<table>
<thead>
<tr>
<th>Title</th>
<th>Falsework collapses: analysis and case studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Poon, SW</td>
</tr>
<tr>
<td>Citation</td>
<td>The 2013 Safety Seminar on 'Safety in Falsework, Falsework Collapse: Analysis and Case Studies', Hong Kong, 28 June 2013.</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2013</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/227874</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Falsework Collapse
- Analysis & Case Studies

脚手架坍塌 -- 分析及事故

Dr. S.W. Poon 潘新崑博士
Dept of Real Estate & Construction 房地產及建設系
The University of Hong Kong 香港大學

Introduction

- Falsework is any temporary structure to support a permanent structure while the latter is not self-supporting during construction. 一切用途於施工過程中用於支承永久結構的臨時構造為腳手架。
- Bragg’s Committee identified technical reasons and procedural inadequacies were the main causes. 布拉格委員會發現技術原因及不當程序是主要原因。
- Study of bridge collapses revealed that over 50% were falsework related failures. 橋樑坍塌的研究表明50%以上的坍塌是由與腳手架有關的因素造成的。
- Causes were inadequate review of falsework design, inadequate control during construction and improper procedures in falsework removal. 原因包括對腳手架設計的審查不足，施工過程中監管不力以及腳手架拆除的程序不當。

Analysis
of
Falsework Collapses

腳手架坍塌事故分析

Elliot (1973) described seven collapses occurred within two years in California and he recommended that the contractor is required to have a licensed engineer’s check on the design of the falsework. 艾利特(1973)年介紹了兩年內在加州發生的七起坍塌事故，他建議承包商應當有一名註冊工程師負責檢查腳手架的設計。
Smith (1976) studied 143 bridge failures since 1877. 史密斯（1976）研究了自 1877 年以来所发生的 143 起桥梁坍塌事故。Twenty three of them happened during bridge construction and about 40% of these were due to failure of temporary supports. 其中 23 起是在施工过程中发生的，另外，约 40% 事故是由临时支撑物的失灵而造成的。

According to Hadipriono, three types of causes, i.e. the enabling, triggering and procedural causes, were classified. 根据哈迪普里昂诺，原因可分为三类，即加强，触发及程序性。

- The enabling causes are events that contribute to the deficiencies in the design and construction of falsework. 强加原因是那些造成脚手架设计和搭建时的缺陷的事件。
- The triggering causes are usually external events that could initiate a falsework collapse. 触发原因通常是外部事件，它们可能会导致脚手架坍塌。
- Procedural causes are hidden events that produce the enabling and, quite often, the triggering event as well. 程序性原因是一些隐藏事件，它们会引起强加事故，同时，也常常会引起触发事故的发生。

Hadipriono and Wang analyzed 126 falsework failures in concrete structures. 哈迪普里昂诺和王分析了混凝土结构中的 126 起脚手架失灵事故。42% of them were related to bridge construction. 其中 42% 与桥梁建设有关。

Falsework collapses during construction stage were summarised and about half of these 85 cases occurred during concrete pouring. 他们总结了施工阶段的脚手架坍塌情况。85 起事故中，约有一半发生在混凝土浇灌过程中。

Most of the enabling and triggering causes stemmed from inadequate procedural methods. 評估这些因素通常只能依赖于详细的调查报告。Evaluation of these factors is generally only available in more detailed investigation reports.
Most of the enabling and triggering causes stemmed from inadequate procedural methods. Evaluation of these factors is generally only available in more detailed investigation reports. 許多強加和觸發原因是由不適合的程序方法造成的。對這些因素的分析通常只能依賴於詳細的調查報告。

Hadipriono (1985) further identified external events and deficiencies in both the design and construction were the principal sources of 150 major structural failures. 哈迪普里歐諾(1985)進一步發現，設計和施工過程中的外部事件及缺陷是造成150起重大結構失靈的主要原因。

The most noticeable causes: 最顯而易見的原因
- lack of review of falsework design or construction 缺乏對腳手架設計或搭建的檢查
- unqualified persons to monitor the erection procedures 搭建過程由不合格人員監管
- lack of supervision in monitoring changes during construction 在施工過程中缺乏對監管變化的監督

He revealed that the enabling events were caused by inadequacy in the institutional and procedural methods such as confusions that occurred at interfaces between contractors, subcontractors, construction managers, design engineers, architects and the client's representatives. Consequently, they resulted in inadequate design review and improper construction monitoring. 他指出強加事件是因制度和程序方法存在不足而造成的，如承包商、分包商、施工經理、設計工程師、建築師和業主代表之間的聯系出現混亂，由此，造成對設計沒有予以充分的審核，以及施工監管不恰當。
Many failures were stemmed from inadequate design review procedures 許多事故是由不適當的設計審核規程造成的
- design calculations subcontracted to a professional were not thoroughly checked 沒有對分包給一名專業人員的設計計算進行全面核對
- detailing of important components, or the design of a complex falsework, was performed without fully verified 沒有對重要構件的細節，或是複雜腳手架的設計進行充分的檢驗

Another trend spotted was the lack of monitoring during construction phases. Frequently, inspection was performed in superficial ways and proper erection procedures were not adhered to. 所發現的另一種發展趨勢是在施工過程中缺乏監管。檢查工作通常是敷衍塞責，而且不遵守正確的搭建規程
Also lack of expertise and facilities in performing unconventional construction processes were very common. 另外，在采用非傳統的施工方法時，缺少專門技術和設施的情況司空見慣

Hadipriono suggested that: 哈迪普里昂諾建議
- A need to analyze potential problems occurred in the past. 有必要透過過去所發生的事故來分析潛在的問題
- To avoid confusions among parties involved, improve the procedures during design and construction processes. 為避免各有關方面的混亂，應該完善設計和施工過程的規程
- Adequate risk analysis for structures in services and during construction. 對正在使用及施工過程中的結構所存在的風險應該進行全面分析

Mechanisms in controlling falsework activities 監管腳手架活動的機制
1. U.K. – Falsework Coordinator
 英國 -- 脚手架協調人
 The contractor employs a falsework coordinator who is responsible for the checking of the design and construction of falsework, and coordination with other parties involved in falsework construction. 承包商雇佣一名脚手架协调人，负责检查脚手架的设计及搭建，以及协调与搭建脚手架有关的其他方面的工作

2. Hong Kong – Independent Checking Engineer
 香港 -- 獨立審核工程師
 A professional engineer, employed by the contractor, checks the design and construction of falsework. His permit would be required at critical stages of falsework construction. 承包商雇佣一名專業工程師，負責檢查腳手架的設計和搭建。在腳手架搭建的關鍵環節，應該得到他的許可

3. Developing countries – 發展中國家
 Contractor designs the falsework subject to the Engineer or R.E.’s approval but without responsibility. 承包商經工程師或註冊工程師同意後，設計腳手架，但不負任何責任

Collapse Prediction
Methods
坍塌預測方法
In 1973, Pugsley outlined an approach to the problem of assessing the proneness to structural accidents. In 1973年，普格斯利介绍了一种分析易造成结构事故问题的方法.

He suggested the following parameters of significance in accident history: 他提出了以下参数，它们在过去事故中均具有重要意义:
- new or unusual materials 新型或特别的材料
- new or unusual methods of construction 新的或特别的施工方法
- new or unusual types of structure 新型或特别的结构
- experience and organisation of design and construction team 設計及施工队伍的经验及組織
- research and development background 研究与开发背景
- industrial climate 工业气候
- financial climate 金融气候
- political climate 政治气候

Blockley (1975) outlined the fuzzy set approach to the problem of predicting the likelihood of a structure failure. 布拉克利(1975)介绍了一套模糊的预测结构事故可能性问题的方法

A failure occurs because there is a major error and/or several smaller errors combined to eliminate the factor of safety. 之所以发生事故，是因为存在一个主要及若干次要的问题，它们共同消除了安全因素

These factors are difficult to quantify but may be measured using fuzzy linguistic variables. 这些因素很难量化，但可利用模糊语言变量予以衡量.
Six main categories (parameters) used include:

- materials 材料
- type of structure 結構種類
- design experience 設計經驗
- time 時間
- construction 施工
- externals 外部因素

Each parameter is assigned the gravity and consequence rating.

The overall effect is then related to a safety index. 每個參數均有其重要性及後果比值。整個結果然後與一個安全指數結合起來

Blockley (1977) classified 24 parameters and assessed for 23 major structural accidents and one existing structure. 布洛克利 (1977) 對24個參數進行了分類及分析，其中23個參數與主要結構事故有關。與現有結構有關

The accidents are ranked in their order of inevitability. 按照不可避免，對事故進行排序

Problems such as poor site control, errors of judgement, time and financial pressure were highlighted. 諸如現場管理差、判斷失誤。時間及財務壓力之類的問題得到強調

Human errors were predominant in causing the failures and can be prevented by good communications between all parties concerned and by well-defined responsibilities and procedures under the contract. 爲人為錯誤是造成事故的主要原因。然而，倘若沒有有效溝通，而且在合同中明確責任和程序，這些錯誤是可以防止的。所分析的參數只能提供一個綜合的分數而已
Melchers (1978) commented on the contents of various failure reports ranging from the formal government inquiry reports to professional magazines. 梅爾切爾斯(1978)對不同事故報告的內容發表了意見，這些報告既有政府的正式調查報告，也有專業雜志。

Non-technical problems such as human errors were not always included in failure reports. 諸如人為失誤的非技術問題通常沒有記載在事故報告中。

The following are problems identified from four bridge failures: 下列問題是從四起橋樑事故中找到的。

1. Failure to appoint an experienced bridge engineer. 沒有委派有經驗的橋樑工程師。
2. Negligence in checking the falsework design and failing to submit the falsework drawings. 忽略了腳手架設計的核查工作，而且沒有提交腳手架設計圖。
3. The consulting engineers failed to require the contractor to submit details of falsework for approval. 咨詢工程師沒有要求承建商提交腳手架詳細資料供批准。
4. Routine design work is commonly done by inexperienced engineers. 通常由沒有經驗的工程師進行常規設計。

Melchers (1978) suggested a complementary approach on the in-depth study of failed projects, i.e. a pathological approach so that projects would be studied from an organisation as well as a technical viewpoint. 梅爾切爾斯(1978)提出了一個深入研究失敗項目的方法，即一種病理方法，由此，可從組織和技術的角度對項目進行研究。

Yao (1981) explored the gap between the calculated probability of failure (10^-6) and Brown’s perceived failure rate (10^-3) for a certain type of structure. 姚(1981)探討了某一類結構其計算的事故發生可能性(10^-6)與布朗感覺的事故發生率(10^-3)之間存在的差距。

In his example, two subjective factors i.e. the design and construction factors were assessed for their gravity and consequence. The failure probability is found to be of the order of 10^-4, which is closer to Brown’s perception. 在他的例子中，對兩個主觀因素，即設計和施工因素，進行了分析。結果發現事故發生的可能性在10^-4這樣一個範圍內，即更接近於布朗的感覺。
Melchers et al (1983) summarised the experience gained from the study of structural failures and satisfactory construction, and commented on the accuracy and completeness of reporting. Most failures can be shown to occur because of gross human errors - the need for a means of assessing the effectiveness in controlling the changes in both the design and construction process on the occurrence of gross human errors. Ellingwood (1987) concluded 10% of failures were traceable to stochastic variability in loads and capacities. The remaining 90% were due to other causes, including design and construction errors, modeling and analysis uncertainties. Independent control stops should be instituted at key decision points in the project, especially where responsibility for project phases changes hands.

Hadipriono (1985) pointed out human based uncertainties are abundant but are seldom included in the assessment of falsework performance - A method based on fuzzy set concept has been developed. Pidgeon et al (1990) described that Event Sequence Diagram (ESD) provides a powerful means of representing and accessing information about the sequences of events preceding a failure or near-miss incident. The ESD shows the temporal order and relationship of events leading up to a particular outcome. Pidgeon et al also introduced the concept of ESD feedback and its role in the process of identifying and addressing potential failures.
Lucas (1990) stated that we must learn from experience to prevent future crises from occurring. 路卡斯(1990)我們必須吸取教訓，以防止未來危機的發生

The fundamental concept is to find the cause, to derive effective remedies and to prevent future accidents. 基本的思想是找出原因，提出有效解決辦法以及防止未來事故的發生

Turner (1992) identified that large scale accidents have many causes and that their preconditions build up over a period of time. 特納(1992)指出，造成大規模事故的原因有許多，而且它們是日積月累的結果

Crises and disasters developed in a covert and unnoticed fashion during an incubation period. 危機和災難的潛伏期往往是隱蔽，不為人所知的

<table>
<thead>
<tr>
<th>Development sequence of systems failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Situation 'normally normal'</td>
</tr>
<tr>
<td>2. Incubation period</td>
</tr>
<tr>
<td>3. Trigger event</td>
</tr>
<tr>
<td>4. Onset</td>
</tr>
<tr>
<td>5. Rescue and salvage</td>
</tr>
<tr>
<td>6. Full cultural readjustment</td>
</tr>
</tbody>
</table>
Dias and Blockley (1995) argues that engineering students and practising engineers could upgrade their knowledge by learning from case histories of design and construction, and of failure. 戴阿斯和布拉克理(1995)強調，工程學生及實習工程師可以通過學習歷史的設計和施工案例來更新其知識。

Reflection on failures will result in improved design and construction. 在事故中反省將有助于設計和施工水平的提高。

Characteristics of the model to be developed: 建立模型的特點

1. The key and critical activities of falsework are grouped under the five essential stages and presented by event sequence diagram. 脚手架的關鍵活動要按五个基本階段分類，並用事件順序圖表示出來。

2. Different sub-models are derived, e.g. the conventional, independent checking engineer and falsework coordinator system. 要建立不同的次模型，如傳統的獨立檢查工程師及腳手架協調人制度。

3. Controls regarding the following common critical activities are included. 要對以下常見的關鍵活動進行管理。
 (a) Construction method of the permanent works and risk of falsework collapse. 永久工程的施工方法及腳手架坍塌的風險。
 (b) Changes in falsework design and construction method. 脚手架設計和施工方法的變化。

4. The activity or procedure performance will include the effect of personnel's characteristics. 活動或程序的實施應考慮職員特點的作用。

5. Communications between parties are shown in the flow diagram. 包括研究人員就事故分析情況所提出的建議。
Merits of the model: 模型的优缺点

1. To show clearly the activities flow for the parties; their roles, responsibilities and involvement. 明确地显示各方活动流程，其职责和参与情况

2. Inadequacy in design is taken into consideration for assessing falsework safety. 在分析脚手架安全时，考虑了设计的不充分性

3. The Balloon model is adopted. At each stage, the activities and procedures are assessed and effects leading to failure are aggregated to indicate the risk. 采用气球模型。在每个阶段，活动和程序被评估，并且导致失败的影响被聚合以指示风险

4. For checking any missing activities or inadequacy in procedures. 检查任何缺失的活动或程序

5. A simple tool to assess the falsework condition. 一种评估脚手架条件的简便工具

Procedures

Procedures are categorised under 5 stages:

- Design
- Erection
- Loading
- Taking down
- Renew (DELA)

If procedures are properly carried out, the errors will be minimised and the intended factor of safety will not be reduced undesirably and unexpectedly.

Design stage

- Inadequate falsework design (including the foundation) e.g. under-estimate the loads.
- Inexperienced designer without competent supervision.
- Inadequate checking by a competent engineer.
- Ignore lateral forces due to out of plumb.

Erection stage

- Use of unsuitable or inferior materials.
- Inadequate falsework construction including foundation, bracing and falsework components.
- Lack of supervision during erection.
- Not in accordance with the drawings.
Loading Stage

- Improper loading procedures such as concrete placing method different from assumption in design.
- Uneven or unexpected load distribution arising from post-tensioning or placing of precast segments.

Taking Down Stage

Improper dismantling procedures:
- Premature removal of falsework without approval.
- Improper dismantling procedures.
- Lack of competent supervision.

Anew Stage

Improper or inadequate maintenance of falsework materials and components will result in a lower Factor of Safety (F.O.S.) than assumed in the design.

Errors at different stages

<table>
<thead>
<tr>
<th>Load/error</th>
<th>X1F</th>
<th>X2F</th>
<th>X3F</th>
<th>Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td></td>
<td></td>
<td></td>
<td>No Failure</td>
</tr>
<tr>
<td>X2</td>
<td>X2</td>
<td></td>
<td></td>
<td>No Failure</td>
</tr>
<tr>
<td>X3</td>
<td></td>
<td></td>
<td>X3</td>
<td>No Failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Design</th>
<th>Erection</th>
<th>Load</th>
<th>Taking down</th>
<th>Anew</th>
</tr>
</thead>
</table>
Case study 1
Minnesota, USA (1990)
- Falsework design was carried out by Contractor's Consultant.
- Under-designed – F.O.S. much reduced.
- No independent checking by the client or Resident Engineer. Documents were submitted for information only.
- Falsework failed when the web of I-beam buckled due to the concrete load.
- This was a typical case that the design was inadequate and there was no independent checking.

Case study 2
Israel (1994)
- Falsework design was under-designed and with wrong assumptions made
- Low and inadequate F.O.S.
- The beam's F.O.S. was reduced to failure

This was a typical case of no checking of falsework design.

Case study 3
Hong Kong (1996)
- Initially hydraulic jacks were placed at "B Props" in supporting and lowering the post-tensioning beams.
- A change in construction method required fixing of jacks at "A Props" but this had not been independently checked and certified.
- Supports by "A Props" were almost totally removed while the revised construction method statement was still being verified by the Independent Checking Engineer.
- No supervision by Resident Engineer's staff during the loading of the beams onto the props.
- Sketches for falsework erection were inadequate.
- Shifting of I-beams after post-tensioning has led to uneven load distribution on the props.

Triggering causes:
- Remove top part of A Props and transfer load to B Props.
- High potential risk in the new construction method – required stringent supervision.
- Inadequate inspection of falsework after post tensioning by ICE, Resident Engineer and Contractor.
- Proceed erection and loading without Resident Engineer's and ICE's inspection and approval.
- Inadequate review / checking / approval of falsework due to a change in construction method.
- This was a failure case when the construction method changed and proceeded without approval of the Independent Checking Engineer.
Conclusions

- Based on the content analysis and event sequence diagram, fifty falsework failure reports have been analysed.
- The principal types of material for failed falsework were tubular steel or metal scaffolding (54%) and steel frames (20%).
- 38% of the failures were in situ concrete construction with post tensioning, which is a typical choice for long span bridge construction.
- 30% of the failures were in situ reinforced construction, mainly for medium and short span bridges.
- Another 22% were for the falsework supporting precast elements followed by post tensioning or steel members.

- Most of the failures (82%) occurred near the end of concrete pouring and placing of precast segments (the falsework would be subject to the full design load).
- 10% of failures occurred during dismantling or removal of the falsework.
- Procedural inadequacies:
 - 45% of substantial errors occurred in erection stage
 - 33% occurred in design stage
 - 13% in taking down stage
 - 9% in loading stage.
- A tighter control in procedures during the design and erection stage in preventing falsework failures. Not just an inspection but an assessment of the proneness of falsework to failure.

Acknowledgment

- This paper is part of the work of a research project supported by Research Grants Council of the Hong Kong Special Administrative Region, China (Project Code No. HKU 7121/04E).