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Abstract Until recently, the cerebellum was primarily
considered to be a structure involved in motor behaviour.
New anatomical and clinical evidence has shown that the
cerebellum is also involved in higher cognitive functions
and non-motor behavioural changes. Functional imaging in
patients with anxiety disorders and in cholecystokinin
tetrapeptide-induced panic-attacks shows activation
changes in the cerebellum. Deep brain stimulation of the
dorsolateral periaqueductal grey (dlPAG) and the ventro-
medial hypothalamus (VMH) in rats has been shown to
induce escape behaviour, which mimics a panic attack in
humans. We used this animal model to study the neuronal
activation in the deep cerebellar nuclei (DCbN) using c-Fos
immunohistochemistry. c-Fos expression in the DCbN
decreased significantly after inducing escape behaviour by
stimulation of the dlPAG and the VMH, indicating that the
DCbN were deactivated. This study demonstrates that the

DCbN are directly or indirectly involved in panic attacks.
We suggest that the cerebellum plays a role in the selection
of relevant information, and that deactivation of the
cerebellar nuclei is required to allow inappropriate behaviour
to occur, such as panic attacks.
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Abbreviations
CCAS Cerebellar cognitive affective syndrome
OCD Obsessive-compulsive disorder
CCK-4 Cholecystokinin tetrapeptide
PAG Periaqueductal grey
DBS Deep brain stimulation
dlPAG Dorsolateral periaqueductal grey
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VMH Ventromedial hypothalamus
DCbN Deep cerebellar nuclei
OF Open field
FN Fastigial nucleus of the cerebellum
DN Dentate nucleus of the cerebellum
IN Interposite nucleus of the cerebellum
c-Fos-ir c-Fos immunoreactive
PC Purkinje cell

Introduction

The cerebellum has long been considered to be predominantly
involved in motor coordination and control [1, 2]. The last
two decades, however, it has become increasingly clear that
the cerebellum is also involved in behaviour and cognition
[3, 4]. Schmahmann and Sherman described the cerebellar
cognitive affective syndrome consisting of impairment of
executive functions, difficulties with spatial cognition,
changes of personality including disinhibited or inappropri-
ate behaviour and language deficits [5]. Recent neuroana-
tomical and functional imaging research has pointed towards
a role for the cerebellum in neuropsychiatric diseases such as
autism, schizophrenia and mood and anxiety disorders [6–
11]. With respect to anxiety disorders, Levinson described
the existence of cerebellar-vestibular dysfunction in 94% of
patients with various types of anxiety disorders [12]. De
Bellis and Kuchibhatla showed that children and adolescents
with post-traumatic stress disorder related to maltreatment
have significantly smaller cerebelli than paediatric subjects
with generalized anxiety disorder and healthy subjects [13].
Several groups have shown structural and functional differ-
ences in the cerebellum of patients with anxiety disorders
compared to control subjects [14–22]. In patients with
obsessive-compulsive disorder (OCD), a disorder character-
ised by anxiety, an increase in grey matter was found in the
anterior cerebellum [22]. Using functional imaging, Busatto
et al. found an increased activation in the superior
cerebellum of OCD patients compared to control subjects
[14]. Another group showed that after treatment, OCD patients
showed a decreased activation in the cerebellum compared to
pretreatment scans [15]. In contrast, Nabeyama et al. found
decreased activation in untreated OCD patients compared to
control subjects, which increased after successful treatment of
these patients [16]. In patients with panic disorder, an
increased activation of the cerebellum was found when
compared to control patients [20]; this activation decreased
again after successful treatment of these patients [21]. In
healthy individuals in whom panic attacks were induced by
cholecystokinin tetrapeptide (CCK-4), an increased activation
of the cerebellum was found, especially in the vermis [23–26].
However, the significance of these findings is not yet clear.

Panic disorder is one of the most frequently encountered
anxiety disorders [27]. Panic attacks consist of an acute,
sometimes unexpected onset of intense fear, accompanied
by a variety of physical symptoms [27]. Treatment
usually includes behavioural and pharmacological thera-
pies, either alone or in combination. It is thought that
panic attacks may be the result of an abnormally sensitive
fear network [28]. The periaqueductal grey (PAG) is
known to be part of this fear network which further
consists of the central nucleus of the amygdala, ventro-
medial hypothalamus (VMH), hippocampus and other
brainstem regions [28]. Deep brain stimulation (DBS) in
rats of the dorsolateral periaqueductal grey (dlPAG) and
one of its target structures, the VMH has been shown to
elicit a typical behaviour consisting of vigorous running
and jumping [29]. This behaviour, also known as escape
behaviour, is accompanied by strong emotional and
autonomic activation, and thereby mimics panic attacks
in humans [29, 30].

In the present study, we used DBS of the dlPAG and the
VMH as a model of panic attack to evaluate the
involvement of the deep cerebellar nuclei (DCbN). In a
previous study, we have found that increased impulsivity in
rats was accompanied by a deactivation of the DCbN [4].
These findings suggested that the cerebellum plays a role in
regulating appropriate behaviour. Based on their findings in
a patient with pathological laughter and crying, Parvizi et
al. hypothesized that the cerebellum adjusts behavioural
responses to the correct situational context of a stimulus,
and that when the cerebellum operates on the basis of
incorrect information, this could lead to inappropriate or
even chaotic behaviour [31]. We hypothesized that deacti-
vation of the DCbN was needed for pathological behaviour
to occur. In line with this, here we predicted to find again a
deactivation of the DCbN in rats with panic-like behaviour.
Panic attacks consist of an inadequate response to a
stimulus. Possibly the cerebellum also plays a role in
regulation of the response to these stimuli by selection of
relevant information. Deactivation of the DCbN may
then be linked to an inadequate response to a certain
stimulus by disabling this selection process. To analyze
activation patterns, we have used c-Fos immunohisto-
chemistry. We focused on the DCbN as these are the
output structures of the cerebellum. c-Fos was chosen as
it is an immediate early gene which is considered to
reflect neuronal activation [32, 33]. The level of c-Fos
protein is maximal about 2 h after administration of a
stimulus and disappears again after 4 to 8 h even if the
stimulus is continued [32]. Therefore, the c-Fos expres-
sion found 2 h after a specific stimulus in controlled
conditions can be considered to result directly from the
stimulus, and this expression can be used to identify brain
areas influenced by this stimulus [33].
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Materials and Methods

Animals

The animals used were male albino Wistar rats (n=15,
12 weeks old, bred and housed at the Central Animal Facility
of the Maastricht University, the Netherlands), with an
average body weight of 300–350 g at the time of surgery.
Rats were housed individually in standard cages with sawdust
bedding in an air-conditioned room under a 12/12-h reversed
light/dark cycle. Food, standard laboratory chow (Hopefarms,
Woerden, the Netherlands) and water were available ad
libitum. All experiments were approved by the Animal
Experiments and Ethics Committee of Maastricht University.

Surgical Procedure

Rats were randomly assigned to one of the following three
experimental groups: control (no surgery), dlPAG DBS or
VMH DBS. A detailed description of the surgical procedure
was reported previously [29, 34]. In brief, animals were
anaesthetized throughout the entire procedure using a
combination of ketamine (90 mg/kg) and xylazine
(10 mg/kg) injected subcutaneously. Rats were placed in a
stereotactic apparatus (Stoelting, Wood Dale, IL, USA;
model 51653). After making a burr hole, rats received
implantation of a unilateral electrode at the level of the right
dlPAG (coordinates from Bregma, AP=−7.6 mm, ML=
0.7 mm and V=−4.8 mm; approached with a coronal
angle of 10°) and the right VMH (coordinates from
Bregma, AP=−2.5 mm, ML=0.5 mm and V=−9.5 mm).
A construction of one electrode with an inner wire of a
platinum–irridium combination (Technomed, Beek, the
Netherlands), with a tip diameter of 50 μm and a shaft
diameter of 250 μm, was implanted in this experiment [35].
The electrodes were fixed in position using dental cement.

Deep Brain Stimulation

After a recovery period of about 1 week, all animals
underwent a first stimulation session to determine the
escape threshold. The stimulation amplitudes were gradually
increased until escape behaviour was observed. At each step,
stimulation duration was 15 s followed by a period without
stimulation of 45 s. The stimulation frequency was set at
50 Hz and pulse width at 0.1 ms based on previous
experiments [29]. A World Precision Instruments digital
stimulator (DS8000, WPI, Berlin, Germany) and a stimulus
isolator (DLS100, WPI, Berlin, Germany) were used to
deliver the stimuli. Real-time verification of the parameters
applied during stimulation was obtained using a digital
oscilloscope (Agilent 54622D oscilloscope, Agilent Tech-
nologies, Amstelveen, the Netherlands). After confirming the

current amplitudes necessary to evoke escape behaviour, all
rats had a period of 2 weeks without stimulation before the
final stimulation session in the open field (OF) arena was
performed. Control rats were handled and placed in the OF
similarly.

Behavioural Evaluation

Rats were evaluated in an OF test. For more details of this test,
please see Lim et al. [29]. In summary, rats were placed in the
arena and were connected with an external stimulator through
externalized leads. The stimulation started approximately
1 min after the rat was placed in the OF arena, using the
current amplitudes previously eliciting escape behaviour. The
behaviour of the rats was videotaped (Ethovision, Noldus
Information Technology, Wageningen, the Netherlands).

Histological Processing

Two hours after the final stimulation session, rats were
deeply anesthetized and perfused transcardially with Tyrode
(0.1 M), followed by a fixative containing 4% paraformal-
dehyde, 15% picric acid and 0.05% gluteraldehyde in
0.1 M phosphate buffer (pH 7.6). The brains were removed
and postfixed for 2 h followed by immersion in 20%
sucrose at 4°C until saturated. Brain tissue was then quickly
frozen with CO2 and stored at −80°C. The cerebellum was
cut serially into 10-μm sections, which were collected on
gelatine-coated glasses. We used a previously published
protocol for c-Fos immunohistochemistry [4]. In summary,
this staining was carried out by incubating sections two
nights with a polyclonal rabbit anti-c-Fos antibody (Santa
Cruz Biotechnology Inc., Santa Cruz, CA, USA).This was
followed by overnight incubation with the secondary
antibody (biotinylated donkey anti-rabbit, Jackson Immu-
noresearch Laboratories Inc., Westgrove, PA, USA).
Subsequently, the sections were incubated with an
avidin–biotin–peroxidase complex (Elite ABC-kit, Vectastatin;
Burlingame, CA, USA) for 2 h. To visualize the immune
complex of horseradish peroxide reaction product, sections
were incubated with 3,3′-diaminobenzidine tetrahydrochloride
(DAB)/nickel chloride (NiCl2) solution for 10 min. After
dehydrating, all sections were cover-slipped with Pertex
(HistolabProducts ab, Goteborg, Sweden). Additionally,
for each animal, the area of the dlPAG and VMH was cut into
30-μm sections and stained with standard haematoxylin–
eosin (Merck, Darmstadt, Germany) staining to locate the
electrode tips.

Stereological Quantification of c-Fos Immunoreactive Cells

Stereological analysis was performed with a stereology
workstation (CAST-GRID-Computer Assisted Stereological
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Toolbox-Olympus, Denmark). After exactly tracing bound-
aries of the fastigial nucleus (FN) and dentate nucleus of the
cerebellum (DN) on microscopic video images displayed
on a monitor, numbers of c-Fos immunoreactive (c-Fos-ir)
cells in both nuclei were evaluated with the modified
Abercrombie cell counting method [36]. All neurons of
which the cell bodies gave a positive reaction within an
unbiased counting frame distributed in a systematic-random
fashion throughout the delineated regions were counted.
Estimated numbers of neurons were calculated from the
numbers of counted neurons and the corresponding sam-
pling probability. The numerical density (NV) of c-Fos-ir
cells in the nuclei was estimated using the formula NV=
(NA/T) ∙ (T/(T+D)) [36]. In this formula, NA, T and D are
the positive cell number in the unbiased counting frame, the
section thickness and the mean particle diameter, respec-
tively. To make an acceptable biological comment on any
subject, one should estimate total number of cells rather
than numerical density of cells in the interested region. For
this reason, we estimated the volume (V) of each cerebellar
nucleus by multiplying the total area of each nucleus that is
seen in the whole section of cerebellum (ΣA) with the mean
section thickness (T), as shown in this formula V=∑A ∙ T
[37]. The total number of cells in a nucleus was estimated
by the formula N=NV ∙ V.

Semiquantative Analysis of c-Fos-Immunoreactive Cells

Analysis of the c-Fos-ir cells in the interposite nucleus of
the cerebellum (IN) was performed using a previously
described semiquantitative method [4]. In summary, photo-
graphs of the IN were taken at ×4 magnification using an
Olympus DP70 camera connected to an Olympus AX70
bright-field microscope (analySIS; Imaging System,

Münster, Germany). The same light intensity and
threshold settings of the camera were employed for all
sections. For each animal, we selected two sections of
the IN for quantification. The boundaries of the IN were
delineated and the area measured. The counting of the
c-Fos-ir cells was performed using the image analysis
program ‘Image J’ (version 1.38, NIH, USA). A cell
was counted as c-Fos-ir if its density was 65% higher than the
mean background density of that section. Artefacts in the
sections were excluded from analysis to ensure the accuracy
of measurements. The number of c-Fos-ir cells per square
millimetre was calculated.

Statistical Analysis

The data of the c-Fos counts were analysed using the
Kruskal–Wallis test for non-parametric data. Non-
parametric testing was chosen due to small group sizes. A
value of p<0.05 was considered significant. Post hoc
analysis was performed using the Mann–Whitney test.
Since we expected a deactivation in the stimulated groups,
we used a one-tailed procedure.

Results

Histological Evaluation of the Electrode Localisation

In all animals included in this study, the electrode tips were
positioned correctly in the dlPAG and VMH, respectively
(Fig. 1). No histological damage was observed except for
the electrode trajectory with the standard haematoxylin–
eosin staining, suggesting that stimulation with the current
stimulation settings did not cause observable tissue damage.

dmPAG 

Aquad. 

dlPAG  VMH 

3V 

 

a b

Fig. 1 Representative low-power photomicrographs of 30-μm-thick
frontal sections from the brain of a rat subjected to stereotactic
implantation of a concentric bipolar electrode to stimulate the dlPAG
(a, scale bar=250 μm) and VMH (b, scale bar=500 μm). The tips of

the electrodes are situated within the respective targets. Aquad
aqueduct of Sylvius, dmPAG dorsomedial periaqueductal grey, dlPAG
dorsolateral periaqueductal grey, 3V third ventricle, VMH ventrome-
dial hypothalamus
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Behavioural Evaluation

The intensity of the electrical current applied to the dlPAG
and VMH of the animals was based on the threshold shown
to induce escape behaviour. All rats showed ‘escape
behaviour’ characterized by rigorous and aimless running.
The current amplitudes necessary for inducing escape
behaviour were significantly different between rats with
dlPAG- and VMH-DBS (F's>351.13; p<0.00). The mean
current density applied to the dlPAG to induce escape
behaviour was approximately 90 μA and for the VMH,
approximately 600 μA.

Evaluation of the Number of c-Fos-Immunoreactive Cells

There was a significant decrease in the amount of c-Fos-ir
cells in the dentate nucleus (H2=6.343, p<0.05; Figs. 2 and
3) and in the fastigial nucleus (H2=6.870, p<0.05; Figs. 2
and 3) after DBS. As expected, we found a lower amount of
c-Fos-ir cells in the dentate and fastigial nucleus of the
stimulated rats compared to the control rats. Post hoc
analysis showed that in the rats stimulated in the dlPAG, the
difference with control rats was significant for both
nuclei (DN, U=1.00, r=−2.21; FN, U=0.00, r=−2.45).
When comparing VMH-stimulated rats to control rats,
this difference was significant only in the nucleus dentatus
(U=1.00, r=−2.02); the difference in the fastigial nucleus
showed a trend towards significance (U=2.00, r=−1.73).

There was no significant difference in the amount of c-Fos-ir
cells between the stimulated groups (DN, U=7.00, r=−0.74;
FN, U=6.00, r=−0.98).

Analysis of the interposite nucleus (IN) showed a similar
trend towards decreased c-Fos expression in the stimulated
rats compared to controls (PAG, U=19.00, r=−1.04; VMH,
U=21.00, r=−1.37). Again, there was no difference
between the stimulated groups (U=36.00, r=−0.36).

Discussion

The objective of our experiment was to use electrical
stimulation of the dlPAG and of the VMH in rats as a
model of panic attack to study the involvement of the
DCbN. We have found that panic-like behaviour was
accompanied by a decrease of c-Fos-ir cells in the DCbN,
indicating deactivation. c-Fos expression was significantly
lower in the DN of both treatment groups and in the FN of
the dlPAG DBS group when compared to controls. In the
VMH DBS group, c-Fos expression in the FN was lower
compared to controls, with a trend towards significance.
Using a semiquantitative analysis, the IN showed a similar
trend towards decreased c-Fos expression in the stimulated
rats compared to controls. This should be considered a
preliminary finding since the method of counting was not
performed using stereological principles.

There is anatomical and functional evidence supporting
the role of the cerebellum in panic. Sakai et al. found a
significantly higher glucose uptake in the cerebellum of
patients with panic disorder compared to control patients
[20]. After clinical improvement of these patients due to
cognitive-behavioural therapy, the glucose uptake in cere-
bellum had decreased [21]. Several groups found increased
activation of the cerebellum after CCK-4-induced panic
attacks in healthy subjects [24, 25]. This increase was not
seen in these subjects during anticipatory anxiety. These
studies were not initially designed to analyse changes in the
cerebellum, and the changes found are usually unexpected.
The findings are often simply mentioned as interesting or
surprising, although several groups relate to the role of the
cerebellum in fear conditioning as proposed by Sacchetti et
al. [38]. Sacchetti et al. reviewed the evidence showing that
the cerebellar vermis plays a role in the fear response and in
fear conditioning, especially in fear consolidation. The most
important changes are thought to take place at the level of
the Purkinje cell (PC). It has been shown that several forms
of fear conditioning lead to increased PC excitability and an
increased firing rate of the PCs. In contrast, heterozygous
Lurcher mice, which show early and complete apoptosis of
cerebellar PCs, show reduced inhibition to anxiety-
provoking aversive areas [39]. In summary, it seems that
increased PC activity leads to more fear, and decreased or

Fig. 2 c-Fos expression in the dentate nucleus and in the fastigial
nucleus of the cerebellum. Data are represented as means plus SEM
showing control animals, animals stimulated in the dorsolateral
periaqueductal grey (dlPAG) and animals stimulated in the ventrome-
dial hypothalamus (VMH). The asterisk indicates a significant
difference between groups. Note the significantly lower numbers of
c-Fos immunoreactive neurons in the groups with animals showing
panic attacks evoked by stimulation of the dlPAG and VMH
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absent PC activity to less fear. Functional imaging is
designed to analyse activation changes in the cerebral
cortex; therefore, it is likely that the activation seen in the
cerebellum is also located in the cortex. Increased activa-
tion found in functional imaging studies may therefore
reflect the increased activity of the PCs. Since PCs are
known to have an inhibitory action on the DCbN, these
findings are in line with deactivation that we found in the
DCbN in the stimulated rats which show panic-like
behaviour.

In the cerebellum, the vermis, projecting through the
fastigial nucleus, seems to be the most important structure
in fear and panic. In the cases described by Schmahmann et
al., the vermis was always involved in patients with
changes of affect [5]. In early experiments, vermal lesions
were shown to attenuate a variety of fear behaviour,

whereas vermal stimulation leads to increased fear-related
responses [40, 41] Other animal research shows a selective
role for the fastigial nucleus in heart-rate conditioning [40,
42, 43]. The vermis also contributes to consolidation of fear
memory [44]. There is also evidence of a role of the
interposite nucleus and the dentate nucleus in fear. In
studies investigating several aspects of fear conditioning,
animals with lesions of the dentate and interposite nucleus
do not acquire an aversive conditioned response but acquire
an appetitive conditioned response [45] and show unaltered
heart-rate conditioning [42] and vocalisation indicative of
unspecific fear [46]. Furthermore, there are clear bi-
directional connections to the hypothalamus from (greatest
to least concentration) the dentate nucleus, the interposite
nucleus and the fastigial nucleus [47–50], supporting a role
of all DCbN in autonomic processes, for example, those

Control dlPAG-DBS VMH-DBS 

   

DN FN 

   

  

FN 
FN 

FN 

DN DN DN 

IN 
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Fig. 3 Representative low-power photomicrographs of c-Fos expres-
sion in a 10-μm-thick horizontal section of the deep cerebellar nuclei
at Bregma level −6.10 mm (according to the stereotactic rat brain atlas
of Paxinos and Watson of 1998) in a sham rat (a–c), a rat stimulated in
the dlPAG (d–f), and a rat stimulated in the VMH (g–i). Panels a, d,
and g were taken at ×2 magnification, and b, c, e, f, h, and i were
taken at high-power magnification. The arrows point to a c-Fos-ir cell,

represented by a small dark dot. The inset in c shows a representative
high-power photomicrograph of a c-Fos-ir cell. Scale bar for ×2
magnification power=1 mm. dlPAG dorsolateral periaqueductal grey,
VMH ventromedial hypothalamus, DBS deep brain stimulation, DN
dentate nucleus of the cerebellum, FN fastigial nucleus of the
cerebellum
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related to fear. In addition, the DCbN have been shown to
project to several parts of the fear network: Teune et al.
injected tracers in the DCbN in rats and documented
projections to the PAG from the fastigial nucleus and the
dentate nucleus and, in lesser degree, from the interposite
nucleus [51]. Several groups have suggested projections
from the fastigial nucleus to the amygdala, hippocampus,
septal nuclei and the nucleus accumbens, based on
behavioural changes following cerebellar stimulation or
lesioning [38, 41, 52]. Berntson and Torello, for example,
showed that hyperemotionality caused by septal lesions was
largely attenuated by lesions of the fastigial nucleus [53].
An exact anatomical pathway has never been shown [54].
However, these behavioural changes indicate that the
involvement of the cerebellum in fear does not merely
consist of regulation of an autonomic visceromotor
response but that there is a place for the cerebellum in the
network regulating fear processing [38]. In a recent review,
Stoodley and Schmahmann present a functional somatotopy
of the non-motor functions of the cerebellum based on
functional imaging [55]. They conclude that the vermis of
the posterior lobe seems to be specifically related to
emotional processing, whereas activation in the posterior
cerebellar hemispheres may be related to the decision-
making aspects of the tasks used in the experimental setting
[55]. On the other hand, Timman et al. reviewed anatomical
evidence for a role of the cerebellum in emotional and
cognitive learning, and they conclude that with respect to
fear, the vermis, projecting through the fastigial nucleus,
contributes to the autonomic and somatic aspects, whereas
the posterolateral cerebellar hemispheres, projecting
through the dentate and interposite nucleus, play a role in
the emotional content of fear processing [40].

In summary, there is ample evidence that all cerebellar
nuclei are involved in fear, in which the fastigial nucleus
possibly mediates a different aspect of fear than the dentate
nucleus and the interposite nucleus. This correlates with our
findings in the present study showing a similar deactivation
in the dentate nucleus and in the fastigial nucleus, and
possibly also in the interposite nucleus. Increased fear is
associated with increased PC activity in functional imaging
studies, which is hypothesised to lead to inhibition of the
DCbN and therefore of cerebellar output. We speculate that
the cerebellum plays a role in regulating appropriate
behaviour in response to any stimulus, and that a decreased
cerebellar output may play a role in emergence of an
inappropriate response, such as a panic attack. This
decreased output may be in response to incorrect input, as
suggested by Parvizi et al. [31]; however, we suggest that the
cerebellum also plays a direct role in the selection of relevant
information on which an adequate behavioural response is
based, and that deactivation of the DCbN then leads to
inappropriate behaviour by inhibiting this selection process.

Conclusion

This study supports the hypothesis that the cerebellum is
involved in panic attacks. Using DBS of the dlPAG and the
VMH in rats as a model of a panic attack, we found that the
activity of the DCbN as measured by c-Fos expression
decreased significantly in the dentate nucleus and in the
fastigial nucleus, and possibly also in the interposite nucleus.
In a previous study, we showed that the DCbN are de-
activated in rats showing increased impulsivity. In conclusion,
deactivation of the cerebellum is associatedwith inappropriate
behaviour such as panic and impulsivity. We suggest that the
cerebellum plays a role in the selection of relevant informa-
tion, thereby inhibiting such inappropriate behaviour.
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