<table>
<thead>
<tr>
<th>Title</th>
<th>Wettability of crushed air-dried minerals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nunes Lourenco, SD; Woche, SK; Bachmann, Y; SAULICK, Y</td>
</tr>
<tr>
<td>Citation</td>
<td>Geotechnique Letters, 2015, v. 5, p. 173-177</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/222470</td>
</tr>
<tr>
<td>Rights</td>
<td>Permission is granted by ICE Publishing to print one copy for personal use. Any other use of these PDF files is subject to reprint fees; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Wettability of crushed air-dried minerals

S. D. N. LOURENÇO*, S. K. WOCHE†, J. BACHMANN† and Y. SAULICK*

The importance of soil particle wettability has been recognised in mining engineering, soil science and geomorphology but to a lesser extent in geotechnical engineering, perhaps due to the assumption that soils, or in general most common minerals, are always wettable. From the soil science and geomorphology literature, changes in soil wettability are known to influence soil processes such as infiltration, erosion and post-wildfire debris flows. Organic matter has been identified as one of the most important factors controlling the wettability of natural soils. However, its occurrence is very shallow and often shallower than the depth of interest for geotechnical processes. Therefore, it becomes essential to determine the wettability of minerals, in particular because it can be linked to processes that involve crushing or abrasion of soil particles. This paper examines the wettability of 21 common, freshly crushed minerals (sulfides, oxides and silicates) by measuring wettability via contact angles with the sessile drop method and the Wilhelmy plate method, including particle attributes such as aspect ratio and sphericity. The results revealed a wide range of contact angles for the uncoated minerals, with the sulfides showing strong water-repellent behaviour and the silicates remaining very wettable. Higher contact angles are associated with mineral particles that converge to the shape of a sphere and for those that have a larger aspect ratio.

KEYWORDS: chemical properties; geology; microscopy; particle-scale behaviour

INTRODUCTION

Commonly occurring minerals are expected to be wettable because the surface free energy of unweathered inorganic soil particles is generally higher than that of water, with an apparent contact angle (CA) of 0°. Mineral engineering has shown some exceptions (e.g. sulfide minerals such as galena or pyrite) that are strongly water repellent (e.g. Prestidge & Ralston, 1995) while commonly occurring minerals such as quartz and calcite are wettable, but with CA values that differ from each other and are higher than the commonly assumed 0° (Hajnos *et al*., 2013). In the long term, environmental factors may lead to a degradation of mineral surfaces, resulting in changes in wettability. Importantly, particle coatings with organic matter remain the most relevant contributor to soil water repellency (Ma*shum et al*., 1988; Doerr *et al*., 2000).

In natural soils, water repellency impacts hydraulic behaviour, from reduced infiltration and surface runoff (Doerr *et al*., 2000; Jarvis *et al*., 2008) to preferential flow (Ritsema & Dekker, 1996). In geotechnical applications, soil wettability is important because suction in unsaturated soils depends not only on the degree of saturation but also on the surface tension and the CAs of the water menisci. Regarding the mechanics and hydraulics of water-repellent soils, the internal friction angle is not affected in wax-coated sands (Bardet *et al*., 2011) but is reduced in synthetic water-repellent soils (Byun *et al*., 2011). Soil water retention is reduced for soils with low wettability (Lourenço *et al*., 2015).

Several soil wettability determination methods have been developed and tested in soil science (e.g. Bachmann *et al*., 2003). They operate on different working principles and measure dynamic or static CAs using different sample preparation methods. The sessile drop method (SDM) and the Wilhelmy plate method (WPM), which measure CAs for the entire range from 0° to >90° for samples from similar preparation methods, are considered here.

Given the fundamental importance of wettability to geotechnical processes that involve clean mineral particles generated by crushing or abrasion, a comprehensive study of mineral wettability is needed. In this work, the wettability of samples of crushed minerals from three major groups (silicates, oxides and sulfides) was measured using both the SDM and WPM. In particular, the wettability of the minerals (with no particulate organic matter) and the effect of the crushed mineral shape were investigated.

MATERIALS AND METHODS

Minerals

A set of commonly occurring minerals and rocks was selected from the mineral collection of Cardiff University, UK (Table 1). The selected minerals were grouped into silicates such as quartz and feldspar (among the most common in soils), oxides such as hematite and cassiterite (a by-product of chemical weathering) and sulfides (mineral ores from specific geological settings) (Table 1). The crushed rocks represent an assemblage of different minerals.

Mineral samples of mass 50–100 g were cleaned, cut into slices of ~1 cm thickness, washed with deionised water to remove dust, allowed to dry at a temperature of 30°C (because the water repellency of natural soils is temperature dependent (Diehl *et al*., 2014)) and then crushed in a jaw crusher. The resulting material was gravel-sized, and therefore unsuitable for CA measurements. To reduce the size further, sub-samples were crushed in a ball mill (Retsch PM 400; Haan, Germany). Both the jaw crusher and the mill were cleaned with acetone before use. Lastly, the minerals...
<table>
<thead>
<tr>
<th>Material</th>
<th>Composition</th>
<th>Category</th>
<th>Size: μm</th>
<th>Number of images analysed</th>
<th>Sphericity SD</th>
<th>Aspect ratio SD</th>
<th>CA: degrees SD</th>
<th>WDPT: s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minerals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial n=6</td>
<td>SD</td>
</tr>
<tr>
<td>Galena</td>
<td>PbS</td>
<td>Sulfide</td>
<td><250</td>
<td>3098</td>
<td>0.759b</td>
<td>0.06</td>
<td>0.905b</td>
<td>0.13</td>
</tr>
<tr>
<td>Malachite</td>
<td>CuCO₃(OH)₂</td>
<td>Carbonate</td>
<td><250</td>
<td>42004</td>
<td>0.722b</td>
<td>0.05</td>
<td>0.893b</td>
<td>0.13</td>
</tr>
<tr>
<td>Sphalerite</td>
<td>(Zn,Fe)S</td>
<td>Sulfide</td>
<td><250</td>
<td>42940</td>
<td>0.723b</td>
<td>0.06</td>
<td>0.887b</td>
<td>0.12</td>
</tr>
<tr>
<td>Iron oxide</td>
<td>—</td>
<td>Oxide</td>
<td>125–250</td>
<td>18927</td>
<td>0.703</td>
<td>0.06</td>
<td>0.841</td>
<td>0.13</td>
</tr>
<tr>
<td>Pyrite</td>
<td>Fe₂O₃</td>
<td>Oxide</td>
<td><250</td>
<td>45442</td>
<td>0.697b</td>
<td>0.07</td>
<td>0.875b</td>
<td>0.13</td>
</tr>
<tr>
<td>Tourmaline</td>
<td>XY₃Z₁₂(T₁O₃₈)(BO₃)₃V₃W</td>
<td>Silicate</td>
<td><250</td>
<td>NMa</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Hematite</td>
<td>Fe₂O₃</td>
<td>Oxide</td>
<td><250</td>
<td>3754</td>
<td>0.658</td>
<td>0.11</td>
<td>0.750</td>
<td>0.18</td>
</tr>
<tr>
<td>Cassiterite</td>
<td>SnO₂</td>
<td>Oxide</td>
<td><250</td>
<td>14044</td>
<td>0.662</td>
<td>0.07</td>
<td>0.824</td>
<td>0.14</td>
</tr>
<tr>
<td>Calcite</td>
<td>CaCO₃</td>
<td>Carbonate</td>
<td><250</td>
<td>27830</td>
<td>0.656</td>
<td>0.08</td>
<td>0.826</td>
<td>0.14</td>
</tr>
<tr>
<td>Biotite</td>
<td>K(Mg₂Fe₂)₅Si₃O₁₃(F,EhO₃)₂</td>
<td>Silicate (mica)</td>
<td><250</td>
<td>22402</td>
<td>0.585</td>
<td>0.11</td>
<td>0.772</td>
<td>0.17</td>
</tr>
<tr>
<td>Olivine</td>
<td>Mg₂Fe₂SiO₄</td>
<td>Silicate</td>
<td><250</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Amethyst</td>
<td>SiO₂</td>
<td>Silicate</td>
<td><250</td>
<td>16511</td>
<td>0.634</td>
<td>0.08</td>
<td>0.811</td>
<td>0.15</td>
</tr>
<tr>
<td>Feldspar</td>
<td>KAlSi₃O₈</td>
<td>Silicate</td>
<td><250</td>
<td>32109</td>
<td>0.629</td>
<td>0.08</td>
<td>0.813</td>
<td>0.14</td>
</tr>
<tr>
<td>Quartz 2</td>
<td>SiO₂</td>
<td>Silicate</td>
<td><250</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Quartz 1</td>
<td>SiO₂</td>
<td>Silicate</td>
<td><250</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Rocks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initial n=6</td>
<td>SD</td>
</tr>
<tr>
<td>Sandstone</td>
<td>—</td>
<td>Sedimentary rock</td>
<td><250</td>
<td>32087</td>
<td>0.764</td>
<td>0.05</td>
<td>0.892</td>
<td>0.12</td>
</tr>
<tr>
<td>Bauxite</td>
<td>—</td>
<td>Al ore</td>
<td><250</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>Breccia</td>
<td>—</td>
<td>Sedimentary rock</td>
<td><250</td>
<td>39335</td>
<td>0.670</td>
<td>0.06</td>
<td>0.836</td>
<td>0.13</td>
</tr>
<tr>
<td>Granite</td>
<td>—</td>
<td>Igneous rock</td>
<td><250</td>
<td>99596</td>
<td>0.655</td>
<td>0.07</td>
<td>0.824</td>
<td>0.14</td>
</tr>
</tbody>
</table>

a Not measured
b Particle aspect ratio and sphericity measured in 63–165 μm sized particles
c Times exceeding 3 h listed as ‘permanent’
d Bauxite is a chemical weathering by-product of certain rock types
were sieved (mesh size of 250 μm) and sealed in plastic bags to avoid contamination.

Sessile drop method

To determine the CA, samples were fixed with double-sided adhesive tape on a glass slide as a monolayer of air-dried minerals (particle size <250 μm). It should be noted here that the CA in soils is usually referred to as an apparent CA, as it takes into account the material chemistry, roughness and other effects, and has to be distinguished from the intrinsic CA (related only to material chemistry). Each slide was placed on the CCD equipped contact angle microscope stage (OCA15; DataPhysics Instruments GmbH, Filderstadt, Germany) and a water drop (1 μl) of deionised water was placed onto the sample surface while recording the sequence by video (Goebel et al., 2013). Using SCA 20 software (DataPhysics, Filderstadt, Germany), the CA was obtained from the tangent to the point of the three-phase contact. To assess the time dependency of wettability, the CA was measured from the same video sequence after 30 s, 1 and 5 s of placement of the drop. For each sample, measurements were conducted for six water drops at room temperature (20 ± 1°C). The water drop penetration time (WDPT), an index test, was also determined to assess the time decay of water repellency by placing a 60 l drop on the surface of a bulk sample and timing its penetration (Doerr et al., 2006).

Wilhelmy plate method

A glass slide of area 3·1 cm² was covered with double-sided adhesive tape on all sides followed by a single-grain layer of air-dried minerals. The glass slide was attached to an electronic balance hanging vertically and gradually immersed into water, with the total force F_t (in N) acting on the plate given by Bachmann et al. (2003)

$$F_t = W - F_b + F_w = W - V \rho g + l_w \sigma_w \cos \theta$$

(1)

where W (kg) denotes the mass of the plate, F_b (N) is the buoyancy force, F_w (N) is the wetting force, V (m³) is the volume of plate immersed, θ (degrees) is the CA, σ_w (mN/m) is the surface tension of the liquid, g (m/s²) is acceleration due to gravity, ρ (Mg/m³) is liquid density and l_w (m) is the wetted length of the sample. If the balance is tared, equation (1) can be rearranged to yield the advancing CA as

$$\cos \theta = \frac{F_w + V \rho g}{l_w \sigma_w}$$

(2)

For evaluation of the advancing CA (θ), the wetting force (F_w) has to be determined through linear regression of the recorded weight curve as a function of immersion depth and by extrapolation to zero-depth immersion for F_b (Bachmann et al., 2003). The CAs were measured using a tensiometer (DCAT 11; DataPhysics, Filderstadt, Germany) with an accuracy of ± 5°. One test was conducted for each mineral.

Particle attributes

A dynamic image analyser (QICPIC; Sympatec GmbH, Clausthal-Zellerfeld, Germany) was used to determine the particle attributes. The device comprises a gravity dispenser (GRADIS) and a feeding device (VIBRI) that controls the number of particles in contact with the laser beam per unit time. A series of frames is then captured by means of a camera from which different size and shape descriptors are extracted. The feed and frame rate were adjusted to 15% and 250 Hz, respectively.

RESULTS AND DISCUSSION

Table 1 shows the CAs for the crushed materials ranked from highest to lowest. The CAs cover a large range, from 164·3° for galena to 0° for quartz. The CAs can be arranged into three groups.

- The sulfides, together with malachite, achieved the highest CA (>99°) with galena consistently achieving the greatest SDM and WPM CAs (>130·6°) and pyrite the lowest (87·3°). This strong water-repellent behaviour was stable over time, as confirmed by the WDPT with the drops in place after 3 h.
- The oxides, together with tourmaline, revealed some water repellency, with CAs ranging between 58·9° (cassiterite) and 99·9° (iron oxide) but dropping to the order of 25° for all oxides after 5 s.
- All silicates, together with calcite, were strongly wettable with initial CAs of the order of 0° (quartz) to 54·7° (calcite).

The CA trends – higher for the sulfides, intermediate for the oxides and lower for the silicates – generally agree with the literature, albeit not in magnitude. For example, for sulfides, Prestidge & Ralston (1995) and Subrahmanyan et al. (1996) measured CAs lower than 90° using methods based on capillary pressure equilibrium. Reasons for the discrepancies include oxidation with time of the crushed sulfide surfaces (Prestidge & Ralston, 1996), use of equilibrium CAs for the capillary pressure equilibrium methods, which are always lower than advancing CAs (Prestidge & Ralston, 1995, 1996; Subrahmanyan et al., 1996) and measurements taken on flat
surfaces, which minimises roughness (Raichur et al., 2001). The high CA of malachite is little documented, with Carr (1948) obtaining values in the range 50–90° using different liquids. Maximum CAs for oxides have been reported as 80°, but higher for limonite (~90°) (Maeda et al., 2008) and 74° for hematite and goethite (Iveson et al., 2004). The reported CAs for silicates are generally low, matching this study – 30° for quartz (Fisher & Lark, 1980), 5.6–7.6° for dolomite (a carbonate) (Gence, 2006) and 10° for mica (Bryant et al., 2006). In natural soils, which comprise mineral particles and organic matter, Hajnos et al. (2013) reported CAs in the range 2.0–51.8° with the SDM technique.

The CAs were also correlated with particle shape, with more spherical particles achieving higher CAs. The particles’ aspect ratios increased from 0.813 to 0.905 and their sphericity from 0.629 to 0.759 for WPM CAs of 0° to 164° (Fig. 2(a)). For the SDM, sphericity increased from 0.813 to 0.875 and aspect ratio from 0.629 to 0.697 for CAs of 17.2° to 99.9° (Fig. 2(b)). However, high particle attributes did not necessarily equate to high CAs. For instance, the crushed sandstone produced particle attributes of the same range as the sulfides but with lower CAs (>78°) than the sulfides (>120°), while biotite and hematite revealed the opposite.

The findings reported by Ulusoy et al. (2003) contradict those shown in Figure 2: Ulusoy et al. (2003) demonstrated that an increase in roundness (similar to sphericity in the current study) was inversely proportional to the wettability of minerals. A possible reason for this disagreement is the wide range of attributes (0.458 for hematite and 0.759 for galena) whereas the samples in the work of Ulusoy et al. deviated from a sphere by at most 10%.

Isolation of material chemistry, layer roughness and particle shape effects on CA measurements is a major challenge. Fundamental studies of surface chemistry and surface thermodynamics have long been applied to thin layers of particles attached to a plane glass surface.

Fig. 2. Particle sphericity and aspect ratio with respect to (a) WPM CAs and (b) SDM CAs. Su, sulfide minerals; Ca, carbonate minerals; Ox, oxide minerals; Si, silicate minerals; Ro, rock samples (including bauxite).
(van Oss et al., 1990). Bachmann et al. (2000) proposed fixing soil particles using adhesive tape in order to avoid rearrangement of the particles due to the impact of forces (drop weight, adhesive forces at the three-phase boundary). Model calculations carried out with a combined Wenzel/Cassie–Baxter approach to take into account the simultaneous impact of roughness, particle packing density and chemical heterogeneity showed that the impact of the tape should not be significant (Bachmann & McHale, 2009). In addition, other factors influence the CA, such as particle size (CA increases for finer particles) and, since wettability depends on surfaces characteristics, residual water content and deposition of dust. Given these complexities, one approach to validate CAs is to compare measurements from different methods (as done here). The results revealed broad agreement between the SDM and WPM, with the WPM providing higher and lower CAs at the extremes of wettability.

CONCLUSIONS
The aim of this study was to assess the variability of particle wettability in crushed commonly occurring minerals. The results revealed a wide range of contact angles, with air-dried sulfides and oxides showing water-repellent behaviour. These results suggest that geotechnical processes which generate new surfaces due to particle breakage or abrasion under high stresses (compression or shear) are likely to produce variable surface energies, thus influencing the interaction of the newly formed surfaces with liquids in the post-breakage stage.

ACKNOWLEDGEMENT
This research was funded by the UK Engineering and Physical Sciences Research Council (EP/K007904/1).

REFERENCES

WHAT DO YOU THINK?
To discuss this paper, please email up to 500 words to the editor at journals@ice.org.uk. Your contribution will be forwarded to the author(s) for a reply and, if considered appropriate by the editorial panel, will be published as a discussion.