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Abstract

The specification of locational attributes in hedonic house price models has traditionally been
problematic. Whilst many studies use similar sets of structural attributes the range of locational
attributes can be diverse and inconsistent both in their identification and in their measurement. To
address this problem, studies have adopted concepts relating to urban configuration such as the
monocentric city and the access-space trade-off model, and later multi-centric and multiple
accessibility models, to structure their enquiry. This has lead to issues relating to a priori variable
specification using geometrically defined accessibility measures that can also lead to problems such
as spatial auto-correlation. In this research, we investigate the use of network accessibility metrics in
hedonic house price research using Cardiff, Wales as a case study. We hypothesize that a network
modelling approach to measuring accessibility will improve performance compared to conventional
geometrical specifications. We find that estimating centrality variables across a variety of spatial
scales allows the impact on property prices of urban configuration to be more accurately modelled.
The research shows that not all dimensions of accessibility can be adequately captured by network
measures and that conventional geometric measures of accessibility can add additional explanatory
power in certain circumstances. The research also demonstrates the importance of modelling urban
configuration at the individual property level to prevent the loss of information when using

aggregated data.
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1. Introduction

Neo-classical micro-economic theory (Alonso, 1964), which developed classical Ricardian value
theory, emphasises the ‘access-space’ trade-off as a fundamental urban law. In this tradition, at
equilibrium, land-users are indifferent to location because higher transport costs balance lower land
costs in less accessible parts of the city. This insight has fed through into housing research, with the
understanding that land and accessibility are substitute hedonic factors in determining house prices
( (McDonald, 1987, Richardson et al., 1990, Heikkila et al., 1989, Waddell et al., 1993, Orford, 2000,
Orford, 2002).

The specification of locational attributes in hedonic house price models has traditionally been
problematic as, unlike structural attributes (Follain and Jimenez, 1985, Sirmans et al., 2005), their
effects on property prices are less tangible and less understood. They are difficult to conceptualise
and measure; they can operate at various spatial scales; and they are influenced by many inter-
related external factors (Orford, 2002). As a result, whilst many hedonic house price studies use
similar sets of structural attributes, the range of locational attributes can be diverse and inconsistent
both in their identification and in their measurement. To address this problem, studies have adopted
concepts relating to urban configuration to structure their enquiry. In early studies, accessibility to
the CBD was typically the major determinant of location-specific land values and site rents in this
class of model. These early studies are considered seminal in urban theory but have given way to
more nuanced studies that better capture the multi-centric and network geometry and topology of
urban configuration and locational advantage (McDonald, 1987). A variety of accessibility measuring
devices has been adopted more recently to capture the locational externality effect more sensitively
than the purely Euclidean distance (Niedercorn and Ammari, 1987, Hoch and Waddell, 1993).
Specific approaches include studies specifying accessibility indexed by travel time(Landau et al.,
1981), job accessibility (Osland and Thorsen, 2008), railway infrastructure improvement (Debrezion
et al,, 2011), and systemic street network connectivity (Matthews and Turnbull, 2007, Enstrom and

Netzell, 2008).

One characteristic of studies that measure accessibility to specific points of benefits and disbenfits is
that the specific configuration of the study area is used to help frame and design the model
specification. The locational externalities hypothesized to be influential are identified and their
functional relationships with property prices (such as their distance decay) are specified a priori. In a
multi-centric conceptualisation of urban configuration, this requires multiple variables capturing
each externality effect and this can cause problems of multi-collinearity if the variables are

correlated across space leading to violation of the model’s assumptions; for instance, if multiple



distance measures are used to capture externality effects. Moreover, the exact nature of urban
configuration in relation to the housing market and its impact on property process is often not know
a priori and hence it is often impossible to theorize which of the many possible locational
externalities are important and how they should be specified. Even if it is possible to specify a priori
the likely specific locational influences on house prices, the researcher must make an arbitrary

decision about which ones to measure.

In this paper we take an approach to resolving these issues by exploring the intuitive hypothesis that
important information about urban configuration is contained in the urban street network and can
be captured from accessibility metrics measured from a topological network model of the street
layout. Most hedonic models fail to take note of essential spatial information in the street layout:
network connectivity, network distance, angular distance and so on, which in turn, have been shown
to have a strong influence on pedestrian behaviour, congestion and other influences on property
price (Porta et al., 2006a, Porta et al., 2009, Porta et al., 2012, Chiaradia et al., 2012). One way of
looking at this is that street network connectivity metrics are a proxy for the multiple dimensions of
human interactions that produce value in a city. They measure general accessibility rather than
specific accessibility and may be supposed to be more powerful predictors of locational valuations as

a result (Webster, 2010).

We test this hypothesis using the Welsh capital city of Cardiff as the study area. A sub-set of the
Cardiff street network is modelled using space syntax methodology and various measurements of
network accessibility are taken from the model to form locational variables in a hedonic model of

house prices, which is used to test the following hypotheses:

1. Accessibility metrics derived from a topological network model improves hedonic model
performance compared to conventional geometrical measures of accessibility, in respect of:
a. Measures of explanatory power
b. Areduction in multicollinearity, heteroscedasticity and spatial autocorrelation
c. Improved accessibility coefficient estimates in terms of reducing counter-intuitive
sign and statistical insignificance
2. Accessibility metrics derived from a topological network model better capture the
complexity of the access-space trade-off model of property prices compared to conventional

geometrical measures in respect of multi-scaled, multi-centric urban areas



The paper is divided into five sections. In section two we provide a brief review of previously
published work relating to the specification and measurement of accessibility in hedonic research.
The case study area, data, methods of constructing accessibility measures and the hedonic model
specification are presented in section three. Results are presented in section four, where we estimate
three models using individual property level data. Section five summarizes the findings and
concludes with a discussion of network approaches to modelling urban configuration in hedonic

house prices models compared to more conventional geometrical approaches.

2. Accessibility measures in hedonic research

Conventional geometric measures

In access-space trade-off models, transportation costs are traded off against land rents.
Improvements in transportation infrastructure are assumed to reduce commuting costs, releasing
more from a household budget to spend on land rent (Alonso, 1964, Muth, 1969, Mills, 1972).
However, Alonso’s (1964) monocentric model is clearly one pertaining to a particular historical phase
in a city’s evolution and does not adequately capture accessibility value where workplaces are not
solely located in the city center (McDonald, 1987), or where trips to work form a declining share of
overall household travel. The multi-centric nature of many housing-market areas makes one-
dimensional separation measures like physical distance and travel time from a distinctly defined
center problematic. The presence of multiple-worker households and multiple workplaces motivated
the search for alternative separation measures. Heikkila et al (1989) found distance to the CBD to be
insignificant, with the estimated coefficient having a counter-intuitive positive sign in a property
price hedonic model of Los Angeles in 1980. They concluded that the impact of workplace
accessibility has been overemphasized. Richardson et al. (1990) note that the effect of distance to
the CBD may have declined, findings that the distance coefficient for Los Angeles CBD was significant
and negative in a dataset from 1970. Waddell et al. (1993) emphasized the importance of including
distance to secondary employment centres, and found both a strong and significant asymmetric CBD-
gradient and strong local effects from non-CBD employment centres. Orford (2002) specified a
multilevel hedonic model to evaluate locational externalities, examining a range of locational effects
on property prices. In terms of property-level externalities, the research used distance to the CBD,
motorway exits, railway stations, shopping centres, and suburban employment centres. It also
considered proximity to non-residential land uses such as parks, schools, industry, commercial, local

shops, recreational centres and cultural and educational centres. The results showed a complex



geography of locational externality effects, with areas of positive and negative externalities in

juxtaposition across highly localised areas.

Researchers have experimented with a wide variety of alternative measures. On approach has been
to measure transport costs more accurately (the traditional distance to CBD measure is a simple
approximation of travel cost). Gibbons and Machin (2005) explored the effects on property prices of
a transport innovation for households in London in the late 20" century. They defined rail access in
two ways: distance to a station and service frequency at the nearest station. Distance changes
induced by the transport innovation were associated with price changes and the price effect was
large compared to the monetary valuation of other local amenities. Adair et al. (2000) examined the
relationship of housing price and accessibility in Belfast urban area, adopting a gravity model and
calculating an accessibility index for locations to various opportunities by different types of vehicle.
The measure was a weak but significant predictor of house prices. Osland and Thorsen (2008),
utilized a hedonic model to confirm that gravity-based labour-market accessibility contributes to
property prices. Significantly, they found that labour-market accessibility is not an adequate
alternative to distance from the CBD. Woo and Webster (2013) examined the trade-off between
publicly provided and privately provided civic goods in determining condominium prices in Seoul,
testing the hypothesis that the club-goods within condominium developments are a substitute for
open access public goods and therefore a substitute for centrality as conventionally modelled. They
found strong evidence of a substitution effect for some types of goods, including local green space
and concluded that a ‘city of residential clubs’ has significantly different locational dynamics

compared to the conventional city in which public goods are supplied by the state.

Matthews and Turnbull (2007) examined how street layout affects property value using network
centrality derived from a network analysis of east and west Washington. They found network
centrality measured within a 1400 feet walking distance radius to be significantly correlated with
house price in both west and east samples, but the coefficient signs were opposite in the two
samples. They concluded that the portion of house value contributed by street layout critically
depends upon the context of the surrounding development pattern. Enstrom and Netzell (2008)
examined urban street layout impact on commercial office rents in Stockholm and found that it had a
positive impact on office rent. Empirical evidence of the association between property prices and
street network connectivity are limited; hence the focus of our paper, which attempts to take this

tradition of spatial analysis of housing markets a step further.



Network measures of accessibility

Stewart (1947) firstly used the concept of graph theory defining gravitational potential as the
weighted sum of forces. Hansen (1959) started with a graph theory view of the spatial system,
identifying accessibility as a key element in spatial interaction; while Haggett and Chorley (1969)

established a centrality analysis approach to analysing spatial relationships.

Recently, Batty (2009) summarized three mainly types of accessibility in mainstream urban
scholarship. First concerns potential ‘opportunities’ (Hanson 1959, Osland and Thorsen 2008),
measuring the size of the opportunities at a location and inversely moderating this with the distance
or time taken to access those opportunities. The second type of accessibility is normally applied in
traffic models and measures the sum of the shortest routes in a planar graph connecting a location
to all other locations (Debrezion et al. 2011). High accessibility is normally associated with minimum
distance, travel time and travel cost. It is noted that such metric geographical network analysis,
nodes or vertices are defined as the intersection or junction of streets, while the links or edges are
street segments linking two intersections, which is widely accepted as the prime approach. By
contrast, a third type of accessibility is based on the dual approach, which defines road intersections
as links and street segments as node (Hillier and Hanson, 1984, Porta et al., 2006b, Porta et al., 2009,

Jiang and Claramunt, 2002, Jiang and Claramunt, 2004).

The use of the dual approach as applied in the Space Syntax network analysis software has come
under criticism. For example, Ratti (2004) finds several inconsistencies in the ‘axial maps’ that are
used in Space Syntax to model the urban spatial structure. They are, he suggests, not objective,
consistent or unique and suffer from “cross-error”, which means the value could shift when the
system changes. Furthermore, Steadman (2004) points out that the space syntax method seems to
be problematic at the large urban scale. Movement along a straight but congested urban street is
slow and requires the expenditure of energy. The urban traveller might be expected to choose the

shortest metric distance for lower energy cost rather the fewest changes of direction.

In response to these criticism, Hillier and Penn (2004) suggest that a metric radii search
measurement imposed on the topological analysis will ease the cross-error of Ratti (2004). This
position is also accepted in the studies of Porta et al (2006, 2009). Turner et al. (2005) proposed an
algorithmic solution to the objectivity criticism of Ratti, by demonstrating the possibility of a unique

axial line map. Turner (2007) also found that using standard road-centre lines instead of lines of



sight, and angular separation as a friction measure gave a stronger correlation between network
connectivity and observed vehicular flows than the conventional space syntax measures. In our
study, we follow Turner’s (2007) approach, using the road central line (ITN) to capture the spatial
information contained in street layout-centrality. We measure the fiction of distance by angular

separation (we aggregating the degrees of turn along a route).

In this study, we used two metrics of network centrality: closeness and betweenness. Behaviourally,
these are based on two trip-choice criteria that an individual has to make while traversing the road
network; selecting a destination and selecting a route to get to the destination. The former is based
on how easy is it to get to a destination, also termed the to-movement component. More accessible
destinations on this measure are more likely to be selected as locations for higher activity uses, such
as shops. The betweenness measure the places that an individual has to pass through the get to a
destination, and scores more highly those parts of the network where more people pass through. It

is also termed the through-movement component

In graph-theoretic terminology, the to-movement potential is termed 'closeness' (integration in
space syntax) and measures the ease with which a destination may be accessed within a network.
Space syntax Integration analysis models the mean distance between origin and all possible
destinations within network radius R. It measures the extent to which a road segment is close to all

other road segments along the shortest distance of the street network and is formalised by equation

(1):

Closeness for a road segment i is defined as:

, N—-1 .
Closeness (Integration), = m (Equation 1)
Where N is the total number of road segments in the network, and dijis the shortest distances

between road segmentiand j.

The through-movement potential is captured by the graph-theoretic measure of betweenness
(Freeman, 1979). This is Route Choice (or Choice) in the space syntax literature and measures the
degree of potential for movement through a segment of the road network. In contrast to integration,
which measures the relative ease of reaching potential destinations, the betweenness index
indicates how often people are likely to pass through a particular route and therefore which parts of
the road network will be the busiest. Space syntax choice analysis assumes that people will travel

from two points on the network along the shortest path based on topological distance-“turn”.



Choice at radius R measures the number of shortest paths by turns connecting all pairs of road
segments in the network with a maximum length of the path being R. A road segment is more
central, and thus has more potential for through traffic, the larger the number of shortest paths

connecting it to the network. Betweenness for a road segment i is defined as:

1 N i (D) .
(N-1)(N-2) Zj=1;k=1;j¢k¢i;T (Equation 2)

Betweenness(choice), =
Where ™% is the number of shortest paths between road segment j and k, and Mk Q) s the

number of these shortest paths that contain segment i.
3. Study area and data assemblage

The study area is the Welsh capital city of Cardiff. Cardiff was chosen because of data availability, the
authors’ knowledge of the Cardiff housing market and the fact that Cardiff is very similar in size and
form to other UK cities, allowing for the possibility of generalising the results. The study is limited to
an area 6 km by 4 km stretching from the north of Cardiff city centre to the edge of the suburbs
(Figure 1). This area is representative of the housing stock in Cardiff and includes the Victorian and
Edwardian terraces of the inner city and the inter-war and post-war semi-detached and detached
houses in the suburbs. It includes recent infill development of flats in the inner-city area as well as
some new build on the edge of the city. From the perspective of urban configuration, there is a dual-
carriageway (A48) which divides the study area into the inner-city and suburbs, with each sised of
the division displaying different social and built-form characteristics. The area has been used in

previous property price research (Orford, 2000, Orford, 2010, Orford, 2002).

[FIGURE 1 HERE]



Property price data comes from the England and Wales Land Registry and a service license was
acquired to use the following data: full address of the property, price paid, sale date, property type
(detached, semi-detached, terraced, Flat/Maisonette), whether it was new-build and tenure
(freehold or leasehold). These data were acquired for 16,297 properties sold in the study area for the
period from 2001 to 2007 (an average of 2000 transactions per year) and were attached to Ordnance
Survey (OS) Mastermap Address Layer that provides grid co-ordinates for each property to a
resolution of less than 1 metre. Given the paucity of Land Registry data (and structural attribute data
for individual properties in England and Wales), floor area was estimated for each property in the
property price database using a methodology described in Orford (2010) and briefly outlined here.
The building footprints for all the properties in the study area were extracted from OS Mastermap
topographic layer and linked to the address layer. Heights of each property was obtained using
Environment Agency LIDAR data that uses airborne laser scanning to create a digital surface model of
the study area. The height data allowed the number of stories of each building to be calculated and
this information was used with the building footprint data to estimate the floor area of the property.
The estimated floor area data were calibrated against a sample of properties where the actual floor
area had been obtained from estate agent surveys and was referenced to property type. This showed
a close correspondence between the estimated floor area and the actual measures of floor areas in
the sample of properties, although there were some differences reported for flats, principally due to
conversions and sub-divisions of larger properties. Floor area is perhaps the most important
structural attributes in determining house price (Sirmans et al., 2006), and tends to be highly
correlated with other structural attributes such as number of rooms, size of garden etc. and so its
inclusion will mitigate, to some degree, these missing structural attribute variables. The Office of
National Statistics (ONS) Output Area Classification (OAC) data was used to capture small area
demographic and socio-economic characteristics (Vickers and Rees, 2007). The OAC classifies each
census Output Area (OA) into one of seven groups: blue collar communities, city living, countryside,
prosperous suburbs, constrained by circumstances, typical traits and multicultural. An OA is the
smallest census unit and corresponds to approximately 125 people and 40 households and there

were 332 OAs in the study area.

Constructing accessibility variables

10



Two distinct sets of accessibility variables were constructed for the research. The first set pertain to
traditional geometric measures of accessibility and, following the housing price studies of Cardiff by
Orford (2000; 2002), these were calculated using the natural log of network distance from each
property to the city centre, to Cardiff Bay and to significant local amenities including the main city
park (Bute Park), the University Heath hospital and a suburban park located in the study area (Roath
Park). The second set pertains to network accessibility metrics, using street centre line from
Ordnance Survey Mastermap ITN and the confeego 1.0 network analysis software

(www.spacesyntax.org). Network accessibility values were calculated for each street network

segment, measuring closeness and betweenness at the following radii: 400m, 800m, 1200m, 1600m,
2000m, 2500m, 3000m, 4000m, 5000m, 6000m, 7000m, 8000m, 10000m and global Nm (the entire
study area). These can be associated with different uses of the road network, for example, 400m -
1200m is walking scale and 1600m-2000m is cycling or running scale, while above 2500m is car scale.
Through testing the different choice radii on housing price in our study area, we can estimate what

kind of network scales affect property prices.

In total, fifty-five variables were prepared for the hedonic models: twenty-one dummy variables and
twenty-four continuous variables (summarized in Table 1). Very few properties are new build and
four-fifths are freehold tenure. Terraced houses make up the largest portion (53%) of properties in
the sample, with semi-detached houses the second largest portion (21%), followed by flats (17%).
Only 5% of the OAs in the study area are classified as ‘constrained by circumstances’ in contrast to
28% which are in the ‘typical traits’ and ‘living in the city’ categories. Between 11 — 15% of properties
in the sample are recorded as having been sold in each of the years, with the exception of 2008,
which represents only 1% of sales in the sample due to the large downturn in the housing market

that occurred in that year.

[TABLE 1 HERE]

Hedonic model specification

The hypothesis being tested in this study is that the precise geometric and topological structure of
the urban road network affects residential property prices and by testing their impact at various
spatial scales we can begin to model the effect of urban configuration on those prices. We measure
urban configuration using the network accessibility metrics described above and test their influence

on property price, controlling for other structural and locational attributes of housing.
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The hedonic price model employed in this study is specified in the following general form:

Pi= o + B1Si + BoCi + BsT: + BaDi + BsXi + € (Equation 3)

Where:

P;= Transaction price of residential property;

Si= Vector of property structural attributes;

C;= Classification of OA;

Ti= Year of transacted property price;

D;= Vector of geometric accessibility variables;

Xi= Vector of spatial network accessibility metrics at different radii;

€ = Random error term

As is common in hedonic property price research, the log of the dependent variable is used
(Malpezzi, 2003). This allows the interpretation of the coefficients to be in terms of percentage
change of the housing attribute on the price of the property. It also reduces heteroscedasticity in the
error terms (Diewert, 2003). The model was estimated in three forms: (a) classical hedonic house
price variables plus conventional geometric accessibility variables (b) classic hedonic variables plus a
full set of network accessibility variables (c) classic hedonic variables plus conventional geometric
and network accessibility variables. As many hedonic house price researchers fail to report the
results of diagnostic econometrics test we have performed a number of tests (Belsley et al., 2005) to
ensure the assumptions of the hedonic model are not violated including: tests on leverage points
and outliers (Cook’s D, DFFITS), multicollinearity amongst the independent variables using the
Variance Inflation Factor (VIF), a White test used to detect heteroscedasticity and Moran’s | test (Cliff

and Ord, 1981) to assess spatial autocorrelation in the error terms.

4. Analysis and discussion

Three models were estimated in order to investigate the impact of street-network morphology on

property prices. The first of the three individual level data models (Model 1) was estimated using the

structural and neighbourhood variables and the geometric accessibility variables found in

conventional hedonic property price research. As is typical in such research, strong correlation
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existed between the five accessibility variables and they were also moderately correlated with the
neighbourhood variables. As a result, two of the five accessibility variables (log distance to Bute park
and log distance to Cardiff Bay) were statistically insignificant at the 5% level when included
simultaneously in the model. Therefore only three accessibility variables were retained with the final
model reported in Table 4.1. The log likelihood is -5783, the corrected Akaike Information Criterion
(AIC) is -34635, and the F-statistic is significant at the 1% level or less, all indicating that the model
fits the data well and that each independent variable is significantly linear. The adjusted R-square
statistic is 0.63 which is typical of hedonic house price models. All the independent variables are
statistically significant at the 1% level or less and the VIFs indicate that multicollinearity is not a
problem. However, the White test reveals the presence of strong heteroscedasticity in the error
terms and so the prediction of the model is poor and Moran’s | also reveals significant positive

autocorrelation, suggesting that the coefficient estimates are unreliable, leading to over estimation.

[TABLE 2 HERE]

As theory suggests, property prices are found in this model to increase as floor area increases; new
build properties are found to have a premium; and terraced, semi-detached and detached houses
are increasingly more expensive than the omitted property type dummy ‘flat’. Freehold tenure
commands a premium over leasehold tenure. The premiums for living in the different
neighbourhoods are in comparison to the omitted neighbourhood type dummy ‘multicultural
communities’. Hence properties in ‘blue collar’ and ‘constrained by circumstances’ neighbourhoods
are slightly cheaper than in ‘multicultural community’ neighbourhoods whilst properties in
‘prosperous suburbs’ are substantially more expensive. There is very little difference in the premiums
for properties in neighbourhood characterized by ‘typical traits’ or ‘living in the city’. The year
variables reveal continuous property price inflation since 2000 (the omitted dummy variable), the
substantial increase in prices between 2002 and 2004 and the flattening off and start of property
price decline in 2008. In terms of accessibility, log distance to the city centre has a negative
relationship with property prices as predicted by the access-space theory of land-values.
Accessibility to Roath Park and to the Heath Hospital has the anticipated negative relationship with
property prices, indicating that they act as positive externalities. The log-log specification means that
the relationship between property price and accessibility can be interpreted as the price elasticity of
distance. Hence a 1% change in distance to the CBD is associated with a 0.101% decline in property
price or, alternatively, a doubling of distance from the CBD is associated with a 10% decline in

property price. The percentage change is slightly larger for Roath Park, suggesting that it has a
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stronger affect on property price in the study area, and slightly smaller for Heath Hospital suggesting
a weaker affect on property prices. These findings make intuitive sense to those familiar with the

local housing market.

Model Il was estimated using the network accessibility variables rather than the planar geometry
variables. Here, closeness and betweenness measures are investigated at different radii in order to
discover the spatial scale at which any network accessibility effects are most poweerful. The three
planar accessibility variables were removed from the model and pairs of choice and betweenness
variables for the fourteen spatial scales (radii) were entered one at a time into the model, the model
was estimated, and the pair removed before repeating the process for each spatial scale. We used
two statistical tests to help guide us in this process; the t-statistic and the corrected AIC statistic.
Following Fotheringham et al. (2003) and their use of the t-statistic in geographically weighted
regression (GWR) modelling, we use t-statistic values in excess of 2 here purely as an indicator of
where potentially interesting relationships might occur rather than a test of statistical significance.
This is because we are estimating a number of regression models and hence we are undertaking
multiple hypothesis tests when we estimate the significance of the t-statistics. These tests are not
independent either, as they re-use the same data for tests which are spatially close to each other.
This will affect the probability of whether the t-statistic is significant at random and so the
conventional approach of considering only the parameter estimates where the T-statistic is greater /
less than 1.96 is not appropriate here (Byrne et al., 2009). A similar issue occurs with the estimation

of GWR models, thus the adoption of the GWR approach to modelling here.

The AIC statistic is a goodness of fit measure that corrects for model complexity and can be used to
compare the models with the same dependent variable and different independent variable subsets;
it provides a measure of the information distance between the model which has been fitted and the
unknown true model. The model with the lowest AIC is the one with the best predictive
performance. In addition, and in the spirit of Fotheringham, et al (2003) who used AIC to determine
the optimal bandwidth of kernel density estimates in GWR, we have used the AIC to check if the
network accessibility variables in models estimated at consecutive spatial scales are equivalent and
therefore add equivalent amounts of information (and thus the two models and hence the network
variables are not statistically different). As a rule of thumb, models having their AIC within 3 are said
to be equivalent. The differences in AICs in consecutive models are a lot greater than 3 suggesting
that the network variables in consecutive models are not equivalent and are therefore statistically

different.
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For brevity, Table 3 summaries the coefficient estimates and t-statistics for each pair of choice and
integration variables for each spatial scale in the fourteen versions of the model, but not the other
variables which had similar coefficient estimates to those in Model I. The AIC statistics, the White
test statistics and the Moran | statistics are presented below the t-statistics and give an indication of
the goodness of fit of the model and whether heteroskedasticty and spatial autocorrelation are
present in the model’s error terms. The adjusted R-square statistic is the same in all models and is

similar to Model | and the VIF scores (not presented) are within the desired range.

The choice and integration measures are statistically significant at the 1% level or less at each spatial
scale and the closeness coefficients have substantially larger T-statistics than the respective

betweenness coefficients.

[TABLE 3 HERE]

Betweenness has a negative and closeness a positive relationship with property price. This is as
expected, as betweenness indicates likelihood of congestion and closeness indicates ease of access
to opportunities. In this way, the two network metrics neatly differentiate positive and negative
network externalities. The radially unconstrained (city-wide) model for closeness is 0.001 (T-statistic
33.12) and for betweenness is -0.016 (T-statistic 10.98). The betweenness coefficients are
substantially larger than the closeness coefficients for each spatial scale with betweenness varying
between -0.013 (5000m) and -0.019 (2000m) with an average of -0.016 and closeness varying
between less than 0.001 (6000m) and 0.003 (400m) with an average Of 0.001. Indeed, the closeness
coefficients become smaller the larger the spatial scale whereas there is a trend for the betweenness

coefficients to get larger with an increase in spatial scale.

Further insight comes from examining the pattern of T-statistics for different radii summarized in
Figure 2. This reveals a bi-modal distribution with the T-statistics for closeness rising from 10.35 at
400m radius to a peak of 37.05 at 3000m radius before declining and then rising to a slightly larger
peak of 40.49 at a 7000m radius before falling to 36.69 at 10,000m radius. A similar trend of T-
statistics is observed for betweenness, but with a negative sign reflecting the relationship of
betwenness with property price, with a peak of -9.87 at 2000m before declining and rising to a

slightly larger peak of -10.93 at 7000m before falling to -10.15 at 10,000m radius.
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[FIGURE 2 HERE]

The model with the smallest AIC is with the network accessibility variables estimated at 7000m and
hence this is the model with the best predictive performance. In addition, the model estimated at a
3000m radius has a lower AIC compared to models estimated at a number of consecutively smaller
and larger radii. This suggests that although the model estimated at 7000m is the best, the model
estimated at 3000m also provides a comparatively good fit with the data at a smaller spatial scale.
The White test statistic and the Moran | statistic are both large and significant (at the 1% level)
suggesting that heteroskedasticity and spatial autocorrelation are present in the error terms,
although the size of the test statistics is smallest for the models estimated at the 3000m and 7000m
radii suggesting that there has been a reduction in heteroskedasticty and spatial autocorrelation at

these two spatial scales.

Model Il was estimated using both network accessibility variables and the planar accessibility
variables. The three planar accessibility variables are as in Model | and pairs of betweenness and
closeness variables for the fourteen spatial scales (radii) were estimated as in Model Il. As before,
Table 4 summaries the coefficient estimates and T-statistics for each pair of betweeness and
closeness variables for each spatial scale in the fourteen versions of the model as well for the three
conventional accessibility variables. The adjusted R-square statistic was again the same for all models
and is slightly higher than in Models | and Il suggesting the two different types of accessibility
measure capture independent externality effects. The AIC statistics are smaller than in Model Il for
the equivalent spatial scale suggesting that the model fits the data better when both types of
accessibility measure are included. All the AIC statistics for consecutive models are greater than 3
indicating that the network variables in consecutive models are not equivalent and are therefore

statistically different.

The relationship between the betweenness and closeness variables are similar to that in Model Il
except that the T-statistics and coefficients are smaller, indicating that the network variables in
Model Il capture some of the general accessibility effects. The betweenness variable is statistically
insignificant at the 5% level at 400m radius. The pattern of T-statistics for different radii summarized
in Figure 3 continues to show a bi-modal distribution, although with smaller peaks than in Model Il.
The integration variables’ T-statistics now peak at 2500m radius (26.47) and again at 7000m radius

with a slightly smaller T-statistic of 25.84. The choice variables’ T-statistics continue to peak at
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2000m (-6.86) and 7000m (-7.07) as in Model Il. The model with the smallest AIC is that estimated at
2500m suggesting that the accessibility variables measured at this spatial scale best fits the data. The
AIC is also slightly smaller for the model estimated at 7000m compared to models estimated at
slightly higher and lower spatial scales. Similar to the previous models, the White test statistic and
the Moran | statistic were both large and significant (at the 1% level) suggesting that
heteroskedasticity and spatial autocorrelation are present in the error terms, although the size of the
test statistics are smaller than in Model Il for equivalent spatial scales suggesting that there has been

a reduction in heteroskedasticty and spatial autocorrelation in Model III.

[TABLE 4 HERE]
[FIGURE 3 HERE]

The impact of the network accessibility variables can be further evaluated in comparison to the
effect of the three conventional accessibility variables in the models. Table 4 and Figure 4 reveal that
both distances to the CBD and to the hospital become insignificant (p=0.05) with an increase in the
spatial scales at which the network accessibility variables are measured. Accessibility to the CBD has
the anticipated negative relationship with property prices at 400m radius but this relationship
becomes insignificant at radii of 2000m and 2500m. The relationship with property prices becomes
positive and significant between 3000m and 5000m, with prices increasing with distance to the CBD,
before the relationship becomes insignificant at spatial scales upwards of 6000m. Accessibility to the
hospital follows a similar pattern, although the relationship with property price is insignificant
between 800m and 5000m before becoming positive and significant at spatial scales upwards of
6000m. In comparison, the T-statistics for accessibility to the area’s large park are generally constant
and significant across all spatial scales, with the anticipated negative relationship between the

externality and property prices.

[FIGURE 4 HERE]

We may therefore conclude that for the study area, property prices seem to be most sensitive to
network accessibility metrics measured at a radii of 2000-3000m and 7000m (as these have the two
largest T-statistics and the lowest AIC statistics) and that this is true for negative (betweenness) and
positive (closeness) road network externalities. Given that the radii are measured as network

distances, the 2000-3000m radius corresponds to the local neighbourhood and modes of transport
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associated with walking and cycling and short trips in the car whilst 7000m radius corresponds to
public transport and car journeys within 15-20 minutes. Given that we omitted the conventional
accessibility variables in Model I, we can assume the two network metrics at 7000m radius are a
proxy for accessibility to the city centre. Network configuration becomes less influential beyond the
7000m scale as it extends into ex-urban areas and the parts of the city the other side of the CBD,
which indicates that beyond this distance there is no more city-scale externality effects captured in
property prices in our study area. This shows that optimal radius for measuring network accessibility
is related to the size and shape of the study area. In this case, the urban configuration of the study
area appears to be bi-centric in relation to the housing market, with peaks caused by externalities
associated with local neighbourhood and city centre. This observation is strengthened by the
conventional accessibility variables in Model Ill. Here, the significance of accessibility to CBD was
affected by the inclusion of network accessibility variables, becoming statistically insignificant at the
spatial scales where closeness and betweenness variables have the largest T-values (2000-3000m
and 6000-10000m). This suggests that at these scales, network accessibility metrics capture the
effects of access to the CBD and that the property price-distance curve is not continuously
monotonic but has local peaks reflecting local neighbourhood centres. The statistical insignificance of
accessibility to the hospital across the majority of the spatial scales suggests that the effects of this
employment and service centre is better captured by the network variables. The significant but
positive relationship with property prices at spatial scales beyond 6000m suggests that living in
proximity to the hospital has a negative effect on property prices once accessibility to local
neighbourhoods and the CBD has been accounted for by the network variables. Finally, the statistical
significance of accessibility to Roath Park across all the spatial scales indicates that the network
accessibility variables do not substitute for all scale-specific externality effects and that these still
need to be included in hedonic house price models. This is consistent with the idea that network
metrics may be superior proxies for capturing the effects of general accessibility on land prices while
large-effect single sources of externalities need to be separately modelled as special accessibility
metrics. We note that general accessibility is itself an aggregation and averaging of many separate

sources of negative and positive externalities (Webster 2010).

5. Discussion and conclusions

We have presented an investigation into the use of network accessibility measures in hedonic house

price research, using Cardiff as a case study. It has revealed that a network approach to measuring

accessibility in urban areas can improve a model’s performance with respect to explanatory power
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and a reduction in heteroscedasticity, spatial autocorrelation and multi-collinearity compared to
conventional geometrical measures of accessibility. Further improvements to model specification
such as additional structural and locational attribute variables and weighting and spatial lag variables
may reduce and remove the heteroscedasticity and spatial autocorrelation that currently exists in the
models. By estimating network accessibility variables across a variety of spatial scales, we have
demonstrated that the study area displays a bi-centric urban configuration with respect to property
prices that corresponds to local and city-wide externalities. This makes theoretical sense for a city
such as Cardiff that has a clearly identifiable CBD and more localised centres of employment, retail
and commercial activity and strong city-wide amenity green space attractions. This may not be the

case for larger British cities that have a more polycentric urban configuration.

Possibly our most novel finding is that the two network accessibility measures of closeness and
betweenness, respectively capture positive and negative intra-urban externalities in a broad sense.
This is all the more significant since (a) the two measures are systemic measures and (b) they can

differentiate micro market areas created by many local negative externality effects.

The research has shown that such variables can be a better substitute for some conventional
geometric measures of general accessibility such as distance to the CBD; but that geometric
measures to more specific locational externalities, such as a major park, are still required. Moreover,
analysing the influence of the city’s major hospital on property prices in the final individual level
model we find that the interaction of network and conventional accessibility variables can unpack
both the positive and negative externality effects of specific locational attributes that occur at
different spatial scales without having to specify this functional relationship a priori. This, we suggest

is another important and novel finding.

In future research in this area we intend to apply the techniques to larger cities with more complex
urban configuration to see if it is possible to identify multiple peaks in the closeness and betweeness
coefficients at various spatial scales relating to a polycentric urban form. It is also important to begin
to better understand the precise nature of betweenness and closeness variables in terms of the
specific locational externalities that they are capturing at different spatial scales. This will involve
exploring spatial correlations of the network variables with conventional accessibility variables across
the different spatial scales and across the city to determine when network accessibility variables
make a good substitute for the conventional measures of locational externalities and when they do

not.
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Finally, by bringing two genre of spatial analysis together (network analysis of street layouts comes
from both an architectural and transport planning tradition, while CBD-accessibility and similar, come
from urban economics), it will be possible to develop a deeper understanding of the relationships
between urban configuration and design, locational externalities and property prices. New network
analysis  software  tools such as Spatial Domain  Network  Analysis  (SDNA)
(http://www.cardiff.ac.uk/sdna/) provide a platform for the scientific study of associations between
urban design and configuration on the one hand all manner of urban performance indicators such as

land values, individual health and environmental quality and risk.
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Figure 1: The city of Cardiff, Wales and the case study area (Ordnance Survey ©Crown Copyright.
All rights reserved)
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Table 1: Description of the variables (property level)

Variables Description Type Min Max Mean SDev
LN_FL Natural log of floor area Continuous 1.793 9.595 4.903 1.071
LN_CBD Natural log of distance to City Centre Continuous -0.66 1.79 0.76 0.62
LN_BAY Natural log of distance to Cardiff bay Continuous 0.93 2.18 1.6 0.29
LN_ROATH Natural log of distance to Roath Park Continuous -3.19 1.52 0.72 0.52
LN_HOSP Natural log of distance to Heath hospital Continuous -0.42 1.82 0.99 0.48
LN_BUTE Natural log of distance to Bute Park Continuous -1.03 1.64 0.95 0.39
BE_R400M Betweenness value at radius 400m Continuous 0 3.183 1.483 0.923
BE_R800M Betweenness value at radius 800m Continuous 0 3.879 2.152 1.277
BE_R1200M Betweenness value at radius 1200m Continuous 0 4.464 251 1.485
BE_R1600M Betweenness value at radius 1600m Continuous 0 4.961 2.745 1.626
BE_R2000M Betweenness value at radius 2000m Continuous 0 5.287 2912 1.721
BE_R2500M Betweenness value at radius 2500m Continuous 0 5.57 3.069 1.817
BE_R3000M Betweenness value at radius 3000m Continuous 0 5.789 3.195 1.891
BE_R4000M Betweenness value at radius 4000m Continuous 0 6.155 3.389 2.004
BE_R5000M Betweenness value at radius 5000m Continuous 0 6.43 3.529 2.091
BE_R6000M Betweenness value at radius 6000m Continuous 0 6.655 3.634 2.161
BE_R7000M Betweenness value at radius 7000m Continuous 0 6.887 3.719 2.209
BE_R8000M Betweenness value at radius 8000m Continuous 0 7.058 3.778 2.249
BE_R10000M Betweenness value at radius 10000m Continuous 0 7.273 3.834 2.295
BE_N Betweenness value for city wide Continuous 0 7.567 3.834 2.337
CL_R400M Closeness value at radius 400m Continuous 0 95.898 29.479 16.135
CL_R800M Closeness value at radius 800m Continuous 0 194.551 68.402 40.154
CL_R1200M Closeness value at radius 1200m Continuous 11.928  350.988  120.269 67.933
CL_R1600M Closeness value at radius 1600m Continuous 16.489  482.002 181.727 97.358
CL_R2000M Closeness value at radius 2000m Continuous 26.903  576.524 246.244 125.338
CL_R2500M Closeness value at radius 2500m Continuous 30.971  719.865 327.692 155.646
CL_R3000M Closeness value at radius 3000m Continuous 44303  825.042  411.021 181.137
CL_R4000M Closeness value at radius 4000m Continuous 77.035  1044.48 584.539  219.047
CL_R5000M Closeness value at radius 5000m Continuous 141,572  1317.72 763.448 254.955
CL_R6000M Closeness value at radius 6000m Continuous 251.813  1604.22 944528  281.435
CL_R7000M Closeness value at radius 7000m Continuous 359.996 1793.71 1114.311  298.407
CL_R8000M Closeness value at radius 8000m Continuous 441,707  1939.79  1248.791 308.14
CL_R10000M Closeness value at radius 10000m Continuous 616.409 2107.21 1412.711 292.122
CL_N Closeness value for city wide Continuous 858.122  2150.76 1521.65 245.688
Variables Description Type Code0 Codel Mean SDev

(%) (%)
DU_NEW New Build Dummy 92.9 71 0.080 0.268
DU_DET Detached House Dummy 91.2 88 0.100 0.300
DU_SEMI Semidetached House Dummy 792 208 0.210 0.407
DU_TER Terrace house Dummy 26.6 53.4 0520 0500
DU_FLAT Flat Dummy 33 17.0 0.170 0375
DU_TEN Tenure ( Freehold=1 Leasehold =0) Dummy 21.7 783 0.790 0411
DU_BC OAC Blue collar communities Dummy 391 10.9 0.110 0310
DU_CL OAC Living in the city Dummy 72 28.0 0.270 0.446
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DU_PS
DU_CC
DU_TT
DU_MU
Y2000
Y2001
Y2002
Y2003
Y2004
Y2005
Y2006
Y2007
Y2008

OAC Prosperous suburbs
OAC Constrained by Circumstances
OAC Typical traits

OAC Multicultural
Transactions in 2000
Transactions in 2001
Transactions in 2002
Transactions in 2003
Transactions in 2004
Transactions in 2005
Transactions in 2006
Transactions in 2007
Transactions in 2008

Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy
Dummy

87
95.5
71.7
84.7
89.3
86.6

85
86.7
87.5
90.2
87.6
88.2
98.9

13.0
4.5
28.3
15.3
10.7
13.4
15.0
13.3
12.5
9.8
12.4
11.8
11

0.150
0.050
0.280
0.150
0.110
0.130
0.150
0.130
0.130
0.100
0.120
0.120
0.010

0.354
0.208
0.449
0.353
0.309
0.340
0.359
0.339
0.332
0.301
0.328
0.321
0.099
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Table 2: Model | the conventional hedonic model with geometric accessibility variables

Adjusted R-squared 0.63
AIC -34635**

Log likelihood -5783
F-statistic 1281**
White  1474**
Moran’s | 0.184**

N = 16297
Variable Coeff. SD T-statistic VIE
Constant 10.153 0.029 348.32** 2.50
LN_FL 0.139 0.004 34.75%* 1.46
DU_NEW 0.189 0.013 14.90** 3.19
DU_DET 0.702 0.017 41.10** 5.14
DU_SEMI 0.439 0.015 29.10** 7.23
DU_TER 0.260 0.015 17.82** 3.46
DU_TEN 0.251 0.012 20.58** 2.03
DU_BC -0.090 0.012 -7.31%* 247
DU_CL 0.129 0.009 13.60** 2.67
DU_PS 0.389 0.013 29.59** 1.48
DU_CC -0.040 0.016 -2.53** 2.39
DU_TT 0.136 0.009 14.66** 1.95
Y2001 0.117 0.011 10.58** 2.06
Y2002 0.297 0.011 27.42%* 1.97
Y2003 0.510 0.011 45.71%* 1.92
Y2004 0.679 0.011 60.06** 1.74
Y2005 0.776 0.012 64.71** 1.90
Y2006 0.810 0.011 71.59** 1.87
Y2007 0.863 0.011 75.07** 1.08
Y2008 0.855 0.029 29.86** 2.70
LN_CBD -0.101 0.007 -14.07** 5.44
LN_ROATH -0.178 0.012 -14.51** 6.07
LN_HOSP -0.073 0.017 -4.31%* 2.50

* Significant at 5% level or less
** Significant at 1% level or less
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Table 3: Model Il the conventional hedonic model with space syntax accessibility variables

Different Radii - T -statistic comparisons

400M 800M 1200M 1600M 2000M 2500M 3000M
BE cL BE cL BE cL BE cL BE cL BE cL BE cL
Coef ~ -0018 0003  -0.016 0002 -0017 0002  -0.018 0001  -0019 0,001  -0017 0001  -0.016 0.0
T 4.22%%  10.35%%  -558%%  19.77%%  -714%%  2516%%  -886%*  30.05%%  -0.87%%  34.83%%  -Q65%*  3677*%  -038**  37.08
AIC -33123 -33432 -33668 -33931 -34223 -34355 -34371
White 1432%* 1306** 1221%* 1179%* 1095%* 1137%% 1095%*
Moran | 0.175%* 0.174%* 0.173%* 0.171%* 0.168** 0.168** 0.165**
4000M 5000M 6000M 7000M 8000M 10000M City-wide
BE cL BE cL BE cL BE cL BE cL BE cL BE cL
Coef  -0014 0001  -0.013 0001  -0014 0001  -0.016 0001  -0015 0,001  -0.014 0 0016 0.0C
T -8.83%%  3561%*  -861** 3524%% -970%* 38.06%* -10.93%*  40.49%* -10.75%%  39.55%*  -10.15%*  36.69**  -10.98**  33.12
AIC -34272 -34248 -34437 -34612 -34537 -34338 -34092
White 1095%* 1137%* 1179%* 1221%* 1263** 1306%* 1306**
Moran | 0.167** 0.168** 0.168** 0.171%* 0.172%* 0.173** 0.173**

A set of explanatory variables have been included in the regression

table for the sake of brevity

R-sq (adj) 0.63

* Significant at 5% level or less
** Significant at 1% level or less

model but are not reported in the

Figure 2: T-statistics of the space syntax accessibility variables estimated in Model Il for different spatial

scales
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Table 4: Model lll the conventional hedonic model with geometric and space syntax accessibility

variables
Different Radii - T -statistic comparisons
400 800 1200 1600 2000 2500
B T B T B T B T B T B T
LN_CBD -0.09 12,70 -0.08 10.26* -0.06 -7.53* -0.03 -4.01* 001 -095 0.01 1.06
LN_ROATH -0.19 1517 -0.20 16.58* -0.20 16.67** -0.20 16.45** 0.20 16.41* -0.19 16.16*
LN_HOSP  -005 -3.19* -0.02 -1.15 -0.01 -056 0002 -0.09 001 081 002 121
BE 0.005 -1.18 -0.01 -3.18* -0.01 -4.40* -0.01 -579* 001 -6.86* -0.01 -6.71*
CL 0.001 4.98* 0.001 13.68* 0.001 17.43* 0.001 20.99** 0.00 25.08* 0.001 26.47*
AIC -34659 -34845 -34956 -35094 -35276 -35346
White 1432** 1390** 1306** 1179** 1095** 1137**
Moran | 0.175** 0.170** 0.168** 0.165** 0.165** 0.163**
3000 4000 5000 6000 7000 8000
B T B T B T B T B T B T
LN_.CBD 002 207+ 0.02 203 002 203 0003 -040 0004 051 001 062
LN_ROATH .0.19 15.85* -0.19 15.71* -0.19 15.71* -0.20 16.27* -0.20 16.51* -0.20 16.62**
LN_HOSP 002 117 001 074 001 074 005 261* 0.07 4.09* 0.07 4.25*
BE -0.01 -6.49* -0.01 -6.00* -0.01 -6.00% -0.01 -592** -0.01 -7.07** -0.01 -6.76**
CL 0.001 26.42** 0.001 25.03* 0.001 25.03* 0.000 24.42** 0.000 25.84** 0.000 24.30**
AIC -35346 -35276 -35206 -35241 -35302 -35224
White 1137** 1179** 1221%** 1221%** 1263** 1348%**
Moran | 0.162%* 0.165%** 0.167** 0.168** 0.170%** 0.171%*
10000 city
B T B T
LN_CBD -0.02 -224* -0.05 -6.29**
LN_ROATH .0.19 15.88* -0.20 16.55**
LN_HOSP 004 231* 003 1.63
BE -0.01 -5.19** -0.01 -5.40*
CL 0.000 20.49** 0.000 18.39**
AIC -35068 -34990
White 1390** 1390**
Moran | 0.171** 0.172**

A set of explanatory variables have been included in the regression model but are not reported in the
table for the sake of brevity

R-sq (adj) 0.65

* Significant at 5% level or less

** Significant at 1% level or less
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Figure 3: T-statistics of the space syntax accessibility variables estimated in Model Il for different
spatial scales
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Figure 4: T-statistics of the geometric accessibility variables estimated in Model Ill for different spatial
scales
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