D}, which proves the Theorem A.
Proof of Theorem A

Let $\mu_{E_j}^h$ be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1}B_1^*\mu_{E_1}^h$ and $d_2^{-1}B_2^*\mu_{E_2}^h$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1}B_1^*\mu_{E_1}^h = d_2^{-1}B_2^*\mu_{E_2}^h$.

$u^h_{B_i^*\mu_{E_i}^h} = \frac{u^h_{\mu_{E_i}^h} \circ B_i}{d_i}$, $i = 1, 2$.

By Lemma,

$$\Delta u^h_{B_1^*\mu_{E_1}^h} = -2\pi d_1^{-1}B_1^*\mu_{E_1}^h = -2\pi d_2^{-1}B_2^*\mu_{E_2}^h = \Delta u^h_{B_2^*\mu_{E_2}^h}.$$

Let $\Psi = u^h_{B_1^*\mu_{E_1}^h} - u^h_{B_2^*\mu_{E_2}^h}$ on $\overline{\mathbb{D}}$. As $\Delta \Psi = 0$, Ψ is harmonic on \mathbb{D}.

As $u^h_{B_i^*\mu_{E_i}^h} \equiv 0$ on $\partial \mathbb{D}$, $\Psi \equiv 0$ on $\partial \mathbb{D}$.

$\Psi \equiv 0$ on $\overline{\mathbb{D}}$, which proves the Theorem A.
Proof of Theorem A

Let μ^h_E be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1}B_1^*\mu^h_{E_1}$ and $d_2^{-1}B_2^*\mu^h_{E_2}$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1}B_1^*\mu^h_{E_1} = d_2^{-1}B_2^*\mu^h_{E_2}$.
- $u^h_{\mu^h_{E_i}B_i} = \frac{u^h_{\mu^h_{E_i}} \circ B_i}{d_i}, \ i = 1, 2$.

- By Lemma,

$$\Delta u^h_{\mu^h_{E_1}} = -2\pi d_1^{-1}B_1^*\mu^h_{E_1} = -2\pi d_2^{-1}B_2^*\mu^h_{E_2} = \Delta u^h_{\mu^h_{E_2}}.$$

Let $\Psi = u^h_{\mu^h_{E_1}} - u^h_{\mu^h_{E_2}}$ on $\overline{\mathbb{D}}$. As $\Delta \Psi = 0$, Ψ is harmonic on \mathbb{D}.

As $u^h_{\mu^h_{E_i}B_i} \equiv 0$ on $\partial \mathbb{D}$, $\Psi \equiv 0$ on $\partial \mathbb{D}$.

$\Psi \equiv 0$ on $\overline{\mathbb{D}}$, which proves the Theorem A.
Proof of Theorem A

Let $\mu^h_{E_j}$ be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1} B_1^{*} \mu^h_{E_1}$ and $d_2^{-1} B_2^{*} \mu^h_{E_2}$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1} B_1^{*} \mu^h_{E_1} = d_2^{-1} B_2^{*} \mu^h_{E_2}$.
- $u^h_{B_i^{*} \mu^h_{E_i}} = \frac{u^h_{\mu^h_{E_i}} \circ B_i}{d_i}$, $i = 1, 2$.
- By Lemma,
 \[
 \Delta u^h_{B_1^{*} \mu^h_{E_1}} = -2\pi d_1^{-1} B_1^{*} \mu^h_{E_1} = -2\pi d_2^{-1} B_2^{*} \mu^h_{E_2} = \Delta u^h_{B_2^{*} \mu^h_{E_2}}.
 \]
- Let $\Psi = u^h_{B_1^{*} \mu^h_{E_1}} - u^h_{B_2^{*} \mu^h_{E_2}}$ on \overline{D}. As $\Delta \Psi = 0$, Ψ is harmonic on D.
 As $u^h_{B_i^{*} \mu^h_{E_i}} \equiv 0$ on ∂D, $\Psi \equiv 0$ on ∂D.
- $\Psi \equiv 0$ on \overline{D}, which proves the Theorem A.
Proof of Theorem A

Let $\mu_{E_j}^h$ be the hyperbolic equilibrium measure of E_j.

- $d_1^{-1} B_1^* \mu_{E_1}^h$ and $d_2^{-1} B_2^* \mu_{E_2}^h$ are hyperbolic equilibrium measures of Ω.
- By the uniqueness, we get $d_1^{-1} B_1^* \mu_{E_1}^h = d_2^{-1} B_2^* \mu_{E_2}^h$.

By Lemma,

$$
\Delta u_{B_1^* \mu_{E_1}^h}^h = -2\pi d_1^{-1} B_1^* \mu_{E_1}^h = -2\pi d_2^{-1} B_2^* \mu_{E_2}^h = \Delta u_{B_2^* \mu_{E_2}^h}^h.
$$

Let $\Psi = u_{B_1^* \mu_{E_1}^h}^h - u_{B_2^* \mu_{E_2}^h}^h$ on \overline{D}. As $\Delta \Psi = 0$, Ψ is harmonic on \mathbb{D}.

As $u_{B_i^* \mu_{E_i}^h}^h \equiv 0$ on $\partial \mathbb{D}$, $\Psi \equiv 0$ on $\partial \mathbb{D}$.

$\Psi \equiv 0$ on \overline{D}, which proves the Theorem A.
Invariants of a Finite Blaschke Product near $\partial \mathbb{D}$

- Study the continuous function $u : \partial \mathbb{D} \rightarrow \partial \mathbb{D}$ which is invariant for a finite Blaschke product B, i.e.,

$$B \circ u = B \text{ on } \partial \mathbb{D}.$$

- In fact, these functions form a cyclic group.

Theorem (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$. The set of the continuous functions $u : \partial \mathbb{D} \rightarrow \partial \mathbb{D}$ s.t. $B \circ u = B$ is a cyclic group (for the composition) of order d, say $\{u_1, \cdots, u_d\}$.

Invariants of a Finite Blaschke Product near $\partial \mathbb{D}$

- Study the continuous function $u : \partial \mathbb{D} \to \partial \mathbb{D}$ which is invariant for a finite Blaschke product B, i.e.,

$$B \circ u = B \text{ on } \partial \mathbb{D}.$$

- In fact, these functions form a cyclic group.

Theorem (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$. The set of the continuous functions $u : \partial \mathbb{D} \to \partial \mathbb{D}$ s.t. $B \circ u = B$ is a cyclic group (for the composition) of order d, say $\{u_1, \cdots, u_d\}$.
Study the continuous function $u : \partial \mathbb{D} \to \partial \mathbb{D}$ which is invariant for a finite Blaschke product B, i.e.,

$$B \circ u = B \text{ on } \partial \mathbb{D}.$$

In fact, these functions form a cyclic group.

Theorem (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$. The set of the continuous functions $u : \partial \mathbb{D} \to \partial \mathbb{D}$ s.t. $B \circ u = B$ is a cyclic group (for the composition) of order d, say $\{u_1, \ldots, u_d\}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
Analytic Extension of u_k

Moreover, each u_k can be extended analytically to a neighborhood of $\partial \mathbb{D}$.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$ and denote by $M = \max\{|\alpha| : B(\alpha) = 0\}$. Then each of the d continuous function u_k on $\partial \mathbb{D}$ ($1 \leq k \leq d$) s.t. $B \circ u_k = B$ has an analytic extension \tilde{u}_k in the annulus $A = \{z \in \mathbb{C} : M < |z| < 1/M\}$ which still satisfies $B \circ \tilde{u}_k = B$.

Denote the extension \tilde{u}_1 by u_B. Then u_B is a conformal map in a small neighborhood of $\partial \mathbb{D}$ s.t.

1. $B \circ u_B^k = B$ ($1 \leq k \leq d$),
2. $u_B^d = id$, and
3. $u_B, u_B^2, \ldots, u_B^{d-1}, id$ are all distinct.
Analytic Extension of u_k

Moreover, each u_k can be extended analytically to a neighborhood of $\partial \mathbb{D}$.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$ and denote by $M = \max \{ |\alpha| : B(\alpha) = 0 \}$. Then each of the d continuous function u_k on $\partial \mathbb{D}$ ($1 \leq k \leq d$) s.t. $B \circ u_k = B$ has an analytic extension \tilde{u}_k in the annulus $A = \{ z \in \mathbb{C} : M < |z| < 1/M \}$ which still satisfies $B \circ \tilde{u}_k = B$.

Denote the extension \tilde{u}_1 by u_B.

Then u_B is a conformal map in a small neighborhood of $\partial \mathbb{D}$ s.t.

1. $B \circ u_B^k = B$ ($1 \leq k \leq d$),
2. $u_B^d = id$, and
3. $u_B, u_B^2, \cdots, u_B^{d-1}, id$ are all distinct.
Analytic Extension of u_k

Moreover, each u_k can be extended analytically to a neighborhood of $\partial \mathbb{D}$.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$ and denote by $M = \max\{ |\alpha| : B(\alpha) = 0 \}$. Then each of the d continuous function u_k on $\partial \mathbb{D}$ ($1 \leq k \leq d$) s.t. $B \circ u_k = B$ has an analytic extension \tilde{u}_k in the annulus $A = \{ z \in \mathbb{C} : M < |z| < 1/M \}$ which still satisfies $B \circ \tilde{u}_k = B$.

Denote the extension \tilde{u}_1 by u_B.

Then u_B is a conformal map in a small neighborhood of $\partial \mathbb{D}$ s.t.

1. $B \circ u_B^k = B$ ($1 \leq k \leq d$),
2. $u_B^d = id$, and
3. $u_B, u_B^2, \cdots, u_B^{d-1}, id$ are all distinct.
Analytic Extension of u_k

Moreover, each u_k can be extended analytically to a neighborhood of $\partial \mathbb{D}$.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$ and denote by $M = \max\{|\alpha| : B(\alpha) = 0\}$. Then each of the d continuous function u_k on $\partial \mathbb{D}$ ($1 \leq k \leq d$) s.t. $B \circ u_k = B$ has an analytic extension \tilde{u}_k in the annulus $A = \{z \in \mathbb{C} : M < |z| < 1/M\}$ which still satisfies $B \circ \tilde{u}_k = B$.

Denote the extension \tilde{u}_1 by u_B.

Then u_B is a conformal map in a small neighborhood of $\partial \mathbb{D}$ s.t.

1. $B \circ u_B^k = B$ ($1 \leq k \leq d$),
2. $u_B^d = id$, and
3. $u_B, u_B^2, \cdots, u_B^{d-1}, id$ are all distinct.
Analytic Extension of u_k

Moreover, each u_k can be extended analytically to a neighborhood of $\partial \mathbb{D}$.

Proposition (Cassier & Chalendar (2000))

Let B be a finite Blaschke product of degree $d \geq 1$ and denote by $M = \max\{|\alpha| : B(\alpha) = 0\}$. Then each of the d continuous function u_k on $\partial \mathbb{D}$ ($1 \leq k \leq d$) s.t. $B \circ u_k = B$ has an analytic extension \tilde{u}_k in the annulus $A = \{z \in \mathbb{C} : M < |z| < 1/M\}$ which still satisfies $B \circ \tilde{u}_k = B$.

Denote the extension \tilde{u}_1 by u_B.
Then u_B is a conformal map in a small neighborhood of $\partial \mathbb{D}$ s.t.

1. $B \circ u_B^k = B$ ($1 \leq k \leq d$),
2. $u_B^d = id$, and
3. $u_B, u_B^2, \cdots, u_B^{d-1}, id$ are all distinct.
The u_B will give information about the factorizations of B

Theorem (B)

Let B_1 and B_2 be two finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$, and let $d = \gcd(d_1, d_2)$.

(a) If Φ is a finite Blaschke product s.t. $\Phi \circ u_{B_1} = \Phi$ in the neighborhood of $\partial \mathbb{D}$, then there exists a finite Blaschke product B s.t.

$$
\Phi = B \circ B_1.
$$

(b) If $u_{B_1}^{\circ k_1 d_1/d} = u_{B_2}^{\circ k_2 d_2/m}$ ($\gcd(k_j, d) = 1$), then there exist finite Blaschke products $B, \tilde{B}_1, \tilde{B}_2$ (deg $B = d$) s.t.

$$
B_1 = \tilde{B}_1 \circ B, \quad B_2 = \tilde{B}_2 \circ B.
$$

(c) If $d = 1$ and if $u_{B_1} \circ u_{B_2} = u_{B_2} \circ u_{B_1}$, there exist finite Blaschke products Φ (deg $\Phi = d_1 d_2$), B_1^*, B_2^* s.t.

$$
\Phi = B_1^* \circ B_2 = B_2^* \circ B_1.
$$
The u_B will give information about the factorizations of B

Theorem (B)

Let B_1 and B_2 be two finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$, and let $d = \gcd(d_1, d_2)$.

(a) If Φ is a finite Blaschke product s.t. $\Phi \circ u_{B_1} = \Phi$ in the neighborhood of $\partial \mathbb{D}$, then there exists a finite Blaschke product B s.t.

$$\Phi = B \circ B_1.$$

(b) If $u_{B_1}^{\circ k_1 d_1/d} = u_{B_2}^{\circ k_2 d_2/m} \ (\gcd(k_j, d) = 1)$, then there exist finite Blaschke products $B, \tilde{B}_1, \tilde{B}_2 \ (\deg B = d)$ s.t.

$$B_1 = \tilde{B}_1 \circ B, \ B_2 = \tilde{B}_2 \circ B.$$

(c) If $d = 1$ and if $u_{B_1} \circ u_{B_2} = u_{B_2} \circ u_{B_1}$, there exist finite Blaschke products $\Phi \ (\deg \Phi = d_1 d_2), \ B_1^*, B_2^* \ s.t.$

$$\Phi = B_1^* \circ B_2 = B_2^* \circ B_1.$$
The u_B will give information about the factorizations of B.

Theorem (B)

Let B_1 and B_2 be two finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$, and let $d = \gcd(d_1, d_2)$.

(a) If Φ is a finite Blaschke product s.t. $\Phi \circ u_{B_1} = \Phi$ in the neighborhood of $\partial \mathbb{D}$, then there exists a finite Blaschke product B s.t.

$$\Phi = B \circ B_1.$$

(b) If $u_{B_1}^{\circ k_1 d_1/d} = u_{B_2}^{\circ k_2 d_2/m}$ (gcd$(k_j, d) = 1$), then there exist finite Blaschke products $B, \tilde{B}_1, \tilde{B}_2$ (deg $B = d$) s.t.

$$B_1 = \tilde{B}_1 \circ B, \ B_2 = \tilde{B}_2 \circ B.$$

(c) If $d = 1$ and if $u_{B_1} \circ u_{B_2} = u_{B_2} \circ u_{B_1}$, there exist finite Blaschke products Φ (deg $\Phi = d_1 d_2$), B_1^*, B_2^* s.t.

$$\Phi = B_1^* \circ B_2 = B_2^* \circ B_1.$$
The u_B will give information about the factorizations of B

Theorem (B)

Let B_1 and B_2 be two finite Blaschke products of degrees $d_1 \geq 1$ and $d_2 \geq 1$, and let $d = \gcd(d_1, d_2)$.

(a) If Φ is a finite Blaschke product s.t. $\Phi \circ u_{B_1} = \Phi$ in the neighborhood of $\partial \mathbb{D}$, then there exists a finite Blaschke product B s.t.

$$\Phi = B \circ B_1.$$

(b) If $u_{B_1}^{\circ k_1 d_1 / d} = u_{B_2}^{\circ k_2 d_2 / m}$ ($\gcd(k_j, d) = 1$), then there exist finite Blaschke products B, \tilde{B}_1, \tilde{B}_2 (deg $B = d$) s.t.

$$B_1 = \tilde{B}_1 \circ B, \ B_2 = \tilde{B}_2 \circ B.$$

(c) If $d = 1$ and if $u_{B_1} \circ u_{B_2} = u_{B_2} \circ u_{B_1}$, there exist finite Blaschke products Φ (deg $\Phi = d_1 d_2$), B_1^*, B_2^* s.t.

$$\Phi = B_1^* \circ B_2 = B_2^* \circ B_1.$$
How to get $g_1 \circ B_1 = g_2 \circ B_2$?

By Theorem A, we have

$$
\frac{u^h_{\mu_{E_1}} \circ B_1(z)}{d_1} = \frac{u^h_{\mu_{E_2}} \circ B_2(z)}{d_2}, \text{ for all } z \in \overline{D}.
$$

For $i = 1, 2$, let K_i be the component of $D \setminus E_i$ which borders on ∂D. Since E_i is connected, K_i is doubly connected and there exists a biholomorphisic function φ_i from K_i onto $\{\rho_i < |w| < 1\}$ s.t. $\varphi_i(\partial D) = \partial D$.

Note that $u^h_{\mu_{E_i}}(z) = -\log |\varphi_i(z)|$ for all $z \in K_i$.

$$
\frac{\log |\varphi_1 \circ B_1(z)|}{d_1} = \frac{\log |\varphi_2 \circ B_2(z)|}{d_2} \text{ and } |z^{d_2} \circ \varphi_1 \circ B_1(z)| = |z^{d_1} \circ \varphi_2 \circ B_2(z)|
$$

for any $z \in D$ sufficiently close to ∂D.
How to get $g_1 \circ B_1 = g_2 \circ B_2$?

By Theorem A, we have

$$\frac{u^h_{\mu_{E_1}} \circ B_1(z)}{d_1} = \frac{u^h_{\mu_{E_2}} \circ B_2(z)}{d_2}, \text{ for all } z \in \overline{D}.$$

- For $i = 1, 2$, let K_i be the component of $\mathbb{D} \setminus E_i$ which borders on $\partial \mathbb{D}$. Since E_i is connected, K_i is doubly connected and there exists a biholomorphic function φ_i from K_i onto $\{\rho_i < |w| < 1\}$ s.t. $\varphi_i(\partial \mathbb{D}) = \partial \mathbb{D}$.

- Note that $u^h_{\mu_{E_i}} (z) = -\log |\varphi_i(z)|$ for all $z \in K_i$.

- $\frac{\log |\varphi_1 \circ B_1(z)|}{d_1} = \frac{\log |\varphi_2 \circ B_2(z)|}{d_2}$ and $|z^{d_2} \circ \varphi_1 \circ B_1(z)| = |z^{d_1} \circ \varphi_2 \circ B_2(z)|$ for any $z \in \mathbb{D}$ sufficiently close to $\partial \mathbb{D}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang)
How to get $g_1 \circ B_1 = g_2 \circ B_2$?

By Theorem A, we have

$$\frac{u^h_{\mu_{E_1}} \circ B_1(z)}{d_1} = \frac{u^h_{\mu_{E_2}} \circ B_2(z)}{d_2}, \text{ for all } z \in \overline{\mathbb{D}}.$$

- For $i = 1, 2$, let K_i be the component of $\mathbb{D} \setminus E_i$ which borders on $\partial \mathbb{D}$. Since E_i is connected, K_i is doubly connected and there exists a biholomorphic function φ_i from K_i onto $\{\rho_i < |w| < 1\}$ s.t. $\varphi_i(\partial \mathbb{D}) = \partial \mathbb{D}$.

- Note that $u^h_{\mu_{E_i}}(z) = -\log |\varphi_i(z)|$ for all $z \in K_i$.

- $\frac{\log |\varphi_1 \circ B_1(z)|}{d_1} = \frac{\log |\varphi_2 \circ B_2(z)|}{d_2}$ and $|z^{d_2} \circ \varphi_1 \circ B_1(z)| = |z^{d_1} \circ \varphi_2 \circ B_2(z)|$ for any $z \in \mathbb{D}$ sufficiently close to $\partial \mathbb{D}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST)
Finite Blaschke Products Sharing Preimages
23 May 2013 26 / 1
How to get $g_1 \circ B_1 = g_2 \circ B_2$?

By Theorem A, we have

$$u^h_{\mu_{E_1}} \circ B_1(z) = u^h_{\mu_{E_2}} \circ B_2(z), \quad \text{for all } z \in \overline{D}.$$

- For $i = 1, 2$, let K_i be the component of $\mathbb{D} \setminus E_i$ which borders on $\partial \mathbb{D}$. Since E_i is connected, K_i is doubly connected and there exists a biholomorphic function φ_i from K_i onto $\{\rho_i < |w| < 1\}$ s.t. $\varphi_i(\partial \mathbb{D}) = \partial \mathbb{D}$.

- Note that $u^h_{\mu_{E_i}}(z) = -\log |\varphi_i(z)|$ for all $z \in K_i$.

- $\frac{\log |\varphi_1 \circ B_1(z)|}{d_1} = \frac{\log |\varphi_2 \circ B_2(z)|}{d_2}$ and $|z^{d_2} \circ \varphi_1 \circ B_1(z)| = |z^{d_1} \circ \varphi_2 \circ B_2(z)|$ for any $z \in \mathbb{D}$ sufficiently close to $\partial \mathbb{D}$.

Tuen Wai Ng (joint work with Chiu Yin Tsang) (HKUST) Finite Blaschke Products Sharing Preimages 23 May 2013 26 / 1
How to get $g_1 \circ B_1 = g_2 \circ B_2$?

- For any $z \in \mathbb{D}$ sufficiently close to $\partial \mathbb{D}$,

 $$\Psi(z) := z^{d_2} \circ \varphi_1 \circ B_1(z) = e^{i\theta} z^{d_1} \circ \varphi_2 \circ B_2(z).$$

- φ_i can extend continuously and homeomorphically to $\partial \mathbb{D}$ and

 $$\Psi = z^{d_2} \circ \varphi_1 \circ B_1 = e^{i\theta} z^{d_1} \circ \varphi_2 \circ B_2$$

 can also be defined on $\partial \mathbb{D}$.

- Try to show that u_{B_1} and u_{B_2} satisfy conditions in (b) or (c) of Theorem B.
How to get $g_1 \circ B_1 = g_2 \circ B_2$?

- For any $z \in \mathbb{D}$ sufficiently close to $\partial \mathbb{D}$,
 \[\Psi(z) := z^{d_2} \circ \varphi_1 \circ B_1(z) = e^{i\theta} z^{d_1} \circ \varphi_2 \circ B_2(z). \]

- φ_i can extend continuously and homeomorphically to $\partial \mathbb{D}$ and
 \[\Psi = z^{d_2} \circ \varphi_1 \circ B_1 = e^{i\theta} z^{d_1} \circ \varphi_2 \circ B_2 \]
 can also be defined on $\partial \mathbb{D}$.

- Try to show that u_{B_1} and u_{B_2} satisfy conditions in (b) or (c) of Theorem B.
How to get \(g_1 \circ B_1 = g_2 \circ B_2 \)?

- For any \(z \in \mathbb{D} \) sufficiently close to \(\partial \mathbb{D} \),
 \[
 \Psi(z) := z^{d_2} \circ \varphi_1 \circ B_1(z) = e^{i\theta} z^{d_1} \circ \varphi_2 \circ B_2(z).
 \]

- \(\varphi_i \) can extend continuously and homeomorphically to \(\partial \mathbb{D} \) and
 \[
 \Psi = z^{d_2} \circ \varphi_1 \circ B_1 = e^{i\theta} z^{d_1} \circ \varphi_2 \circ B_2
 \]
 can also be defined on \(\partial \mathbb{D} \).

- Try to show that \(u_{B_1} \) and \(u_{B_2} \) satisfy conditions in (b) or (c) of Theorem B.
Pakovich’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

Let \mathcal{B}_n denote the set of all finite Blaschke products of degree n and let $E \subset \mathbb{D}$ be compact.

Definition

A finite Blaschke product $\tilde{B} \in \mathcal{B}_n$ is called a minimal Blaschke product of degree n for E if $\|\tilde{B}\|_E = \min_{B \in \mathcal{B}_n} \|B\|_E$.

Theorem (Walsh (1952))

(Existence and location of zeros) A minimal Blaschke product \tilde{B} exists and its zeros lie in the convex hull of E with respect to the hyperbolic geometry in \mathbb{D}.
Pakovich’s approach for \(\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2) \)

Let \(\mathcal{B}_n \) denote the set of all finite Blaschke products of degree \(n \) and let \(E \subset \mathbb{D} \) be compact.

Definition

A finite Blaschke product \(\tilde{B} \in \mathcal{B}_n \) is called a minimal Blaschke product of degree \(n \) for \(E \) if \(\| \tilde{B} \|_E = \min_{B \in \mathcal{B}_n} \| B \|_E \).

Theorem (Walsh (1952))

(Existence and location of zeros) A minimal Blaschke product \(\tilde{B} \) exists and its zeros lie in the convex hull of \(E \) with respect to the hyperbolic geometry in \(\mathbb{D} \).
Pakovich’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

The counter-part of the two conjectures below are known to be true for polynomials.

Conjecture (A)

Such a minimal Blaschke product of degree n is unique up to multiplication by $e^{i\theta}$ when $|E| \geq n$.

Conjecture (B)

Let T be a minimal Blaschke product of degree m for E. Then for any finite Blaschke product B of degree n, $T \circ B$ is a minimal Blaschke product of degree mn for $B^{-1}(E)$.
Pakovitch’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

The counter-part of the two conjectures below are known to be true for polynomials.

Conjecture (A)

Such a minimal Blaschke product of degree n is unique up to multiplication by $e^{i\theta}$ when $|E| \geq n$.

Conjecture (B)

Let T be a minimal Blaschke product of degree m for E. Then for any finite Blaschke product B of degree n, $T \circ B$ is a minimal Blaschke product of degree mn for $B^{-1}(E)$.
Pakovich’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

- For $i = 1, 2$, let C_i be a minimal Blaschke product of degree d_i/d for E_i, where $d = \gcd(d_1, d_2)$.
- By conjecture B, $C_i \circ B_i$ is a minimal Blaschke product of degree d_1d_2/d for $\Omega = B_i^{-1}(E_i)$.
- Suppose $|\Omega| \geq \operatorname{lcm}(d_1, d_2) = d_1d_2/d$, by Conjecture A, we have
 \[C_1 \circ B_1 = e^{i\theta} C_2 \circ B_2 \]
- Then apply Ritt’s theorem for finite Blaschke products.
Pakovich’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

- For $i = 1, 2$, let C_i be a minimal Blaschke product of degree d_i/d for E_i, where $d = \gcd(d_1, d_2)$.
- By conjecture B, $C_i \circ B_i$ is a minimal Blaschke product of degree d_1d_2/d for $\Omega = B_i^{-1}(E_i)$.
- Suppose $|\Omega| \geq \text{lcm}(d_1, d_2) = d_1d_2/d$, by Conjecture A, we have
 \[C_1 \circ B_1 = e^{i\theta} C_2 \circ B_2 \]
- Then apply Ritt’s theorem for finite Blaschke products.
Pakovich’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

- For $i = 1, 2$, let C_i be a minimal Blaschke product of degree d_i/d for E_i, where $d = \gcd(d_1, d_2)$.
- By conjecture B, $C_i \circ B_i$ is a minimal Blaschke product of degree $d_1 d_2 / d$ for $\Omega = B_i^{-1}(E_i)$.
- Suppose $|\Omega| \geq \text{lcm}(d_1, d_2) = d_1 d_2 / d$, by Conjecture A, we have
 \[C_1 \circ B_1 = e^{i\theta} C_2 \circ B_2 \]
- Then apply Ritt’s theorem for finite Blaschke products.
Pakovich’s approach for $\Omega = B_1^{-1}(E_1) = B_2^{-1}(E_2)$

- For $i = 1, 2$, let C_i be a minimal Blaschke product of degree d_i/d for E_i, where $d = \gcd(d_1, d_2)$.
- By conjecture B, $C_i \circ B_i$ is a minimal Blaschke product of degree $d_1 d_2/d$ for $\Omega = B_i^{-1}(E_i)$.
- Suppose $|\Omega| \geq \text{lcm}(d_1, d_2) = d_1 d_2/d$, by Conjecture A, we have
 $$C_1 \circ B_1 = e^{i\theta} C_2 \circ B_2$$
 - Then apply Ritt’s theorem for finite Blaschke products.