
1 

 

Adaptive Meshing for Finite Element Analysis of  

Heterogeneous Materials  
  

Y.H. You, X.Y. Kou
*
, S.T. Tan 

Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 

 

Abstract  

Adaptive meshing of 2D planar regions, curved surfaces as well as 3D volumes has been 

extensively studied in Finite Element Analysis (FEA) in the past few decades. Despite the 

maturity of these adaptive meshing approaches, most of the existing schemes assume the 

domain or sub-domain of interest is homogeneous. In the context of FEA of 

heterogeneous objects, traditional adaptive mesh generation strategies become inadequate 

as they fail to take into account the material heterogeneities. This paper is motivated to 

tackle such problems and propose an adaptive mesh generation scheme for FEA of 

versatile heterogeneous materials. The proposed approach takes full advantages of the 

material heterogeneity information, and the mesh density is formulated with a specific 

function of the material variations. Dual triangulation of centroidal Voronoi tessellation is 

then constructed and necessary mesh subdivision is applied with respect to a predefined 

material threshold. Experiments show that the proposed approach distributes the material 

composition variation over mesh elements as equally as possible and thus minimizes the 

number of elements in terms of the given material threshold. FEA results show that the 

proposed method can significantly decrease the mesh complexities as well as 

computational resources in FEA of heterogeneous objects and compared with existing 

approaches, significant mesh reduction can be achieved without sacrifice in FEA qualities. 
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1. Introduction 

With recent technologies, design and fabrication of objects with spatially different 

material definitions becomes commonplace. Such objects are commonly termed as 

heterogeneous material objects. Heterogeneous material objects [1-4] possess superior 

properties in applications where multiple, often contradictive, functional requirements are 

simultaneously expected. By introducing material heterogeneities into the design domain, 

different properties and advantages of various materials can be fully exploited; traditional 

limitations due to material incompatibility/affinity problems can be naturally alleviated 

with gradual material variations. In the past few decades, a variety of applications have 

been reported in mechanical, electrical, thermal, optical, biomedical and other fields [5-

14]. 

The wide applications of heterogeneous objects have aroused active research in 

numerical analysis of heterogeneous objects. Many Finite Element Analysis (FEA)-based 
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approaches have been proposed for function analysis or design validities [15-21]. These 

methods extended traditional FEA approaches by taking the material heterogeneity into 

account and allowing different materials to be defined for each node or element. Most of 

them either use classic mesh generation schemes which result in poor accuracies (as the 

mesh only guarantees the geometric accuracies but fails to characterize the material 

heterogeneities) or alternatively, employ meshes with ultra-high densities to assure 

solution accuracies, which, on the other hand, significantly degrades the computational 

efficiencies [22].  

Adaptive finite element mesh generation is a promising solution to such problems. In 

the past, numerous investigations have been conducted on adaptive mesh refinement for 

2D planar regions, curved surfaces as well as 3D volumes [23, 24]. Finer-resolution grids 

are used in regions where the surfaces exhibit large curvatures, and in planar or quasi-

planar regions, sparse mesh grids are employed. However, almost all of these methods 

assume the components under meshing have homogeneous material compositions in the 

domain or sub-domain of interest. In the context of FEA of heterogeneous material 

objects, however, these strategies are no longer effective and directly applicable. 

Motivated to take advantages of traditional adaptive meshing techniques while at the 

same time to incorporate the material heterogeneity into FEA studies, this paper aims to 

investigate effective approaches to generate adaptive meshes for heterogeneous objects. 

The proposed approach takes full advantages of the material heterogeneity information, 

and the mesh density is formulated with a specific function of the material variations. 

Dual triangulation of centroidal Voronoi tessellation is then constructed and necessary 

mesh subdivision is then applied in accordance with a predefined material threshold. 

Experiments show that the proposed approach distributes the material composition 

variation over mesh elements as uniformly as possible and thus minimize the number of 

elements while satisfying the material threshold requirement. Numerical results show that 

the proposed approach can properly balance the accuracy and computational overhead of 

finite element analyses and significant mesh reduction can be achieved without apparent 

sacrifice in FEA qualities. 

2. Related work 

Automatic mesh generation for FEA of homogeneous materials has been extensively 

studied in the past, and among others, the Delaunay triangulation methods [25, 26], 

advancing front methods (AFMs) [27, 28], Quadtree/Octree methods [29, 30] are most 

commonly used approaches. A basic principle for automatic mesh generation schemes is 

the ability to construct adaptive meshes with regard to a node spacing function (or a 

sizing function). In general, adaptive mesh generation consists of two steps: collect 

information (e.g. the object geometry, a posterior error estimator of the solution and 

some economic constraints) to build a node spacing function and then construct a 

desirable mesh conforming to the node spacing function [30-33]. In [24], Lo provided a 

comprehensive review on existing adaptive meshing schemes based on node spacing 

functions, for instance, the Delaunay triangulation method, advancing front approach, 

mesh generation using contours, coring technique, Quadtree/Octree technique and mesh 

refinement by subdivisions. 
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The aforementioned methods however mainly considered the geometric compatibility 

and the topological compatibility of the finite element meshes. The geometric 

compatibility guarantees the final mesh to be closely conformable to the object shapes or 

geometries; and the topological compatibility ensures all the elements are properly 

connected with correct adjacency relationships [34].  

In addition to these two compatibility requirements, Sullivan et al. [34] proposed that 

the physical compatibility should also be seriously considered, as he put it, “An accurate 

numerical solution requires that the domain be discretized sufficiently to describe the 

physics of the problem”. As such, they tackled the adaptive meshing problem for 

heterogeneous objects, but unfortunately, they only focused on multi-material objects 

which are very primitive in material heterogeneity.  Schimpf et al. [35] also studied the 

adaptive meshing problem for human organs (e.g. heart, liver, lungs), each of which is 

also regarded as components with “distinct” materials.  

The FEA studies on Functionally Graded Materials (FGMs) have been widely 

investigated in recent years. Most investigations, however, did not take the local material 

heterogeneities into account for the meshes were usually generated with commercial 

software packages [36-39], which are inherently designed for homogeneous solid 

modeling purposes.  

To our knowledge, the work done by Shin [40], perhaps, seems to be the first study 

on the adaptive meshing problem for FGM objects. In his work, he converted continuous 

material gradation into step-wise variation. Iso-material contours of the solid model were 

first created; triangular mesh was then generated inside each iso-material (i.e. 

homogeneous) region formed by iso-material contours. The advantage of this model is 

that it is computationally efficient, and the size of mesh elements is also adaptively 

determined. However, only unidirectional material gradient was taken into account in 

Shin’s approach. No generic solutions were proposed to solve adaptive mesh generation 

for objects with bidirectional or even more complex material distributions [1, 41, 42].   

Chiu et al. [43] proposed an adaptive mesh generation method for complex 

heterogeneous objects based on the quadtree technique. A material threshold was utilized 

to evaluate if a mesh element is homogenous or quasi-homogenous. The subdivision of 

the domain was recursively processed until all the elements satisfied the material 

threshold requirement. This method is capable of processing objects with complex 

material gradient functions, for instance the Heterogeneous Feature Tree (HFT) structure 

[42], but a large amount of computational resources are needed for geometric intersection 

calculations. Moreover, material compositions are evaluated at a few sampling points 

only (for instance, the corner points of a quadtree rectangle), and in case the material 

composition differences among all sampling points fall below a given tolerance, no 

further subdivisions will be performed any longer. Theoretically however, it is possible 

that abrupt material changes still exist within quadrants of interest, even though the 

material variations along the bounding edges are homogeneous or quasi-homogeneous. In 

such scenarios, Chiu et al.’s approach is incapable of generating robust and adaptive 

finite element meshes. 

To the best of our knowledge, so far there seems to be no thorough investigations on 

adaptive mesh generation for heterogeneous materials.  Existing studies either resort to 
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commercial software packages, which by nature, are not suited for mesh generation of 

heterogeneous materials, or use unnecessarily dense meshes which introduce significant 

efficiency problems. This paper is motivated to bridge such a gap towards providing a 

generic solution to this problem. We show, in what follows, that the proposed approach 

can effectively generate adaptive meshes for general heterogeneous models, inclusive of 

simple analytic function-based as well as other complex data representations such as HFT 

structures. 

3. Adaptive meshing of heterogeneous materials 

In this section, a general scheme for adaptive meshing of heterogeneous materials is 

first presented. Algorithmic details on how to apply the adaptive meshing method to 

analytic function-based and HFT-based heterogeneous models are then elucidated with 

examples. 

3.1 General adaptive meshing scheme 

For mesh generation of heterogeneous materials, there are four important factors to be 

considered: 

(i) Geometric approximation 

In a numerical simulation by means of finite elements, the computational process is 

based on an approximation (or mesh) of the domain where the problem is formulated. A 

mesh that well conforms to the geometric boundaries is therefore a prerequisite for 

accurate simulations.  

(ii) Mesh quality 

Mesh quality (e.g. aspect ratio) is another essential factor. Low-quality elements such 

as skinny triangles with large aspect ratios will degrade the accuracy of FEA solutions or 

lead to poor stiffness matrix conditioning [44].  

(iii) Number of mesh elements 

The number of mesh elements has significant impacts on the computational efficiency 

of FEA. In order to boost the computational efficiency while maintaining the accuracy of 

FEA solutions, it is crucial to avoid introducing an excessive number of mesh elements. 

(iv) Material threshold  

When heterogeneous materials are subjected to FEA, the material composition 

variation, which directly relates to the material property (e.g. Young’s modulus) change 

in each finite element, greatly impacts the accuracy of FEA solutions [45]. A material 

threshold is proposed to evaluate the validity of meshes of heterogeneous materials. A 

generated mesh T is deemed validated, when the maximum material composition 

variation δmax over elements of T is lower than the material threshold δ0, i.e. 

 0
Τ

,  where max .max max
T

T   


                                                                                    (1) 

Here δ(T) denotes the material composition variation within an arbitrary element T in T .   

To satisfy these four requirements, we propose an adaptive meshing scheme for 

accurate and efficient FEA of heterogeneous materials, in which the mesh adaptivity is 

determined by both material and geometric complexities of heterogeneous materials. In 

light of that, the proposed adaptive meshing algorithm embraces three-step meshing 
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stages: Initial Mesh Generation (IMG), Material-Oriented Refinement (MOR) and 

Geometry-Oriented Refinement (GOR). 

The IMG only involves a classical mesh generation problem, in which an initial 

triangulation that well approximates the geometric domain is constructed by a geometric 

modeler. In this stage, no material heterogeneity information is taken into account. 

Following the IMG step, the MOR is repeatedly executed until the generated mesh is 

validated in terms of Eq. (1). In this mesh refinement step, a centroidal Voronoi 

tessellation (CVT)-based approach is proposed to govern mesh adaptation. A density 

function associated with material distributions being established, the CVT-based method 

controls the mesh density in such a way that denser mesh nodes are accumulated into the 

area where the material changing rate is large, and coarser nodes are allocated in relative 

“flatter” regions, and here the flatness refers to the rate of material changes. In addition, 

the CVT-based method distributes the material composition variation over elements of 

the CVT-based mesh as uniformly as possible. In such a way, the number of elements is 

minimized with respect to a predefined material threshold. The benefits of adopting the 

CVT-based approach are two-fold: it enables easy and flexible controls on the mesh 

distributions and also guarantees high mesh quality which is inherently supported due to 

CVT's superior properties, as will be explained in more details in the following sections. 

Notably, only material heterogeneity information is considered in the MOR. This 

becomes problematic whenever coarse elements are generated near curved boundaries of 

the domain where finer elements are expected to account for the geometric facilities. To 

solve this problem, the third step of the adaptive meshing algorithm is applied. In the 

GOR, the Delaunay refinement algorithm is used. Steiner points [25] are inserted into the 

circumcenters of skinny triangles recursively until some specified criterion, such as 

minimum angle, is satisfied.  

As the Delaunay refinement algorithm applied in the GOR step has been well studied 

[25, 26], our work in this paper focuses on the development of the MOR step, the core of 

which is a CVT-based method. To make this paper self-contained, we first give a brief 

introduction to the concept of CVT and its applications in the field of mesh generation. 

3.1.1 Centroidal Voronoi tessellation  

Given an open bounded domain d and a set of distinct points n

ii 1}{ x  in Ω, the 

corresponding Voronoi region Vi for each point xi is defined as: 

  for 1  and   i i jV j ,...,n j i      x x x x x                                                      (2) 

where    denotes the Euclidean distance in d . Note that the Voronoi region Vi is the 

point set in Ω that are closer to xi than to any other point in n

ii 1}{ x . We refer to n

iiV 1}{   as 

the Voronoi tessellation (VT) of Ω and n

ii 1}{ x  as the associated generating points [46]. 

The dual tessellation of VT is called Voronoi Delaunay triangulation (VDT). 

Given a nonnegative density function )(x  on Ω, for any region V , the centroid 

x
*
 of V is defined as: 
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We call a Voronoi tessellation   n

iii V
1

 ,


x  of Ω a centroidal Voronoi tessellation 

(CVT) if and only if the generating points n

ii 1}{ x  corresponding to the Voronoi regions 

n

iiV 1}{   are also the centroids of those regions, i.e., xi = xi
*
 for i = 1, … , n [46]. The 

associated Delaunay triangulation is called centroidal Voronoi Delaunay triangulation 

(CVDT) [46].  

A usually used algorithm for constructing CVT/CVDT is the Lloyd method [46]. 

Given a domain Ω, a density function  x  defined on Ω, and a positive integer n, the 

Lloyd method is performed as below: 

(i) Select an initial set of n points n

ii 1}{ x  on Ω; 

(ii) Construct the Voronoi regions n

iiV 1}{   of Ω associated with n

ii 1}{ x ; 

(iii) Determine the mass centroids of the Voronoi regions n

iiV 1}{  ; these centroids form 

the new set of points n

ii 1}{ x . 

(iv) If the new points meet the convergence criteria, return   n

iii V
1

 ,


x  and terminate; 

otherwise, go to step (ii). 

In recent years, extensive research efforts have been devoted to CVT/CVDT-based 

mesh generation methods due to their superior properties in high-quality mesh generation 

[47]. Du and Gunzburger [48] proposed a grid generation and optimization method based 

on CVT/CVDT to create high-quality meshes over planes. Extensions of this method to 

quality mesh generation of surfaces and solids were studied in [49, 50]. A brief overview 

of the quality Delaunay triangulation methods based on CVT/CVDT can also be found in 

[51]. When CVT/CVDT-based techniques are applied to construct high-quality meshes 

over bounded domains, some generating points are required to lie on the domain 

boundary so that the boundary conditions of FEA as well as the mesh quality can be 

enforced [48]. In [48], various approaches that deal with the boundary generating points 

are discussed, such as projecting the interior generating points to the boundary, 

distributing a set of generating points on the boundary a priori, or a mixture of both 

previous cases. Alternative to these methods, Ju [52] proposed the concept of conforming 

CVT/CVDT (CfCVT/CfCVDT) in which a projection process as well as a special lifting 

process is used to tackle the boundary generating points. A comprehensive study, which 

compares various triangular mesh generators in terms of mesh quality, has shown that the 

CfCVT/CfCVDT-based mesh generation method exhibits superiority in most cases [53]. 

Fig. 1 shows two CVT/CVDT-based meshes with respect to different density 

functions. For a constant density function, the generating points n

ii 1}{ x  are uniformly 

distributed, which leads to high-quality mesh as shown in Fig. 1 (a). For a nonconstant 

density function, the generating points n

ii 1}{ x  are still locally uniformly distributed as 
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depicted in Fig. 1 (b); and it is conjectured that, asymptotically, the relation between the 

density function and the local mesh size of a CVT satisfies the below equation: 

 
 

2

1













d

i

j

j

i

h

h

x

x




                                                                                                                (4) 

where hi denotes the diameter of Vi 
corresponding xi and d is the dimension of Ω [46]. 

Eq. (4) is quite useful to adaptive finite element methods based on CVT/CVDT meshes. 

Based on this equation and a posterior error estimator, one can explicitly construct the 

density function of CVT/CVDT and generate adaptive finite element meshes accordingly 

[54]. Successful applications of CVT/CVDT-based adaptive algorithms have been 

conducted in numerical analysis of partial differential equations (PDEs) [48, 54]. In [55], 

adaptive finite element methods based on the superconvergence properties [56, 57] of 

CVT/CVDT are further developed. It is worth mentioning that the computations of 

CVT/CVDT density functions are very similar to the calculations of sizing functions in 

the context of adaptive meshing. Systematic studies on automatic generation of geometric 

as well as non-geometric (e.g. boundary conditions of FEA, a posteriori error estimator 

of solution) sizing functions can be found in [58-60]. In particular, the relationship 

between density functions of CVT/CVDT and sizing fields is provided in [61]. 

 

(a) 

 

(b) 

 
 

Fig. 1. CVT-based meshes on a unit square associated with different density functions [48]. (a) a CVT-

based mesh where ρ=1; (b) a CVT-based mesh where ρ(x, y)=exp(-5(x+y)). 

 

3.1.2 Density function associated with the material distributions  

As mentioned above, the key idea of CVT/CVDT-based adaptive algorithms is to 

propose a density function tuned to specific application needs [48, 54]. To extend the 

CVT/CVDT-based techniques to adaptive meshing of heterogeneous materials, it is 

natural to connect the density function to the material variations in heterogeneous 

models. In this section, we present how the density function of CVT/CVDT is determined 

with respect to the material distribution function of heterogeneous objects.  

Given a heterogeneous model with a material composition function f, the related 

gradient function (or material composition changing rate) g is defined as 

.g f                                                                                                                              (5) 

Here we assume that f is continuous and smooth everywhere in the domain of interest, 

and f  exists (but unlike f, f  is not necessarily continuous and smooth).  
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In accordance with the gradient function, the desirable gradation of a CVT for the 

heterogeneous model should follow the way that more generating points (or mesh nodes) 

are created in the area where material composition changes quickly, while fewer 

generating points are used in the area where material composition changes slowly. More 

significantly, to minimize the number of generating points with regard to a material 

threshold, the material composition variation over Voronoi regions of a CVT should be 

distributed as equally as possible.  

Let’s assume a CVT on a heterogeneous model satisfies the above equal material 

variation property, thus we have 

jjii hghg                                                                                                                         (6) 

where gi denotes the mean value of g(x) on the Voronoi region Vi and hi denotes the 

diameter of Vi. Note that when the number of Voronoi generating points gets large (or the 

diameter of Voronoi regions becomes small), one can use the value of g(x) at the 

generating point xi to approximate the mean value of g(x) on the Voronoi region Vi and 

therefore 

    .i i j jg h g hx x                                                                                                           (7) 

From Eq. (4) and Eq. (7), it can be easily deduced that the relation between the 

density function   and the gradient function of material composition g  follows the 

below equation: 

2 dcg                                                                                                                          (8) 

where c is an arbitrary positive constant. For the sake of simplicity, we let c=1 and 

rewrite the density function as 

2.dg                                                                                                                                                                                     (9) 

It turns out to be that the density function is a power function of the material 

composition changing rate where d is the dimension of the domain of interest. 

3.1.3 CVT-based refinement algorithm  

Having established the density function associated with the material distributions, we 

now illustrate the CVT-based refinement algorithm for heterogeneous models. Fig. 2 

shows the flowchart of the CVT-based refinement algorithm, in which the initial 

triangulation is obtained from the IMG step. Several important steps to this refinement 

algorithm are listed as below. 

(i) Calculate the density function associated with the material distribution of a 

heterogeneous model according to Eq. (5) and Eq. (9). 

(ii) Construct a CVT-based mesh corresponding to the density function obtained in 

step (i) with the initial triangulation or other triangulations used as input. 

(iii) Evaluate the validity of the CVT-based mesh in accordance with Eq. (1). 

(iv) If δmax < δ0, terminate the refinement algorithm and output the CVT-based mesh; 

otherwise, refine the CVT-based mesh based on the evaluation result in step (iii) 

and return to step (ii).  
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Note that the CVT-based refinement algorithm involves an alternative process of 

CVT-based mesh construction and mesh refinement. Here the CVT-based optimization 

redistributes the positions of meshing points according to the density function to improve 

mesh quality; the purpose of mesh refinement is to control the mesh size with respect to 

the predefined material threshold. Compared to traditional refinement-based mesh 

adaptation methods, the proposed algorithm generates adaptive meshes that conforms to 

the sizing function with less node consumptions and guarantees good mesh qualities. 

Similar algorithm was reported in [61], and various experiments have shown that CVT-

based refinement algorithms are superior to traditional ones [61]. 

Following the general scheme, we next take two heterogeneous models, namely the 

analytic functional model (see Section 3.2) and the HFT-based model (see Section 3.3) as 

examples to elucidate the rationale and general applicability of the adaptive meshing 

method.  

 

 
 

Fig. 2. Flowchart of the CVT-based refinement algorithm 
 

3.2 Adaptive meshing for analytic functional model 

Explicit, analytic functions are often used to represent heterogeneous material 

distributions. Given a point ( , , )x y z  in a Cartesian coordinate system, its material 

composition is represented with an explicit analytic function ( , , )V f x y z . In the 

literature, linear, exponential [21], parabolic [17] and power function [15] based material 

distributions have been widely used in modeling heterogeneous objects. One common 

property of all these functions is that their derivatives can be easily calculated. This 

provides the basis for adaptive meshing of analytic functional models.  

As an example, Fig. 3 shows an analytic heterogeneous model with power function-

based material distribution. It consists of two primary material constituents: ceramic 
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(blue) and metal (red), as shown in Fig. 3 (b). The material composition function of metal 

component is formulated as  

  by
b

yb
Pf P

P 






 
 0       

2

                                                                                    

(10) 

where P is an arbitrary point in the domain, and b is the vertical length of the domain, as 

seen in Fig. 3 (a).  

 

(a) 

 

(b) 

 

 

Fig. 3. A 2D heterogeneous model with power function-based material distribution. (a) geometric 

definitions; (b) the material distribution. 

 

3.2.1 Initial triangulation 

As mentioned earlier, the adaptive meshing process of heterogeneous materials 

begins with an initial triangulation covering the domain of interest. In this paper, a 

commercial CAD package, SolidWorks, is utilized to generate the initial triangulation. 

Fig. 4 (a) shows an initial decomposition of the domain depicted in Fig. 3. Note that 

denser points are situated on the curved boundary in order to improve the accuracy of the 

geometric approximation of the domain boundary. 

3.2.2 Determination of the density function  

With the analytic material composition function given as Eq. (10), we can simply 

calculate its gradient function by 

 
 

2

2
     0 .P

P

b y
g P f y b

b


    

                                                                          
(11) 

Substituting Eq. (11) into Eq. (9) the density function can be then rewritten as 

     
 

by
b

yb
PgPgP P

Pd






0     

16
8

4
42

                                                      (12) 

where d =2, as the heterogeneous model is defined in a 2D space. 

3.2.3 CVT-based mesh construction 

Armed with the density function as Eq. (12), the CVT-based mesh can then be 

constructed by using the CfCVDT-based approach [52] mentioned earlier. In this 

approach, a modified Lloyd’s method is developed to construct the CfCVDTs. In addition 
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to the classic steps of the Lloyd’s algorithm mentioned previously, a projecting process as 

well as a lifting process is further executed during the Lloyd iteration. Here the projecting 

process denotes the projection of an interior generator onto the boundary, and conversely, 

the lifting process denotes the return of a boundary generator to the interior domain. With 

the aid of these two processes, the CfCVDT-based approach can freely control the mesh 

density in accordance with the density function.  

Since the construction algorithm of CfCVDTs has been comprehensively studied in 

[52], the details will not be restated. Fig. 4 (b) shows the CVT-based mesh on the basis of 

the initial triangulation depicted in Fig. 4 (a).  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Fig. 4. The adaptive meshing process for the heterogeneous model depicted in Fig. 3. (a) an initial 

triangulation generated in SolidWorks; (b) the CVT-based mesh corresponding to the initial triangulation; 

(c) the CVT-based mesh where δ0 = 0.1; (d) the final mesh after geometry-oriented refinement. 

 

3.2.4 CVT-based mesh evaluation and refinement 

After obtaining the CVT-based mesh, it is pivotal to evaluate its validity in 

accordance with Eq. (1). If δmax > δ0, we refine the CVT-based mesh by adding a set of 

points k

ii 1}{ z onto the centroids of triangle elements whose material composition 

variations are larger than the material threshold, i.e. 

    0, where .i i icentroid T T  z                                                                              (13) 

A new CVT-based mesh is then constructed based on the refined mesh, followed by 

evaluating the validity of the mesh. This process is iterated until δmax < δ0. Fig. 4 (c) 

shows the CVT-based mesh that satisfies the material threshold δ0 = 0.1. 

Central to the above iterative process, the calculation of δ(T) requires a lot of 

attention. In this paper, the definition of δ(T) is consistent with that in [43], i.e., 

  max( ),  , , ,  1,  2,...,ijT i j i j i j m    
                                      

                             (14) 

where m is the number of sample points in T and
ij is the material composition difference 

between two sample points, Pi and Pj, i.e., 

jiij MM                                                                                                                 (15) 

where Mi denotes the material composition of Pi. To calculate the material composition 

variation accurately and efficiently, two factors are taken into account: 

(i) How many sample points to choose; 
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(ii) Where to locate these points.  

These being considered, one of the appropriate approaches is the adaptive sampling 

process, in which more points are sampled in the region where material composition 

changes rapidly while fewer points are sampled in the region where material composition 

changes slowly. To satisfy such a sampling requirement, the nodes of CVT-based mesh 

serve as sample points directly. In other words, the vertices of an element are used to 

calculate the corresponding material composition variation and thus avoiding excessive 

material interrogations at a large number of sampling points. 

Similar to the definition of δmax in Eq. (1), we further define 

 
 

 
Τ

T

1
min ,  and 

T
min avg

T
T

T T
Num

   




                                                                 (16) 

where δmin and δavg denote the minimum and average material composition variation over 

the elements of the mesh T , respectively. 

3.2.5 Geometry-oriented refinement 

In Fig. 4 (c), some skinny elements are induced near the curved boundary for the 

value of the density function here is relatively low (see Eq. (12)) but dense vertices are 

distributed on the curved boundary to precisely approximate the geometric features (refer 

to Section 3.2.1). To further improve the mesh quality, we refine the mesh by using the 

Ruppert’s refinement algorithm [25]. New points are inserted to the circumcenters of the 

skinny triangles recursively until all triangles contain angles larger than a predefined 

minimum angle.  

Having satisfied this criterion, Fig. 4 (d) shows the final mesh with respect to the 

material threshold δ0 = 0.1. More adaptive meshes in terms of different material 

thresholds can also be found in Fig. 5. In these adaptive meshes, denser elements are 

generated in the bottom area to approximate the rapid material composition changes as 

well as in the top area to approximate the curved boundary. Therefore the proposed 

adaptive meshing scheme guarantees mesh adaptivity with respect to both material 

heterogeneities and geometric facilities. It can also be noted that all the triangles in these 

meshes are well shaped and close to equilateral triangles.  

 

(a) 

 

(b) 

 

(c) 

 
 

Fig. 5. Adaptive meshes for the heterogeneous model depicted in Fig. 3. (a) the adaptive mesh where δ0 = 

0.08; (b) the adaptive mesh where δ0 = 0.05; (c) the adaptive mesh where δ0 = 0.03. 
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To evaluate the quality of a mesh, we  apply a common quality measure [62], where 

the quality of a triangle T is defined as 

 
   

2 .T

T

b c a c a b a b cR
q T

r abc

     
 

                                                            (17)  

Here RT and Tr are the radii of the largest inscribed circle and the smallest circumscribed 

circle of T, and a, b, c are the side lengths of T. Notice that equilateral triangles produce a 

maximum q value of 1.0.  

For a given triangulated mesh T , we further define 

   
 

 
Τ Τ

T

1
min ,  max ,  and 

T
min max avg

T T
T

q q T q q T q q T
Num 



                                      (18) 

where qmin denotes the quality of the worst triangle, qmax denotes the quality of the best 

triangle, and qavg denotes the average quality of the mesh T . 

Table 1 lists some mesh statistics related to different meshing schemes for the 

heterogeneous model depicted in Fig. 3, which include the number of nodes Np, the 

number of elements Ne, the mesh quality q, and the material composition variation over 

elements δ. We remark that the uniform meshes here as well as in the rest of this paper 

are generated in SolidWorks. At all refinement levels in terms of the material threshold, 

the values of qmin and qavg given in Table 1 illustrate that the quality of the adaptive 

meshes are always very good. One can also observe that the adaptive meshes are much 

more efficient than the uniform meshes, which are supported by the values of Np and Ne. 

For instance, to satisfy the material threshold δ0 = 0.03, 11534 elements are generated in 

the uniform mesh, whereas only 3815 elements are created in the adaptive mesh.  

 

 

As mentioned earlier, an important property of the adaptive mesh is the equal 

distribution of the material composition variation over mesh elements. In order to verify 

this, Fig. 6 illustrates the distributions of material composition variation over elements of 

different meshes for the heterogeneous model depicted in Fig. 3. Notice that the material 

composition variation over elements of the adaptive mesh falls into the interval [0.0, 

0.05], which is smaller than that of the uniform mesh, [0.0, 0.09]. More importantly, the 

material composition variation of a majority of elements in the adaptive mesh obviously 

Table 1  
Statistics relative to different meshing schemes for the heterogeneous model depicted in Fig. 3. 

δ0 Np Ne qmin qavg δmin δavg 

Adaptive mesh 

0.1 262 454 0.6027 0.9403 0.0022 0.06 

0.08 322 564 0.5954 0.9238 0.0015 0.0525 

0.05 730 1353 0.6027 0.9430 0.0023 0.0357 

0.03 1994 3815 0.6010 0.9508 0.0013 0.0211 

Uniform mesh
 

0.1 658 1218 0.6833 0.8797 0.0016 0.356 

0.08 699 1298 0.5103 0.9093 0.0006 0.0336 

0.05 2636 5075 0.6098 0.8782 0.0003 0.0172 

0.03 5914 11534 0.6997 0.8698 0.0002 0.0115 
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concentrates to the interval [0.03, 0.04], which cannot be found in the uniform mesh. In 

addition, from Table 1, one can also note that the average material composition of the 

adaptive mesh (e.g. 0.0357) is much closer to the material threshold (e.g. 0.05) than that 

of the uniform mesh (e.g. 0.0172). In light of the above observations, the adaptive 

meshing scheme indeed distributes the material composition variation more equally than 

does the uniform meshing sheme. 

 

(a) 

 

(b) 

 
 

Fig. 6. Distributions of material composition variation over different meshes for the heterogeneous model 

depicted in Fig. 3. (a) the distribution material composition variation over the adaptive mesh with 1353 

elements; (b) the distribution of material composition variation over the uniform mesh with 1368 elements. 

 

3.3 Adaptive meshing for complex hierarchical model 

In the above function-based heterogeneous model, it is assumed that the function is 

continuous and the derivative of the function exists. In practical applications, such a 

constraint is often too restrictive, and the representable material heterogeneity is therefore 

limited and simple. Complex (e.g. bidirectional or even tri-variate) heterogeneous 

material distributions have proven to perform better in certain applications, especially 

when the objects of interest have complex, irregular shapes or are subject to unbalanced 

loads [20, 63]. In these scenarios, it is challenging to represent complex material 

gradations with a single, analytic function throughout the entire geometric domain.  

 

(a) 

 

(b) 

 

(c) 

 
 

Fig. 7. A 2D heterogeneous object based on HFT structure. (a) material distribution; (b) the HFT structure; 

(c) child features of the HFT structure. 
 

In our previous work [41, 42], we proposed to use dedicated tree data structures to 

represent heterogeneities that can hardly be represented with explicitly analytic functions. 
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A HFT structure was proposed to organize the material variation dependencies [42, 64] 

with one or more hierarchies. By definition, heterogeneous features (saved in a tree node) 

in the lower hierarchy represent the references from/to which the volume fractions vary, 

and the parent feature represents the heterogeneous objects. As an example, Fig. 7 shows 

a 2D heterogeneous object based on the HFT structure. 

In this example, the 2D region F2D’s material gradation is dependent on the boundary 

(Fb) and interface (Fint) curves; therefore, these curve features are saved as the child 

features of the region F2D (see Fig. 7 (b)). For the boundary feature (Fb), its material 

compositions are case specific, depending on the different location of the point of 

interest, as shown in Fig. 7 (c). If the point is located between Circle A (CA) and Circle C 

(CC), the material composition of CC represents the material composition of the boundary 

feature; if the point is situated between CA and Circle B (CB), then CB represent the 

material composition of the boundary feature instead of CC. Therefore, CB and CC are 

saved as the child features of Fb (see Fig. 7 (b)). 

As is evident above, no analytic function is used to represent the heterogeneous 

material distribution, and the gradient function for the entire modeling domain is 

unknown or even does not exist. Therefore the approach presented in Section 3.2 cannot 

be directly migrated to the HFT-based model. Inspired by the hierarchical nature of the 

HFT structure, we propose a divide and conquer-based approach to tackle the adaptive 

meshing problem for the HFT-based model. The main steps of the proposed approach are 

listed as below: 

(i) Subdivide the domain of a HFT-based model into subregions that each subregion 

has one unique material distribution; 

(ii) Calculate the density function in each subregion; 

(iii) Combine all the density functions of subregions into a density function over the 

whole domain; 

(iv) Generate an adaptive mesh of the HFT-based model with respect to the density 

function obtained in step (iii). 

In what follows, details about this approach are presented step by step. 

3.3.1 Subdivision of the domain 

According to the HFT-based model depicted in Fig. 7, for an arbitrary point Pi inside 

the domain, the constituent composition of one primary material at this point is defined 

as: 

     , 1 ,i bi inti int bi inti bf P W d d M W d d M                                                                 (19) 

where W is a user defined weighting function, dinti/dbi are the distances from Pi to the 

interface/boundary features, and Mint/Mb are the material compositions (in terms of one 

primary material) of the interface/boundary features.  

As the material composition of the boundary feature (Mb) depends on its two child 

features (CB and CC), we split the domain into two subregions (Ω1 and Ω2), each of which 

has one unique material distribution, as shown in Fig. 7 (c). Without loss of generality, 

the weighting function W is defined separately on each subregion as 
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3.3.2 Calculation of the density functions in subregions 

In the subregion Ω1, the material composition of an arbitrary point Pi can be written 

as 

  B

AB

bi
BAi M

d

d
MMPf 










2

)(                                                                                    (21) 

where MA and MB denotes the material composition of CA and CB, and dAB denotes the 

distance between CA and CB, as shown in Fig. 7 (c). Accordingly, the derivative of this 

material composition function can be calculated as: 

 
2
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( ) ( ) .A B bi

i i
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M M d
g P f P
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
                                                                                  (22) 

Substituting Eq. (22) and Eq. (9) into with d = 2 yields 
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Using the same approach, it is easy to know that for an arbitrary point Pi in Ω2, the 

density function can be written as 

 
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                                                                                          (24) 

3.3.3 Combination of the density functions of subregions 

Since the density function does not have to be continuous over the whole domain as 

mentioned earlier, we simply combine the density functions of subregions into a 

complete density function by 
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                                                               (25) 

 
Table 2  

Coefficients for the density function in Eq. (25) 

MA MB MC dAC dAB 

0.4 0 1 10 mm 20 mm 
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Table 2 lists the coefficients of this density function, upon which the following 

adaptive meshing procedure depends.  

3.3.4 Adaptive mesh generation with respect to the density function  

Following the same approach as presented in Section 3.2, the adaptive mesh for the 

complex HFT-based heterogeneous model can be generated. Fig. 8 shows two adaptive 

meshes with respect to different material thresholds for the heterogeneous model depicted 

in Fig. 7. Note that denser elements are accumulated to the interface curve (the red curve) 

to approximate the rapid material composition changes as well as in the boundary areas to 

approximate the curved boundaries. Therefore the proposed adaptive meshing scheme 

guarantees mesh adaptivity with respect to both material heterogeneities and geometric 

facilities. 

 

(a) 

 

 (b)  

 
 

Fig. 8. Adaptive meshes for the heterogeneous model depicted in Fig. 7. (a) the adaptive mesh where δ0 = 

0.15; (b) the adaptive mesh where δ0 = 0.1. 

 
Table 3  
Statistics relative to the different meshing schemes for the heterogeneous model depicted in Fig. 7. 

δ Np Ne qmin qavg δmin δavg 

Adaptive mesh 

0.15 1010 1820 0.5777 0.9161 0.0000 0.0625 

0.10 1450 2700 0.5356 0.9247 0.0000 0.0556 

0.08 2199 4198 0.5224 0.9302 0.0000 0.0443 

0.05 4621 9042 0.5657 0.9382 0.0000 0.0346 

Uniform mesh 

0.15 1734 3319 0.6525 0.9625 0.0001 0.0445 

0.10 4142 8024 0.5356 0.9247 0.0000 0.0287 

0.08 6517 12707 0.5250 0.9598 0.0000 0.0228 

0.05 17383 34231 0.4919 0.9544 0.0000 0.0141 

 

Table 3 lists some mesh statistics relative to different meshing schemes for the 

heterogeneous model depicted in Fig. 7. The values of qmin and qavg given in Table 3 
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demonstrate that the quality of the adaptive meshes is always very good at all refinement 

levels in terms of the material threshold. One can also observe that the adaptive meshes 

are much more efficient than the uniform meshes. For instance, to satisfy the material 

threshold δ0 = 0.05, 34231 elements are generated in the uniform mesh, whereas only 

9042 elements are created in the adaptive mesh.  

Fig. 9 illustrates the distributions of material composition variation over the elements 

of different meshes for the heterogeneous model depicted in Fig. 7. Notice that the 

material composition variation over the elements of the adaptive mesh falls into the 

interval [0.0, 0.1], which is smaller than that of the uniform mesh, [0.0, 0.16]. More 

importantly, the material composition variation of a majority of elements in the adaptive 

mesh concentrates to the interval [0.06, 0.09], which cannot be found in the uniform 

mesh. In addition, from Table 3, it can be noted that the average material composition of 

the adaptive mesh (e.g. 0.0556) is much closer to the material threshold (e.g. 0.1) than 

that of the uniform mesh (e.g. 0.0287). In light of the above observations, the adaptive 

meshing scheme indeed distributes the material composition variation more equally than 

does the uniform meshing sheme. As a remark, the elements of the adaptive mesh whose 

material composition variations fall into the interval [0.0, 0.02], as shown in Fig. 9 (a), 

result from the geometric approximation of the curved boundaries (see Fig. 8).  

 

(a) 

 

(b) 

 
 

Fig. 9. Distributions of material composition variations over different meshes for the heterogeneous model 

depicted in Fig. 7. (a) the distribution of material composition variation over the adaptive mesh with 2700 

elements; (b) the distribution of material composition variation over the uniform mesh with 2650 elements. 

 

4. Case studies and implementations 

In this section, four case studies are presented to demonstrate the efficacy of the 

proposed adaptive meshing approach. 

4.1 Case study 1: heterogeneous model with complex geometry 

The first case study, as shown in Fig. 10, is a heterogeneous turbine blade composed 

of two material constituents, ceramic (blue) and metal (red) [65]. Generally, ceramic is 

used on the high temperature side to improve heat resistance; metal is used on the low 

temperature side to enhance the mechanical toughness; and a mixture layer of metal and 

ceramic is utilized at the interface between ceramic and metal to reduce the stress 

concentration. For the sake of simplicity, we here assume the whole domain is a mixture 

of ceramic and metal and the material distribution satisfies 
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  2

PP cddf                          (26) 

where f is the material composition of metal, c is a constant that prevents the function 

value from exceeding 1.0, and dP is the distance from an arbitrary point P to the outer 

boundary C as shown in Fig. 10 (b). 

Since the material composition function is analytic, we apply the algorithm described 

in Section 3.2 to generate an adaptive mesh of this heterogeneous model. Fig. 10 (c) 

shows the adaptive mesh where the material threshold δ0 = 0.1. As seen in Table 5 (at the 

end of Section 4.3), 8301 elements are generated in the uniform mesh, whereas only 3806 

elements are created in the adaptive mesh. It also can be noted from Table 5 that the 

average material composition variation over the adaptive mesh (0.0413) is closer to the 

material threshold than that of the uniform mesh (0.0246); the mesh quality of the 

adaptive mesh (qavg = 0.915) is high and comparable to that of the uniform mesh (qavg = 

0.950). 

 

(a) 

 

(b) 

 

(c) 

 

  

 

Fig. 10. The heterogeneous model and the corresponding adaptive mesh for case study 1. (a) the material 

distribution; (b) geometric definitions; (c) the adaptive mesh where δ0 = 0.1. 

 

4.2 Case study 2: heterogeneous model with both complex material gradation and 

geometry 

Fig. 11 shows a complex heterogeneous object based on the HFT structure. In this 

case study, the HFT structure is exactly the same as that of the example in Section 3.3, 
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but the geometry is a little bit complicated. As seen in Fig. 11 (c), both boundary feature 

and interface feature are composed of curves and straight lines.  

Applying the adaptive meshing algorithm that has been discussed in Section 3.3, the 

adaptive mesh associated with the material threshold δ0 = 0.1 is depicted in Fig. 11 (d).  

As shown in Table 5, 66922 elements are generated in the uniform mesh, whereas only 

9717 elements are created in the adaptive mesh. We can also note from Table 5 that the 

average material composition variation over the adaptive mesh (0.0648) is much closer to 

the material threshold (0.1) than that of the uniform mesh (0.0193); the mesh quality of 

the adaptive mesh (qavg = 0.9122) is high and comparable to that of the uniform mesh 

(qavg = 0.9608). 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
 

Fig. 11. The HFT-based heterogeneous model and the corresponding adaptive mesh for case study 2. (a) 

the material distribution; (b) the HFT structure; (c) child features in the HFT structure; (d) the adaptive 

mesh where δ0 = 0.1. 

 

4.3 Case study 3: heterogeneous model with discontinuous material gradation 

Fig. 12 shows a case study derived from [37], in which the material heterogeneity is 

also represented by HFT structure. Fig. 12 (a) shows the material composition of one of 
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the primary materials (Ceramic), and Fig. 12 (b) shows the topology of the tree data 

structure used to represent this heterogeneity. 

In this example, the 2D region F2D’s material gradation is dependent on the top (Ftop) 

and bottom (Fbot) curves; therefore, these curve features are saved as the child features of 

the region F2D. For the bottom composite curve (bound by AH), its material compositions 

are case specific, depending on the different location of the point of interest, as shown in 

Fig. 12 (c).  The material of composite curve is defined to be dependent on the five sub-

features; these features are therefore saved as its child features. Similarly, the material 

gradations of the heterogeneous arc features (CBCD and CEFG) are dependent on their end 

points, and the parent-child relationship is applied to encode such relations, as shown in 

Fig. 12 (c). Apparently, the HFT structure of this case study is much more complex than 

those mentioned above. 

 

(a) 

 

(b) 

 

(c) 

 
 

Fig. 12. The HFT-based heterogeneous model with discontinuous material gradation for case study 3. (a) 

the material composition of ceramic; (b) the HFT structure; (c) child features in the HFT structure. 
 

For an arbitrary point Pi on the domain, the constituent composition of one primary 

material at this point is defined as 

       ttibibtibii MddWMddWPf ,1,                                                                        (27) 

where dbi/dti are the distances from Pi to the bottom/top features, Mb/Mt are the material 

compositions (in terms of one primary material) of the bottom/top features , and W is a 

user defined weighting function [37]. In this case study, W is defined as 

 
5

, exp .
b

b t

d

d d

b tW d d



                                                                                                     (28) 

Furthermore, the material compositions at leaf nodes of Fig. 12 (b) are listed in Table 

4, and the material distributions on CBCD and CEFG are defined as linear gradations along 

the arc length [37].  
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Table 4  

Material compositions at leaf nodes shown in Fig. 12 (b) 

Location A, B D, E G, H M, N 

Material composition: 

[ceramic, metal] 
[1.00, 0.00] [0.75, 0.25] [0.50, 0.50] [0.00, 1.00] 

 

With the material heterogeneity information defined above, the adaptive mesh 

associated with the material threshold δ0 = 0.1 is generated as shown in Fig. 13. It can be 

noted that several interface curves (the red ones) are embedded in the adaptive mesh at 

which the material composition function is not continuous (see Fig. 12 (a)) and no 

triangle elements straddle these interface curves. In this way, abrupt material composition 

changes within elements are effectively avoided. As shown in Table 5, to satisfy the 

material threshold δ0 = 0.1, 29758 elements are generated in the uniform mesh whereas 

only 2329 elements are created in the adaptive mesh. One can also observe that the 

average material composition variation over the adaptive mesh (0.0706) is much closer to 

the material threshold (0.1) than that of the uniform mesh (0.0125); the mesh quality of 

the adaptive mesh (qavg = 0.9376) is higher than that of the uniform mesh (qavg = 0.9217).  

 

 
 

Fig. 13. The adaptive mesh where δ0 = 0.1 for case study 3. 

 
Table 5  
Statistics relative to the different meshing schemes for the first three case studies. 

Case study Mesh type Np Ne qmin qavg δmin δavg 

1 
adaptive 2169 3806 0.5804 0.9150 0.0000 0.0413 

uniform 4503 8301 0.2980 0.9500 0.0000 0.0246 

2 
adaptive 5007 9717 0.4771 0.9122 0.0000 0.0648 

uniform 34035 66922 0.3793 0.9608 0.0000 0.0193 

3 
adaptive 1277 2329 0.4028 0.9376 0.0067 0.0706 

uniform 15205 29758 0.5726 0.9217 0.0003 0.0125 

 

4.4 Case study 4: FEA performance of the adaptive mesh 

We next provide the fourth case study to illustrate the advantages of adaptive mesh 

over uniform mesh in terms of FEA computational performances. In this case study, the 

heterogeneous model under investigation has been shown in case study 3. Thermal-

mechanical analysis is conducted on this heterogeneous model by using the adaptive 
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mesh and uniform mesh, respectively, and FEA computational performances of both 

meshes are compared.  

We assume that two material ingredients embedded in this heterogeneous model are 

Al2O3 (ceramic) and Ni (metal), whose properties [20, 37] are listed in Table 6. Fig. 14 

shows the boundary conditions for FEA of this heterogeneous model. Two heat sources, 

S1 (1173.15 K) and S2 (873.15 K), are located at the semicircle CBCD and CEFG, 

respectively. The top of this model (straight line LMN) is constrained to the room 

temperature (T0 = 273.15 K). Besides the thermal constraints, the mechanical constraints 

are defined that node A in Fig. 14 is constrained completely and node H is constrained 

against displacement in the vertical direction. For illustration purposes, the materials are 

assumed to be linear elastic and isotropic and only steady-state thermal conduction is 

considered. The thermal-structural problem is studied under the well-established plane 

strain assumption. Note that the boundary condition, loads and the finite element model 

are intentionally kept the same as those reported in [37] for comparative reasons. 

 

 
 

Fig. 14. Boundary conditions and test points for FEA of the heterogeneous model in case study 4. 
 
Table 6  

Material properties of Al2O3 and Ni [20, 37]. 

Properties Al2O3 Ni 

Thermal conductivity, K 35 W/m/K 90.7 W/m/K 

Elastic modulus, E 393 GPa 199.5 GPa 

Poisson ratio, υ 0.25 0.3 

Thermal expansion coefficient, α 7.4 ×10
-6

/K 15.4 ×10
-6

/K 

 

To conduct the thermal-mechanical analysis, we implement a commercial FEA 

package, COMSOL Multiphysics, into which the adaptive meshes can be imported. For 

the sake of simplicity, we will not restate the implementation details which have been 

comprehensively described in [37]. Table 7 compares the FEA results of adaptive meshes 

with those of uniform meshes. Von Mises stresses are calculated at six test points, Pi, i=1, 

2,…, 6, as depicted in Fig. 14. As no exact solutions can be referred to in the literature, 

we use the stress values with respect to 4600 uniform elements (see the italic data set in 

Table 7) as the reference values. Note from Table 7 that more accurate solutions can be 

obtained if we apply the adaptive mesh rather than the uniform mesh with nearly identical 

number of elements. It can also be noted that one can achieve very accurate solutions by 

using the adaptive mesh with 633 elements, but to obtain a comparatively accurate 

solution using the uniform mesh, this number is 931 (see the highlighted data sets in 

Table 7). In this example, a 32% mesh reduction is achieved using the adaptive mesh 

without sacrifice in FEA qualities. 
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Table 7  

FEA results of different meshing schemes at six test points. 

von Mises stress 

(10
9
 N/m

2
)  

Number of elements (Uniform mesh)  Number of elements (Adaptive mesh) 

4600 931 624 456 248  633 473 252 

σv
P1

 0.8215 0.8242 0.8239 0.8268 0.8303  0.8269 0.8272 0.8270 

σv
P2 

1.4434 1.4471 1.4503 1.4513 1.4558  1.4468 1.4502 1.4500 

σv
P3 

2.2174 2.2215 2.2278 2.2398 2.2529  2.2175 2.2155 2.2197 

σv
P4 

0.5686 0.5701 0.5705 0.5726 0.5753  0.5714 0.5715 0.5780 

σv
P5 

0.9864 0.9883 0.9895 0.9919 0.9959  0.9861 0.9881 0.9953 

σv
P6 

1.4863 1.4887 1.4940 1.5029 1.5110  1.4880 1.4852 1.4846 

 

5. Conclusions and discussions 

Adaptive meshing for FEA of heterogeneous material objects is investigated in this 

paper. The major contributions of this paper includes: the material heterogeneity 

information is fully exploited in the mesh generation process, and a generic approach is 

proposed to generate adaptive meshes for various types of heterogeneous material 

models. Though only two types of heterogeneous objects are referred to, the proposed 

adaptive meshing method is generally applicable to other heterogeneous object 

representations that have been discussed in [1]. In the proposed approach, a CVT-based 

method is employed to govern mesh adaptation according to a density function related to 

the material distribution. Armed with such a density function, one can control the 

allocation of mesh nodes to obtain an equal distribution of material composition variation 

over elements and hence minimize the number of elements in terms of a predefined 

material threshold. To our knowledge, there seems to be no similar methods that can 

achieve such a flexible control on the adaptive mesh in the context of mesh generation of 

heterogeneous materials. In addition, an adaptive sampling technique is developed to 

evaluate the validity of a mesh in terms of the material threshold. In this technique, the 

nodes of CVT-based meshes serve as sample points directly and thus the material 

composition variation within each element is calculated by just interrogating the material 

compositions at its vertices. In traditional approaches, however, substantial material 

interrogations at a large number of sampling points have to be called for. 

We have successfully applied the proposed approach into several benchmarking case 

studies. Our numerical experiments show that the proposed approach can tackle adaptive 

meshing problems for heterogeneous objects with both complex geometries and material 

distributions. In particular, non-continuous material gradation problem can also be solved 

by using a divide and conquer-based method. Benefiting from CVT’s superior properties, 

no matter how complicated a heterogeneous model is, the proposed approach can always 

generate a high quality mesh. In addition, the experiments illustrate that the proposed 

approach can approximate the material distribution well (or satisfy the material threshold) 

with significantly less elements compared to the uniform mesh. Finally, FEA results 

demonstrate that the proposed approach can obtain significant reduction of mesh 

elements without sacrifice of FEA qualities.  

The proposed method currently targets at adaptive mesh generation for 2D 

heterogeneous objects only and it is, however, a nontrivial task to directly extend it to 

adaptive meshing of 3D heterogeneous objects, though tetrahedral mesh generation based 

on CVT has been studied in [50]. The main reason is that CVT-based tetrahedral mesh 
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generation cannot fully eliminate the degenerated elements (e.g. slivers), while CVT-

based triangular meshing can always guarantee high-quality meshes (provided the input 

domain has no sharp angles). In recent years, some researchers have proposed that using 

Optimal Delaunay Triangulation (ODT)-based techniques (alternative to CVT-based 

methods) can significantly reduce the number of slivers in the tetrahedral meshes and 

thus improve the mesh quality [66, 67]. In the future work, we are going to extend the 

presented approach to 3D elements in quest for adaptive tetrahedral mesh generation 

methods based on ODT approaches. 
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