Late Quaternary faulting on the Manas and Hutubi reverse faults in
the northern foreland basin of Tian Shan, China

Zhijun Gonga,b, Sheng-Hua Lib,*, Bo Lib,c

a Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and
Geophysics, Chinese Academy of Sciences, Beijing, China
b Department of Earth Sciences, The University of Hong Kong, Pokfulan Road, Hong
Kong, China
c Centre for Archaeological Science, School of Earth and Environmental Sciences,
University of Wollongong, Wollongong, NSW 2522, Australia

* Corresponding author. Email: shli@hku.hk

Abstract:

The Tian Shan Range lies in the actively deforming part of the India–Asia collision
zone. In the northern foreland basin of Tian Shan, the strata were intensively deformed by
Cenozoic folding and faulting. Slip rate studies along these faults are important for
understanding the dynamics of crustal deformation and evaluating the seismic hazards in
the region. Two reverse faults (the Manas and Hutubi faults) in the northern foreland
basin were investigated. Due to past faulting events along these faults, the terrace treads
along the Manas River were ruptured, forming fault scarps several meters in height.
Loess deposits were trapped and preserved at the surface ruptures along these scarps. The
thickness of the trapped loess is dependent on the size of the ruptures. The minimum and
maximum ages of these scarps are constrained by dating the loess preserved at the
surface ruptures and the terrace treads, respectively, using the quartz optically stimulated
luminescence (OSL) dating technique. Our dating results suggest that the loess trapped at
the ruptures was deposited from the early to mid-Holocene at the Hutubi Fault, and from
the mid- to late-Holocene at the Manas Fault. The vertical displacements of the faults
were evaluated by measuring the topographic profiles across the investigated fault scarps
using the differential global position system (DGPS). Our results suggest that, during the
late Quaternary in the studied region, the vertical slip rates of the Manas Fault were
between ~0.74 mm/yr and ~1.6 mm/yr, while the Hutubi Fault had a much lower vertical
slip rate between ~0.34 mm/yr and ~0.40 mm/yr. The tectonic implications of our results
are discussed.
1. **Introduction**

In response to the Cenozoic collision of the Indian and Eurasian continental plates, Tian Shan has been one of the most active intra-continental mountain building belts in Central Asia (Fig. 1(a)) (Molnar and Tapponnier, 1975; Tapponnier and Molnar, 1979; Avouac et al., 1993; Fu et al., 2003; Sun and Zhang, 2009). The folded Cenozoic deposits in the foreland basins of Tian Shan indicate active tectonics and crustal thickening during the Cenozoic era (Sun and Zhang, 2009). Previous studies suggested that crustal shortening in the Tian Shan region can be up to 200 ± 50 km and that the average altitude of Tian Shan has been uplifted to more than 4000 m (Avouac et al., 1993; Abdrakhmatov et al., 1996; Deng et al., 1996).

In recent years, cities such as Urumqi in the northern foreland basin of Tian Shan have been developing rapidly. However, the cities are threatened by a number of major active fault systems. Several significant surface-rupturing earthquakes have occurred in the region during historical times, including the 1906 M=7.7 Manas earthquake at Manas town. During the last twenty years, there are reports on paleo-seismicity along the major active reverse faults in the northern foreland basin of Tian Shan (Fig. 1(b)) (e.g. Avouac et al., 1993; Deng et al., 1996). However, many problems remain in deciphering the timing and recurrence intervals of faulting events in the area, because there is a lack of reliable age constrains for fault movement. One way to evaluate seismic hazards in the region is to study the slip rate along the faults. Although different fault systems in the northern foreland basin of Tian Shan have been identified and studied in previous studies, such as the dip of the faults, the strike of the faults as well as the fault displacements (Xu et al., 1992; Avouac et al., 1993; Deng et al., 1996; Zhao et al., 2001), the late Quaternary slip rates along the major fault systems in the studied region are still poorly constrained, mainly due to the lack of reliable chronological data.

Optically stimulated luminescence (OSL) dating determines the time since mineral
grains were last exposed to sunlight, and hence, it can provide a direct measure of the depositional ages of fault-related sediments. OSL dating is well-suited to date sediments such as loess and sand deposits that were deposited within the last several hundred thousand years (e.g. Aitken, 1998; Wang et al., 2006; Rhodes, 2011; Li et al., 2014). It has been applied to many aeolian-related sedimentary sequences, e.g. sandy deposits from deserts in northeast China and loess deposits from Chinese Loess Plateau (e.g. Li et al., 2002; Sun et al., 2006; Li et al., 2007; Li and Li, 2011; Fu et al., 2012; Li et al., 2012; Gong et al., 2013). OSL dating has also been applied to study the faulting at different fault zones (e.g. Chen et al., 1999; Cheong et al., 2003; Nogueira et al., 2010; Chen et al., 2012, 2013).

The timing of past faulting events can be deciphered by dating fault-related colluvial sediment (e.g. Forman et al., 1991; Deng et al., 1996). However, luminescence dating of scarp-derived colluvial deposits is difficult and can be problematic because these materials might be insufficiently bleached prior to deposition, due to short transportation distances. Instead of dating the colluvial deposits, in this study, we propose that the ages of scarps may be constrained by dating the loess trapped at the surface ruptures along the fault scarps and the terrace treads, respectively. A single-aliquot regenerative-dose (SAR) OSL dating technique (Murray and Wintle, 2000) is used. Together with high-resolution differential global position system (DGPS) measurements on the fault scarps, the vertical slip rates of the two reverse faults (the Manas and Hutubi faults) are evaluated and their tectonic implications are discussed.

2. Geological setting

In northwestern China, the Tian Shan Range separates the Tarim Basin to the south from the Junggar Basin to the north (Fig. 1(a)). The Chinese Tian Shan extends east-west more than 1700 km with a north-south width of 250-300 km (Fu et al., 2003). Cenozoic folding and faulting in the Tian Shan Range resulted in strong deformation of the Mesozoic to Cenozoic strata in the foreland basins (Fu et al., 2003; Zhang, 2004; Charreau et al., 2005; 2009; Heermance et al., 2007; Sun and Zhang, 2009; Lu et al., 2010). During the late Cenozoic, three approximately east-west striking, sub-parallel
zones of folding (I, II and III in Fig.1(b)) and reverse faulting were formed in the northern foreland basin of Tian Shan (Deng et al., 1996; Burchfiel et al., 1999; Fu et al., 2003).

In zone I, the Qingshuihe (QSH) and Qigu (QG) anticlines are composed of Mesozoic to Cenozoic strata (Fig. 1(b)). In zone II, the Huoerguosi (HGS), Manas (MNS) and Tugulu (TGL) anticlines consist of Oligocene to Pleistocene strata. In zone III, the Dushanzi (DSZ) and Anjihai (AJH) anticlines consist of Miocene to Pleistocene strata (Sun and Zhang, 2009). All the three anticlines are characterized by linear and approximately west-east striking axes, indicating a north-south contraction of the range (Xu et al., 1992; Deng et al., 1996). It was reported that zone I of such fold systems was not active during the late Quaternary, while the reverse faults in zone II and III were active during the late Quaternary (Deng et al., 1996). In this study, we focused on two reverse faults (the Hutubi and Manas faults) within the Manas Anticline in zone II (Fig. 1(b)).

Field-based investigation and satellite observations reveal that the Hutubi Fault extends roughly east to west for more than 60 km. Avouac et al. (1993) investigated the outcrops of the Hutubi Fault at the Taxi and Hutubi rivers, respectively (Fig. 1(b)). It is found that the Hutubi Fault dips 50~60° S at the Taxi River site and 50° S at the Hutubi River site. Therefore, it is very likely that the Hutubi Fault dips at a similar angle near the surface at the Manas River. The Manas Fault is approximately 2 km north of the west side of the Hutubi Fault, striking in a similar direction for more than 30 km (Fig. 1(b)). Zhao et al. (2001) investigated the shallow crustal structure characteristics of the Manas Anticline in the Manas earthquake area using a high-precision shallow seismic prospecting method. It is found that the Manas Fault dips ~45° S near the surface (Zhao et al., 2001).

The Manas River originates from Tian Shan and it flows northward to the Junggar Basin (Fig. 1(b)). Both the Manas and Hutubi faults extend across the Manas River, deforming fluvial terraces of the Manas River (Fig. 2(a),(b)). Six fluvial terraces were identified along the east bank of the Manas River within the Manas Anticline. These terraces - from the lowest to the highest - are referred as T-1 to T-6, respectively (Fig.
The luminescence chronology for the terrace sequence has been established by dating the underlying fluvial sand and the overlying aeolian loess on the terraces (Gong et al., 2014). The ages of the six terrace treads were dated at ~0.5 ka, ~1.4 ka, ~3.1 ka, ~4.0 ka, ~12.4 ka and ~19.9 ka, respectively (Table 1) (Gong et al., 2014). For the six terraces, fluvial gravels are overlying Tertiary bedrocks and gravels are mantled by aeolian loess with different thicknesses ranging from around 10 cm to over 10 m. Field investigation suggests that fluvial gravels of terraces T-5 and T-6 along the Manas River were ruptured, forming fault scarps several meters in height (Fig. 2(a),(b)). Loess deposits were trapped and preserved at the surface ruptures along the scarps and the thickness of the loess trapped is variable and depends on the size of the ruptures.

The annual precipitation in the study area is less than 300 mm/yr and the precipitation is concentrated during the spring and summer months (Poisson and Avouac, 2004). The prevailing winds of the region are westerlies (Poisson and Avouac, 2004), with the area being mainly controlled by strong near-surface north and northwest winds (Fang et al., 2002; Sun, 2002). Under such winds, aeolian loess entrained from the Junggar Basin is transported and accumulates along the northern piedmont of Tian Shan (Fig. 3).

3. Surface ruptures along the reverse fault scarps

To study the faulting along the Hutubi and Manas faults, six exposures for surface ruptures along the reverse fault scarps were investigated. The locations of the exposures and their locations in relation to the two reverse faults are shown in Fig. 4(a),(b),(c). The exposures are termed as HTB0, HTB1 and MNS1-MNS4, respectively.

HTB0 (N 44° 10′ 5.1″, E 86° 08′ 11.9″) is located at the western part of the Hutubi Fault (Fig. 1(b)). It belongs to the outcrop of the Hutubi Fault at T-6 on the east bank of the Manas River (Fig. 5(a)). The gravel layer of T-6 was displaced vertically by the fault for about 7.8 m (Fig. 5(a)). Due to the development of a gully along the fault, the original scarp was destroyed so we could not find associated trapped loess on the fault scarp.

HTB1 (N 44° 10′ 11.1″, E 86° 07′ 37.7″) is the surface rupture of the terrace tread of T-5 on the east bank of the Manas River (Fig. 4(b)). It belongs to the outcrop of the Hutubi Fault at the west side. It is a part of the fault scarp, where the aeolian loess
deposits were trapped and preserved (Fig. 4(c)). The loess trapped at the rupture along the fault scarp is about 1.8 m in thickness (Fig. 5(b)).

MNS1 (N 44° 11′ 17.6″, E 86° 08′ 16.8″) is the surface rupture of the terrace tread of T-5 on the east bank of the Manas River (Fig. 4(b)) and it belongs to the outcrop of the Manas Fault (Fig. 5(c)). MNS1 is at approximately 2 km north of HTB1. The exposure is only part of the scarp of the Manas Fault, which was previously studied by Avouac et al. (1993) and Deng et al. (1996). The strata in the hanging wall of the scarp consist of Tertiary gray, gray-green and reddish deformed mudstones and the late Pleistocene gravels (Xu et al, 1992). At the foot wall, only the late Pleistocene gravels were exposed. MNS1 shows complex slope morphology and the trapped loess at the surface rupture along the scarp is about 1 m in thickness (Fig. 5(c)).

MNS2 (N 44° 11′ 18.7″, E 86° 07′ 58.3″) (Fig. 5(d)) is at about ~300 m west of MNS1 (Fig. 4(b)). The exposure also shows the surface rupture of the terrace tread of T-5 on the east bank of the Manas River, and it belongs to the outcrop of the Manas Fault (Fig. 5(d))). The trapped loess at the rupture along the fault scarp is about 1 m in thickness.

MNS3 (N 44° 11′ 27.5″, E 86° 08′ 53.18″) is shown in Fig. 5(e). It is parallel to exposures MNS1 and MNS2. This exposure is the surface rupture of the terrace tread of T-5 on the west bank of the Manas River, and it belongs to the outcrop of the Manas Fault. The trapped loess at the rupture along the fault scarp is about 1 m in thickness.

MNS4 (N 44° 11′ 27.7″, E 86° 06′ 51.8″) is shown in Fig. 5(f). It is the surface rupture of the terrace tread of T-5 on the west bank of the Manas River. MNS4 is about 100 m west of MNS3. MNS4 is a part of the scarp of the Manas Fault, where loess deposits were trapped and preserved. The loess trapped at the rupture along the scarp is about 1 m in thickness.

The scarps of the Manas and Hutubi faults extend more than tens of meters so it is very difficult to dig a trench to fully reveal the strata along these scarps. From the above exposures (HTB1, MNS1-MNS4), it is found that the hanging and foot walls along the fault scarp are composed of fluvial gravels, which are rather weakly consolidated. The fault-scarp-derived colluvial gravels have been mixed well with the hanging and foot walls
at the ruptures and their boundary are obscured. Thus, it is very difficult to distinguish individual faulting events by lithofacies analysis of colluvial sediments at these ruptures. Alternatively, trapped loess was commonly preserved at the ruptures along the fault scarps. We think the trapped loess at the surface ruptures along the fault scarps may provide important chronological information linked to past faulting events.

We follow Avouac et al.’s (1993) method to estimate the fault displacements for both reverse faults, i.e. the vertical displacements of the faults were evaluated by measuring the topographic profiles across the scarps using the differential global position system (Real Time Kinematic) (Fig. 4(b)). The terrace treads of T-5 and T-6 were used as the offset markers for the faulting along the Hutubi and Manas faults and the elevation data were recorded by DGPS measurements along the cross-sections B-B’, C-C’ and D-D’ (Fig. 4(b)). For our field measurements, the topographic profiles B-B’, C-C’ and D-D’ were measured long enough to cross the faulted terrace treads at either side of the scarps until the surface was nearly planar and there was no significant degradation. In addition, it was found that the regional slope of the fluvial terraces was very small (typically at 1-2°) at either side of scarps studied (estimated from Google Earth). Thus, the measured vertical offset is nearly equal to the vertical throw on the fault, independent of fault dip, as suggested by Avouac et al. (1993). The vertical displacement by the fault can be estimated by the difference in the elevations between the faulted terrace treads at either side of the scarps. We assigned a 10 % error for the fault displacements for both reverse faults. The vertical displacements along the Manas and Hutubi faults were shown in Fig. 4(b) and Fig. 5(a). It was found that the Hutubi Fault has vertically displaced terrace T-5 by 4.2 ± 0.4 m (cross-section B-B’, Fig. 4(b)) and terrace T-6 by 7.8 ± 0.8 m (cross-section C-C’, Fig. 5(a)). The Manas Fault has vertically displaced T-5 by 9.2 ± 0.9 m (cross-section D-D’, Fig. 4(b)). The cross-section (D-D’) is at the middle site between MNS1 and MNS2. Our displacement measurement results are consistent with those from Avouac et al. (1993).

4. The relationship between loess at the ruptures and faulting along the faults

To explain why the ages of the loess deposits preserved at the surface ruptures can be used to constrain the minimum ages of scarps, a schematic model is provided in Fig. 6 to
illustrate the evolution of ruptures along the fault scarp on the terrace and the infilling of loess deposits along the ruptures.

The river terrace was formed at time \(t_0\) when the fluvial gravels were deposited on the bedrock (Fig. 6, stage 1). The terrace tread can be used as the offset marker for the faulting along the reverse fault. When a faulting event occurred (referred to as event 1) at time \(t_1\), the terrace tread was deformed and a fresh rupture was created. As the gravels from the hanging wall are weakly consolidated, they soon collapse and fill in the ruptures, forming a colluvial unit (C) (Fig. 6, stage 2). The rupture then started to trap aeolian loess deposits (L1) until a balance between deposition and erosion (Fig. 6, stage 3) was achieved. Assuming that the loess deposited soon after the surface rupture was formed, the age \((t_1')\) of the loess layer 1 (L1) is close to the time of faulting event 1 \((t_1)\). A similar process has been documented by the reverse fault induced San Fernando earthquake of 1971 (Kahle, 1975). In that case, the hanging-wall was weakly consolidated Tertiary sandstone and conglomerate. More than 50% of the 0.3 m to 1 m high overhanging free face collapsed after three months.

When a second faulting event (event 2) occurred along the reverse fault at time \(t_2\), the hanging wall was further displaced above the foot wall, leading to the rupture growth (Fig. 6, stage 4). At this time, some surface soil (S) or loess at the rupture might be reworked and re-deposited on the foot wall block. Then, the reworked soil or loess might be eroded away, or mixed with new aeolian loess deposits (L2) to be trapped in the rupture (Fig. 6, stage 5) until a new balance reached (Fig. 6, stage 6). Such faulting and loess infilling in the rupture along the scarp was repeated, which created different loess layers. Thus, the oldest loess deposits trapped in the rupture can be used to constrain the minimum ages of scarps.

It should be noted that, an important assumption must be made for using the trapped loess deposits at the surface ruptures along the fault scarps to infer the minimum ages — that is there was a continuous loess deposition during the fault movement period. This assumption is expected to be valid for this study area. The Junggar Desert is located at the north of Tian Shan, occupying an area of 48,800 km\(^2\) (Sun, 2002). Such a desert serves as a huge and constant holding area for aeolian dust. Besides, the study area is mainly
controlled by strong near-surface north-west and north winds (Sun, 2002). Under such winds, aeolian loess entrained from the Junggar Basin is transported and accumulates in the northern piedmont of Tian Shan - the upper limit of loess depositions can be at 2400 m above sea level (Fig. 3). Gong et al. (2014) demonstrated that there were continuous loess depositions on the terraces from ~20 ka to ~0.5 ka in the same study area. In other mountain belts of Asia, such as the Qilian Shan, it is also demonstrated that there was continuous loess deposition along the mountain front during the Holocene (e.g. Stokes et al., 2003; Küster et al., 2006). Thus, the aeolian dusts transported from the Junggar Desert to the northern piedmont of Tianshan (Sun, 2002) were very likely to be trapped at the surface ruptures and the loess deposits offer the possibility to constrain minimum ages of the scarps along the Hutubi and Manas faults in the study area.

Based on the model described above, multiple samples were collected from each of the scarps. The detailed sampling name, material and positions for the loess deposits at the ruptures along the fault scarps are shown in Table 2 and Fig. 5.

5. Luminescence dating

5.1 Experimental procedure

The OSL samples were collected by hammering stainless steel tube horizontally into freshly cut vertical sections. These tubes were then covered with a lid soon after taking them from the section, then sealed in a black plastic bag. The OSL samples were analysed in the Luminescence Dating Laboratory at the Department of Earth Science of the University of Hong Kong. Two centimeters of material at each end of the tube was scrapped away and used for dose rate measurements. Raw samples in the centre of the tubes were first treated with 10% hydrochloric acid (HCl) and 10% hydrogen peroxide (H₂O₂) to remove carbonates and organic materials, respectively. Coarse grains between 90 and 125µm were selected by mechanical dry sieving. Quartz grains were separated using sodium polytungstate heavy liquid with density between 2.62-2.75 g/cm³. The quartz grains were etched with 40% HF for ~80 minutes to remove the outer alpha dosed layer as well as any remaining feldspar. HCl (10%) was used again to dissolve any residual fluorides after etching before final rinsing and drying. The etched grains were
mounted as a monolayer on 9.8 mm wide aluminum discs using silicone oil as an adhesive. Grains covered the central ~3 mm diameter portion of each disc, corresponding to several hundreds of grains per aliquot. The purity of the quartz grains was tested by monitoring the presence of feldspar by measuring the infrared stimulated luminescence (IRSL) and 110 °C thermoluminescence (TL) peak (Li et al., 2002). At least twenty aliquots were measured for each sample.

OSL signals were measured using automated Risø TL/OSL readers equipped with excitation units of blue light emitting diodes (LEDs) (Δ=470±30 nm) and infrared LEDs (Δ=870 ± 40nm). The blue LEDs deliver ~50 mW/cm² of light to the sample (Bøtter-Jensen et al., 2003). Ninety percent of their full powers were used for stimulation in this study. The quartz OSL signals were detected through 7.5 mm Hoya U-340 filters, which allow a transmission from 290 nm to 370 nm with a peak at ~340 nm (Aitken, 1998). Irradiation was carried out using 90Sr/90Y beta sources built into the readers.

The equivalent doses (D_e) of quartz were determined using a SAR OSL dating protocol (Wintle and Murray, 2000). In the protocol, preheating condition was determined from a preheat plateau test on the sample MNS2-4, using preheat temperatures from 200 °C to 300 °C in increments of 20 °C (Fig. 7). A D_e plateau was observed between 220 °C and 260 °C. Based on the preheat plateau results, a preheating at 220 °C for 10 s and a cut-heat at 180 °C were selected before the regenerative dose and test dose OSL measurements, respectively. Additionally, a zero dose was used for monitoring recuperation effects and a repeated dose the same as the first regeneration dose was used for checking the reproducibility of the sensitivity correction (i.e. recycling ratio). Aliquots with recuperation higher than 5% or recycling ratio falling out of the range of 1.0 ± 0.1 were discarded for age calculation.

5.2 Dose rate measurements

The environmental dose rate was determined using a variety of techniques. The Thick-source alpha counting technique (Aitken, 1998) was used to measure the dose contributions from the uranium (U) and thorium (Th) decay chains. A Littlemore 7286
TSAC system with 42-mm-diameter ZnS screens was used. Potassium content was measured by X-ray fluorescence (XRF). Water content was calculated as the ratio of water weight to dried sample weight, obtained from the sample weights before and after drying at 105 °C in an oven. As the water content may have changed through time, a 20% relative standard error was assigned for the measured water content to take account of the long-term variation in water content (refer to Table 2). The cosmic ray contribution to the dose rate was calculated from the burial depth, altitude, latitude and longitude of the samples (Prescott and Hutton, 1994). The dosimetry data were summarized in Table 2.

5.3 OSL dating results

Typical OSL shine down curves and the regenerative growth curves of quartz grains from the loess samples are shown in Figure 8. It shows that the OSL contains a strong fast component, with the OSL emission decreasing by ~80-90% during the first 4 s of stimulation. The D_e distribution from each sample was analyzed using radial plot, which has been widely used to show the distributions of single-grain or single-aliquot D_e estimations (Galbraith et al., 1999; Olley et al., 1999; Jacobs et al., 2003; Zhang et al., 2009). Fig. 9 displays examples of radial plots for six loess samples from the five exposures (HTB1 and MNS1-MNS4). In the plots, the central lines of the shaded regions with 2σ width of the D_e distribution represent the mean D_e values of the measured aliquots. Based on the radial plots, there is no evidence of variable bleaching for these loess samples, i.e. most of the D_e values are symmetrically distributed around the central values. We conclude that our OSL ages are reliable based on the following aspects: 1) the loess deposits are aeolian in origin and are therefore unlikely to suffer from insufficient bleaching problems in OSL dating - this is supported by the D_e distribution of our samples (Fig. 9). 2) our samples yield good results in the SAR performance tests, in terms of pre-heat plateau, recycling ratio and recuperation. 3) most of the samples yield over-dispersion (OD) values between 10% and 35% (Table 3). Although the effect of inhomogeneous gamma radiation might make some contributions to the scatter of D_e, Gong et al. (2014) demonstrated that the uncertainty from spatially heterogeneous dose rates to the final age estimation is less than 5% for the OSL samples in the same study.
Table 3 summarizes the \(D_e \) estimates and the OSL ages of all the samples based on mean age and the central age models, respectively. It is found that the two age models produce consistent ages within 2\(\sigma \) for all the samples. The mean age model was chosen for final determination of the OSL ages. Fig. 10 shows the five exposures of the fault scarps together with the OSL dating results of the loess samples. The trapped loess preserved at HTB1 produced OSL ages from \(~10.5\) ka to \(~4.2\) ka. It is found that the inner trapped loess produced older ages than the outer trapped loess. In comparison, the trapped loess preserved along the Manas Fault (MNS1-MNS4) produced younger OSL ages, ranging from \(~5.7\) ka to \(~1.7\) ka (Fig. 10). A possible explanation for the multiple OSL ages of the loess deposits at the ruptures along the scarps is episodic faulting-induced rupture growth and subsequent loess sedimentation, as suggested by our model (Fig. 6). Therefore, the chronology data of the trapped loess along HTB1 suggests that the Hutubi Fault was active from the early to mid-Holocene, while the Manas Fault was active from the mid- to late Holocene. However, the different OSL ages of the loess at ruptures along the scarps can be also explained in other ways, e.g. colluvial re-deposition, disturbance of the loess after multiple rupture events or continuous (discontinuous) loess deposition after a single rupture event. Nevertheless, in any case, the ages of the terrace treads and the oldest loess preserved at ruptures along the fault scarps should constrain the maximum and minimum ages of the scarps studied, respectively.

6. Discussion

Slip rates of the Hutubi and Manas faults

Based on the topographic profiles measured across the investigated fault scarps and the chronology data, we calculated vertical slip rates for both reverse faults (Table 4). The Hutubi Fault has vertically displaced terrace T-5 by \(4.2 \pm 0.4 \) m (cross-section B-B'). As the oldest loess sample preserved in exposure HTB1 and age of the terrace tread of T-5 were constrained at \(10.5 \pm 1.0 \) and \(12.4 \pm 0.8 \) ka (Gong et al., 2014), respectively, the maximum and minimum vertical slip rates of the Hutubi Fault within the Manas Anticline were calculated at \(0.40 \pm 0.05 \) and \(0.34 \pm 0.04 \) mm/yr, respectively, during the late
Quaternary. Similarly, the Hutubi Fault has vertically displaced terrace T-6 by 7.8 ± 0.8 m (cross-section C-C’) (Fig. 4(b)). The age of the tread of T-6 is 19.9 ± 1.5 ka (Gong et al., 2014), which constrains the maximum age of HTBO. The offset and age of the T-6 tread yields a minimum vertical slip rate of 0.39 ± 0.05 mm/yr (Table 3). The two sets of data from T-5 and T-6 suggest that the vertical slip rate of the Hutubi Fault within the Manas Anticline was at about 0.4 mm/yr during last ~ 12 ka.

T-5 was vertically displaced by 9.2 ± 0.9 m by the Manas Fault, as shown in cross-section D-D’ in Fig. 4(b). As the oldest loess sample preserved along exposures of MNS1-MNS4 and the age of terrace tread T-5 were constrained at 5.7 ± 0.6 and 12.4 ± 0.8 ka, respectively (Gong et al., 2014), the maximum and minimum vertical slip rates of the Manas Fault are 1.6 ± 0.2 mm/yr and 0.74 ± 0.09 mm/yr, respectively. If it is assumed that the loess was deposited and preserved at the surface ruptures soon after the faulting events, the vertical slip rate of the Manas Fault is close to 1.6 ± 0.2 mm/yr during the late Holocene. It is to be noted that the evaluation of the vertical slip rates of the two reverse faults also depends on the observation timescale. Due to the intermittency of faulting events along the Manas and Hutubi faults, measurements of fault slip rates over timescales shorter than the longest gap will overestimate long-term average fault slip rates. For instance, an earthquake in the near future with an offset of 1-2 m would increase the cumulative offset of 4.2 m (fault displacement of HTB1) to 5.2-6.2 m, with a similar rise in the slip rate. To better compare the faulting along the Manas and Hutubi faults, measurements of fault slip rates over the formation the tread of T-5 (~12.4 ka) to the present. It is found that the correspondingly vertical slip rates of the Manas and Hutubi faults are calculated at 0.74 ± 0.09 mm/yr and 0.34 ± 0.04 mm/yr, respectively. In addition, it is also interesting to calculate the horizontal shortening rate and the total slip rate of the two reverse faults. Although the strata along the scarps were not fully revealed by our trenches, the dip angles of the two reverse faults at the surface can be estimated based on the results from previous studies (Avouac et al., 1993; Zhao et al., 2001). In this study, a dip angle of 45 ± 5° of the Manas Fault (Zhao et al., 2001) is used to calculate the slip rates of the Manas Fault. The horizontal shortening rate and the total slip rate of the Manas Fault are calculated at 0.74
± 0.17 mm/yr and 1.05 ± 0.16 mm/yr, respectively. For the Hutubi Fault, a dip angle of 55 ± 5° (Avouac et al., 1993) is used to calculate the slip rates, and the horizontal shortening rate and the total slip rate of the Hutubi Fault are calculated at 0.24 ± 0.06 mm/yr and 0.42 ± 0.06 mm/yr, respectively. The results show that the Manas Fault exhibits a higher slip rate than the Hutubi Fault at the site during the Holocene.

It is also interesting to note that the oldest OSL age of the loess trapped at the surface ruptures along the Manas Fault (MNS1-MNS4) is ~5.7 ka, while significantly older loess deposits were found at HTB1. One of the possible explanations is that the Manas Fault was relatively inactive during the early to mid-Holocene and the faulting at the studied area mainly occurred at the Hutubi Fault during that period. From the mid-Holocene to the present, tectonic deformation probably accelerated in the northern foreland basin, not only making the Manas Fault active, but also leading to more significantly surface rupturing events along the Manas Fault. In addition, the loess of ~4 ka was identified at the surface ruptures along both the Hutubi and Manas faults, indicating that both the Hutubi Fault and the Manas Fault were ruptured in a large, surface-rupturing earthquakes at ~ 4 ka. An alternative explanation for our results is that the Manas Fault was also active during the early to mid-Holocene, but the faulting events along the Manas Fault older than 6 ka were not recorded due to the lack of terrace preservation. Thus, to further examine whether there is accelerated tectonic deformation in the northern foreland basin of Tian Shan, more studies on different fault segments in the area should be carried out in the future, in order to obtain more data on the faulting at different timescale during the Quaternary.

7. Conclusions

In the northern foreland basin of Tian Shan, the fluvial terraces along the Manas River were ruptured by the Manas and Hutubi faults, forming fault scarps several meters in height. OSL dating results for the trapped loess preserved at the surface ruptures along the fault scarps show that the Hutubi Fault was active from the early to mid-Holocene, while the Manas Fault was active from the mid- to late Holocene. Together with
high-resolution differential global position system (GDPS) measurements on the fault
scarps, the corresponding vertical slip rates of the Manas and Hutubi faults were
calculated and compared. During the late Quaternary, the vertical slip rates of the Manas
Fault are constrained to between ~0.74 mm/yr and ~1.6 mm/yr, whilst those of the
Hutubi Fault are constrained to between ~0.34 mm/yr and ~0.40 mm/yr in the studied
region. The tectonic uplift activity in the northern foreland basin of Tian Shan likely
accelerated during the late Quaternary.

Acknowledgements

The authors would like to thank Anchuan Fan, Zhengqing Zhang and Junliang Ji for
their help during fieldwork, Jimin Sun, Bihong Fu, Huiping Zhang and Zhonghua Tian
for improving our manuscript, and Michael Pittman for English editing. This study was
financially supported by grants awarded to Sheng-Hua Li from the Research Grant
Council of the Hong Kong Special Administrative Region, China (Project no. 7028/08P
and 7033/12P). The authors thank An Yin and two anonymous reviewers for providing
valuable comments and suggestions on the manuscript.
References

Abdrakhmatov, K.Y., Aldazhanov, S.A., Hager, B.H., Hamburger, M.W., Herring, T.A.,
Kalabaev, K.B., Makarov, V.I., Molnar, P., Panasyuk, S.V., Prilepin, M.T.,
Reilinger, R.E., Sadybakasov, I.S., Souter, B.J., Trapeznikov, Y.A., Tsurkov, V.Y.,
Zubovich, A.V., 1996. Relatively recent construction of the Tien Shan inferred
from GPS measurements of present-day crustal deformation rates. Nature 384,
450-453.

Folding along the Northern Tian Shan and Late Cenozoic Rotation of the Tarim
Relative to Dzhugaria and Kazakhstan. Journal of Geophysical Research 98,
6755-6804.

radiation, stimulation and observation facilities in luminescence measurements.
Radiation Measurements 37, 535-541.

Z.M., You, H.C., 1999. Crustal shortening on the margins of the Tien Shan,

Charreau, J., Chen, Y., Gilder, S., Barrier, L., Dominguez, S., Augier, R., Sen, S.,
Avouac, J.-P., Gallaud, A., Graveleau, F., and Wang, Q., 2009, Neogene uplift of
the Tian Shan Mountains observed in the magnetic record of the Jingou River

Charreau, J., Chen, Y., Gilder, S., Dominguez, S., Avouac, J.-P., Sen, S., Sun, D., Li, Y.,
and Wang, W.-M., 2005, Magnetostratigraphy and rock magnetism of the
Neogene Kuitun He section (northwest China): implications for Late Cenozoic
uplift of the Tianshan mountains: Earth and Planetary Science Letters 230,
177-192.

Watanuki, T., Lin, Y.-N.N., 2009. Optical dating of a sedimentary sequence in a
trenching site on the source fault of the 1999 Chi-Chi earthquake, Taiwan.

Li, S.-H., Sun, J.M., Li, B., 2012. Holocene environmental changes in central Inner
Mongolia revealed by luminescence dating of sediments from the Sala Us River valley. Holocene 22, 397-404.

Sun, J., 2002, Source Regions and Formation of the Loess Sediments on the High
Mountain Regions of Northwestern China. Quaternary Research 58, 341-351.

Table 1: the abandonment ages of the six terraces along the Manas River in the study area. For the detail of the ages of the terraces, please refer to Gong et al. (2014).

<table>
<thead>
<tr>
<th>Terraces</th>
<th>T-1</th>
<th>T-2</th>
<th>T-3</th>
<th>T-4</th>
<th>T-5</th>
<th>T-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical ages, ka</td>
<td>0.5±0.1</td>
<td>1.4±0.3</td>
<td>3.1±0.3</td>
<td>4.0±0.4</td>
<td>12.4±0.8</td>
<td>19.9±1.5</td>
</tr>
</tbody>
</table>
Table 2: The dose rate results for loess samples from the five exposures of the fault scarps (HTB1, MNS1-MNS4) in the study area.

<table>
<thead>
<tr>
<th>Sample</th>
<th>depth (m)</th>
<th>Alpha counting rate(^a)</th>
<th>K content (%)</th>
<th>Water content(^b) (%)</th>
<th>Cosmic ray(^c) (Gy/ka)</th>
<th>Dose rate (Gy/ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HububiFault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTB1-1</td>
<td>0.3</td>
<td>10.9±0.2</td>
<td>2.27±0.23</td>
<td>6.0</td>
<td>0.23</td>
<td>3.85±0.16</td>
</tr>
<tr>
<td>HTB1-2</td>
<td>0.4</td>
<td>9.53±0.19</td>
<td>1.86±0.19</td>
<td>4.6</td>
<td>0.22</td>
<td>3.32±0.16</td>
</tr>
<tr>
<td>HTB1-3</td>
<td>0.5</td>
<td>10.7±0.21</td>
<td>2.10±0.21</td>
<td>3.2</td>
<td>0.22</td>
<td>3.77±0.16</td>
</tr>
<tr>
<td>HTB1-4</td>
<td>1.2</td>
<td>11.5±0.21</td>
<td>2.09±0.21</td>
<td>3.3</td>
<td>0.20</td>
<td>3.85±0.16</td>
</tr>
<tr>
<td>HTB1-5</td>
<td>0.8</td>
<td>10.9±0.21</td>
<td>2.30±0.23</td>
<td>2.0</td>
<td>0.21</td>
<td>3.86±0.16</td>
</tr>
<tr>
<td>HTB1-6</td>
<td>1.6</td>
<td>10.8±0.21</td>
<td>2.10±0.21</td>
<td>6.7</td>
<td>0.19</td>
<td>3.63±0.16</td>
</tr>
<tr>
<td>HTB1-7</td>
<td>1.0</td>
<td>10.7±0.20</td>
<td>2.20±0.22</td>
<td>8.7</td>
<td>0.21</td>
<td>3.60±0.16</td>
</tr>
<tr>
<td>ManasFault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS1-1</td>
<td>0.3</td>
<td>10.5±0.21</td>
<td>1.86±0.19</td>
<td>5.6</td>
<td>0.22</td>
<td>3.39±0.14</td>
</tr>
<tr>
<td>MNS1-2</td>
<td>0.7</td>
<td>10.4±0.20</td>
<td>2.01±0.20</td>
<td>7.6</td>
<td>0.21</td>
<td>3.42±0.15</td>
</tr>
<tr>
<td>MNS1-3</td>
<td>0.5</td>
<td>10.1±0.20</td>
<td>2.00±0.20</td>
<td>7.1</td>
<td>0.22</td>
<td>3.40±0.15</td>
</tr>
<tr>
<td>MNS1-4</td>
<td>0.5</td>
<td>10.6±0.21</td>
<td>2.00±0.20</td>
<td>8.8</td>
<td>0.22</td>
<td>3.40±0.16</td>
</tr>
<tr>
<td>MNS1-5</td>
<td>1.0</td>
<td>10.4±0.21</td>
<td>2.12±0.21</td>
<td>9.6</td>
<td>0.20</td>
<td>3.48±0.16</td>
</tr>
<tr>
<td>MNS1-6</td>
<td>1.0</td>
<td>9.55±0.19</td>
<td>2.20±0.22</td>
<td>8.7</td>
<td>0.20</td>
<td>3.47±0.16</td>
</tr>
<tr>
<td>MNS1-7</td>
<td>0.8</td>
<td>9.34±0.19</td>
<td>2.05±0.21</td>
<td>8.5</td>
<td>0.21</td>
<td>3.32±0.16</td>
</tr>
<tr>
<td>MNS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS2-1</td>
<td>0.5</td>
<td>10.2±0.2</td>
<td>2.30±0.23</td>
<td>3.4</td>
<td>0.22</td>
<td>3.82±0.17</td>
</tr>
<tr>
<td>MNS2-2</td>
<td>1.0</td>
<td>10.1±0.2</td>
<td>2.18±0.22</td>
<td>3.0</td>
<td>0.20</td>
<td>3.70±0.16</td>
</tr>
<tr>
<td>MNS2-3</td>
<td>1.6</td>
<td>11.0±0.2</td>
<td>2.14±0.21</td>
<td>6.3</td>
<td>0.19</td>
<td>3.64±0.16</td>
</tr>
<tr>
<td>MNS2-4</td>
<td>2.0</td>
<td>11.1±0.2</td>
<td>2.21±0.22</td>
<td>9.2</td>
<td>0.18</td>
<td>3.59±0.16</td>
</tr>
<tr>
<td>MNS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS3-1</td>
<td>0.5</td>
<td>10.7±0.2</td>
<td>2.18±0.22</td>
<td>3.7</td>
<td>0.22</td>
<td>3.83±0.17</td>
</tr>
<tr>
<td>MNS3-2</td>
<td>0.5</td>
<td>10.3±0.2</td>
<td>2.17±0.22</td>
<td>2.0</td>
<td>0.22</td>
<td>3.82±0.17</td>
</tr>
<tr>
<td>MNS3-3</td>
<td>1.0</td>
<td>11.0±0.2</td>
<td>2.39±0.24</td>
<td>2.1</td>
<td>0.20</td>
<td>4.11±0.19</td>
</tr>
<tr>
<td>MNS3-4</td>
<td>1.0</td>
<td>9.77±0.22</td>
<td>1.93±0.19</td>
<td>1.0</td>
<td>0.20</td>
<td>3.54±0.15</td>
</tr>
<tr>
<td>MNS3-5</td>
<td>1.0</td>
<td>10.5±0.2</td>
<td>2.31±0.23</td>
<td>1.0</td>
<td>0.20</td>
<td>4.01±0.18</td>
</tr>
<tr>
<td>MNS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS4-1</td>
<td>0.5</td>
<td>9.57±0.20</td>
<td>2.13±0.21</td>
<td>10.2</td>
<td>0.22</td>
<td>3.38±0.16</td>
</tr>
<tr>
<td>MNS4-2</td>
<td>0.8</td>
<td>9.56±0.20</td>
<td>2.11±0.21</td>
<td>11.0</td>
<td>0.21</td>
<td>3.32±0.16</td>
</tr>
<tr>
<td>MNS4-3</td>
<td>1.0</td>
<td>10.1±0.2</td>
<td>2.24±0.22</td>
<td>7.7</td>
<td>0.20</td>
<td>3.62±0.17</td>
</tr>
<tr>
<td>MNS4-4</td>
<td>0.5</td>
<td>10.6±0.2</td>
<td>2.20±0.22</td>
<td>10.1</td>
<td>0.22</td>
<td>3.58±0.17</td>
</tr>
<tr>
<td>MNS4-5</td>
<td>1.0</td>
<td>9.71±0.20</td>
<td>2.30±0.23</td>
<td>8.4</td>
<td>0.20</td>
<td>3.59±0.17</td>
</tr>
</tbody>
</table>

\(^a\) The alpha counting rate is for a 42-mm-diameter ZnS screen and is given in units of counts per kilo second.

\(^b\) The error for the water content is estimated at ±20 \%.
The error for the cosmic rays dose rate is estimated at ± 0.02 Gy/ka.

Table 3: quartz OSL ages for the loess samples from the five exposures of the fault scarps (HTB1, MNS1-MNS4) in the study area.

<table>
<thead>
<tr>
<th>Sample</th>
<th>aliquots</th>
<th>Over-dispersion values (%)</th>
<th>Mean Age model D_e (Gy)</th>
<th>Mean Age model Age (ka)</th>
<th>Central Age model D_e (Gy)</th>
<th>Central Age model Age (ka)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hububi Fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTB1-1</td>
<td>20</td>
<td>26.5±2.2</td>
<td>16.2±1.4</td>
<td>4.2±0.4</td>
<td>15.7±1.4</td>
<td>4.1±0.4</td>
</tr>
<tr>
<td>HTB1-2</td>
<td>20</td>
<td>28.5±1.7</td>
<td>29.1±2.7</td>
<td>8.8±0.9</td>
<td>27.5±2.7</td>
<td>8.3±0.9</td>
</tr>
<tr>
<td>HTB1-3</td>
<td>26</td>
<td>39.3±1.2</td>
<td>32.5±3.4</td>
<td>8.6±1.0</td>
<td>30.0±2.4</td>
<td>7.9±0.7</td>
</tr>
<tr>
<td>HTB1-4</td>
<td>20</td>
<td>31.5±1.4</td>
<td>40.3±3.6</td>
<td>10.5±1.0</td>
<td>38.4±3.0</td>
<td>10.0±0.9</td>
</tr>
<tr>
<td>HTB1-5</td>
<td>20</td>
<td>29.8±1.1</td>
<td>16.1±1.2</td>
<td>4.2±0.3</td>
<td>15.4±1.1</td>
<td>4.0±0.3</td>
</tr>
<tr>
<td>HTB1-6</td>
<td>20</td>
<td>24.2±0.9</td>
<td>23.3±1.4</td>
<td>6.4±0.5</td>
<td>22.6±1.2</td>
<td>6.2±0.4</td>
</tr>
<tr>
<td>HTB1-7</td>
<td>20</td>
<td>20.5±0.9</td>
<td>15.3±1.2</td>
<td>4.3±0.4</td>
<td>15.5±0.8</td>
<td>4.3±0.3</td>
</tr>
<tr>
<td>Manas Fault</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS1-1</td>
<td>20</td>
<td>33.5±2.3</td>
<td>8.1±1.7</td>
<td>2.4±0.5</td>
<td>6.8±1.1</td>
<td>2.0±0.3</td>
</tr>
<tr>
<td>MNS1-2</td>
<td>20</td>
<td>30.5±1.4</td>
<td>19.4±1.8</td>
<td>5.7±0.6</td>
<td>18.9±1.5</td>
<td>5.5±0.5</td>
</tr>
<tr>
<td>MNS1-3</td>
<td>20</td>
<td>27.6±1.6</td>
<td>8.1±0.7</td>
<td>2.4±0.2</td>
<td>7.9±0.6</td>
<td>2.3±0.2</td>
</tr>
<tr>
<td>MNS1-4</td>
<td>20</td>
<td>30.0±1.4</td>
<td>10.4±0.8</td>
<td>3.1±0.3</td>
<td>10.3±0.8</td>
<td>3.0±0.3</td>
</tr>
<tr>
<td>MNS1-5</td>
<td>20</td>
<td>24.2±0.9</td>
<td>14.5±0.8</td>
<td>4.2±0.3</td>
<td>14.1±0.8</td>
<td>4.0±0.3</td>
</tr>
<tr>
<td>MNS1-6</td>
<td>20</td>
<td>34.8±1.6</td>
<td>17.8±1.7</td>
<td>5.1±0.5</td>
<td>16.6±1.5</td>
<td>4.8±0.5</td>
</tr>
<tr>
<td>MNS1-7</td>
<td>20</td>
<td>24.2±1.9</td>
<td>13.7±1.1</td>
<td>4.1±0.4</td>
<td>13.3±1.1</td>
<td>4.0±0.4</td>
</tr>
<tr>
<td>MNS2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS2-1</td>
<td>20</td>
<td>22.1±1.6</td>
<td>6.5±0.5</td>
<td>1.7±0.1</td>
<td>7.1±0.5</td>
<td>1.9±0.2</td>
</tr>
<tr>
<td>MNS2-2</td>
<td>20</td>
<td>16.8±1.0</td>
<td>9.5±0.6</td>
<td>2.6±0.2</td>
<td>9.6±0.4</td>
<td>2.6±0.2</td>
</tr>
<tr>
<td>MNS2-3</td>
<td>20</td>
<td>32.9±1.6</td>
<td>41.3±0.9</td>
<td>3.1±0.3</td>
<td>10.5±1.0</td>
<td>2.9±0.3</td>
</tr>
<tr>
<td>MNS2-4</td>
<td>20</td>
<td>27.6±1.3</td>
<td>11.9±0.8</td>
<td>3.3±0.3</td>
<td>11.4±0.8</td>
<td>3.2±0.3</td>
</tr>
<tr>
<td>MNS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS3-1</td>
<td>20</td>
<td>34.1±1.7</td>
<td>15.4±1.5</td>
<td>4.0±0.4</td>
<td>14.1±1.5</td>
<td>3.7±0.4</td>
</tr>
<tr>
<td>MNS3-2</td>
<td>20</td>
<td>39.8±1.6</td>
<td>15.4±1.9</td>
<td>4.0±0.5</td>
<td>14.4±1.4</td>
<td>3.8±0.4</td>
</tr>
<tr>
<td>MNS3-3</td>
<td>20</td>
<td>33.6±1.6</td>
<td>19.2±1.7</td>
<td>5.4±0.5</td>
<td>17.9±1.6</td>
<td>5.1±0.5</td>
</tr>
<tr>
<td>MNS3-4</td>
<td>20</td>
<td>33.6±1.6</td>
<td>19.2±1.7</td>
<td>5.4±0.5</td>
<td>17.9±1.6</td>
<td>5.1±0.5</td>
</tr>
<tr>
<td>MNS3-5</td>
<td>21</td>
<td>25.8±1.0</td>
<td>19.1±1.3</td>
<td>4.7±0.4</td>
<td>18.4±1.1</td>
<td>4.6±0.3</td>
</tr>
<tr>
<td>MNS4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MNS4-1</td>
<td>20</td>
<td>35.0±1.5</td>
<td>7.7±0.8</td>
<td>2.3±0.3</td>
<td>7.3±0.6</td>
<td>2.2±0.2</td>
</tr>
<tr>
<td>MNS4-2</td>
<td>20</td>
<td>39.5±1.5</td>
<td>14.0±1.4</td>
<td>4.2±0.5</td>
<td>13.0±1.2</td>
<td>3.9±0.4</td>
</tr>
<tr>
<td>MNS4-3</td>
<td>20</td>
<td>26.4±1.1</td>
<td>15.7±1.1</td>
<td>4.3±0.4</td>
<td>15.1±1.0</td>
<td>4.2±0.3</td>
</tr>
<tr>
<td>MNS4-4</td>
<td>20</td>
<td>27.6±1.1</td>
<td>7.5±0.6</td>
<td>2.1±0.2</td>
<td>7.4±0.5</td>
<td>2.1±0.2</td>
</tr>
<tr>
<td>MNS4-5</td>
<td>20</td>
<td>34.0±1.4</td>
<td>19.1±1.9</td>
<td>5.3±0.6</td>
<td>18.1±1.5</td>
<td>5.0±0.5</td>
</tr>
</tbody>
</table>
Table 4: Estimations of the late Quaternary vertical slip rates of the Hutubi and Manas faults in the northern piedmont of Tian Shan.

<table>
<thead>
<tr>
<th>Deformed terrace</th>
<th>Cumulative vertical offset (m)</th>
<th>The onset time of deformation (ka)</th>
<th>Vertical slip rate (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hutubi Fault</td>
<td></td>
<td>minimum</td>
<td>maximum</td>
</tr>
<tr>
<td>T-5</td>
<td>4.2±0.4</td>
<td>10.5 ± 1.0</td>
<td>12.4 ± 0.8</td>
</tr>
<tr>
<td>T-6</td>
<td>7.8±0.8</td>
<td>20 ± 1.5</td>
<td></td>
</tr>
<tr>
<td>Manas Fault</td>
<td>T-5</td>
<td>9.2 ±0.9</td>
<td>5.7± 0.6</td>
</tr>
</tbody>
</table>
Figure captions

Figure 1(a): A color-shaded relief map with a simplified active tectonic map of Asia and surrounding regions (modified from Fu et al. (2011)). (b): Interpretative geologic map of three roughly east-west stretching fold and fault zones along the northern piedmont of Tian Shan (modified from Sun et al. (2009)). The dip of the Hutubi and Manas faults at the surface were from Avouac et al. (1993) and Zhao et al. (2001), respectively.

Figure 2(a): Landsat TM image showing the deformational features of the Manas and Hutubi faults in the northern piedmont of Tian Shan. (b): Schematic geomorphology of Manas River terraces within the Manas Anticline area. The terraces (T-5 and T-6) were deformed intensively by the Hutubi and Manas faults, forming fresh-looking fault scarps.

Figure 3: Conceptual graph showing the transportation and deposition of aeolian dust from the Junggar Desert to the northern piedmont of Tian Shan (modified from Sun (2002)).

Figure 4 (a): Google Earth map showing the studied sites and the locations of the fault scarps. (b): A schematic graph showing the geomorphology of the T-5 and T-6 of the Manas River. Six exposures (HTB0, HTB1, MNS1-MNS4) were studied to decipher late Quaternary faulting along the Hutubi and Manas faults. The cumulative vertical displacements of the reverse faults were measured from B-B’, C-C’ and D-D’. (c): A schematic graph showing the relation among the surface ruptures, fault scarp and terrace tread.

Figure 5: The exposures of the ruptures along the fault scarps and detailed OSL dating sampling positions and (a) (HTB0) (we could not find any appropriate loess samples for OSL dating, as the original fault scarp was destroyed as a result of the development of a gully along the fault); (b) (HTB1); (c) (MNS1); (d) (MNS2); (e) (MNS3); (f) (MNS4).
Figure 6: Schematic diagrams showing the loess infilling at the surface ruptures along the reverse fault scarps, in response to past faulting events. The process is illustrated with six representative stages.

Figure 7: Single-aliquot regeneration (SAR) equivalent dose versus pre-heat temperature for MNS2-4. The mean values with the standard errors are obtained from results of six aliquots. The horizontal line denotes the pre-heat plateau was reached from 220 °C to 260 °C.

Figure 8: Typical OSL shine-down curves and OSL growth curves of quartz grains from four loess samples (HTB1-4, MNS1-5, MNS2-1 and MNS3-4).

Figure 9: Radial plot results for D_e distributions of six loess samples from the five exposures (HTB1, MNS1-MNS4). In the plot, the D_e and the OSL ages of the six samples were calculated with the mean age model.

Figure 10: OSL dating results of the loess samples from the five exposures (HTB1, MNS1-MNS4) along the scarps of the Hutubi and Manas faults.
Figure 3
Fault scarps and trenches studied at T-5 and T-6 along the Manas River

Vertical slip rate: 0.74 ± 0.09 mm/yr
Vertical slip rate: 0.34 ± 0.04 mm/yr

Offset: 9.2±0.9m
Offset: 4.2±0.4m
Fig. 4(c)

cross-sections (B'--B, D'--D)

scars

Trenches(HTB1, MNS1-MNS4)

trapped loess

Surface rupture

terrace tread

Reverse Fault

terrace tread
Figure 5(a)
Figure 5(b)

Figure 5(c)
Figure 5(d)

Figure 5(e)
Figure 5(f)
Figure 6

(1)

(2)

(3)

(4)

(5)

(6)

Legend:
- Gravel
- Loess
- Surface soil
- Tertiary bedrock
Figure 7

![Graph showing the relationship between preheat temperature (°C) and D_e Gy for MNS2-4 and preheat plateau.](image-url)
Figure 8
Figure 10

HTB1 (Hutubi Fault)

MNS1 (Manas Fault)

MNS2 (Manas Fault)

MNS3 (Manas Fault)

MNS4 (Manas Fault)

Cobble, gravel and sand

Loess