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Global Spatio-temporal Patterns of 
Influenza in the Post-pandemic Era
Daihai He1, Roger Lui2, Lin Wang3, Chi Kong Tse4, Lin Yang5 & Lewi Stone6,7

We study the global spatio-temporal patterns of influenza dynamics. This is achieved by analysing 
and modelling weekly laboratory confirmed cases of influenza A and B from 138 countries between 
January 2006 and January 2015. The data were obtained from FluNet, the surveillance network 
compiled by the the World Health Organization. We report a pattern of skip-and-resurgence behavior 
between the years 2011 and 2013 for influenza H1N1pdm, the strain responsible for the 2009 
pandemic, in Europe and Eastern Asia. In particular, the expected H1N1pdm epidemic outbreak 
in 2011/12 failed to occur (or “skipped”) in many countries across the globe, although an outbreak 
occurred in the following year. We also report a pattern of well-synchronized wave of H1N1pdm in 
early 2011 in the Northern Hemisphere countries, and a pattern of replacement of strain H1N1pre by 
H1N1pdm between the 2009 and 2012 influenza seasons. Using both a statistical and a mechanistic 
mathematical model, and through fitting the data of 108 countries, we discuss the mechanisms that 
are likely to generate these events taking into account the role of multi-strain dynamics. A basic 
understanding of these patterns has important public health implications and scientific significance.

Seasonal influenza in temperate zones of the world is characterized by regular annual epidemics for 
most of the last fifty years1–3. According to historical reports, however, this annual periodicity was less 
apparent in the past. Between 1855 and 1889, influenza was not widely experienced and believed to have 
caused few deaths in Britain4. In the first half of the twentieth century, seasonal influenza seemed “erratic 
as regards its occurrence in both time and space”5. Between 1920 and 1944 there were 16 widespread 
influenza (both A and B) epidemics in the United States, the remaining eight years presumably being 
complete skips6. In the same period in the United States “visitations of influenza B … tended to come 
every four to six years and those of A every two to three.”4,5. Similarly, while in recent years annual out-
breaks are the norm, skips by different influenza subtypes (such as A and B) may unexpectedly occur, 
sometimes with one subtype temporarily replacing the other. To add another layer of complexity, the 
regular seasonal dynamic experience in the last decades can be grossly punctuated when a new pan-
demic virus strain appears, as was the case in 2009. Understanding those factors that enhance annual 
dynamics, and those factors which break it up is a research direction that deserves more attention. Even 
basic concepts concerning the competition between strains, cross-immunity, the influence of climatic 
factors or the effects of a country’s vaccination policy on the seasonal dynamics in the large, are poorly 
understood to date (e.g.,7).

To help explore these sorts of complexities, in this paper, we are interested in characterizing the 
spatio-temporal dynamics of influenza as they occurred globally following the last 2009 pandemic. A 
generic pattern easily identified for many countries in Europe is shown in Fig. 1e–g (red). There we see 
the initiation of the new H1N1pdm pandemic in March 2009, followed by major outbreaks in the fall 
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of 2009 and early 2011. Unusually an H1N1pdm outbreak failed to appear at all in the “skip year” of 
2011/12, given that the strain was very new, although the outbreak returned and resurged in 2012/13. 
As we will discuss shortly, this same pattern was generic to many countries across Europe, with slight 

Figure 1. Spatio-temporal patterns of H1N1pdm and H3N2. (Panels a–h) Square-root of weekly lab-
confirmed cases of H1N1pdm (red triangle) and H3N2 (blue circle) in eight geographical regions between 
January 2009 and January 2015. Black arrows indicate ‘skip’ seasons for H1N1pdm. Northern America 
(panel a) exhibits annual epidemics without a skip; Central America (panel b) exhibits seemingly biennial 
epidemic with a skip in both 2010/11 and 2012/13 seasons; South America (panel c) is irregular in pattern; 
Eastern Asia (panel d) and Europe (panel e–h) exhibit annual epidemics with a skip of H1N1pdm and a 
substantial epidemic of H3N2 during the 2011/12 season. Panel (i) summarises the global pattern during 
the 2011/12 season. Periodicity was estimated based on Fourier spectrum. The map is made with the free 
software R (http://www.r-project.org) and the country borders are from Sandvik B., World Borders Dataset 
http://thematicmapping.org (2009), date of access: 11/04/2015).

http://www.r-project.org
http://thematicmapping.org
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differences from country to country. A visualisation of the extraordinary skip-year across 45 countries 
is given in Fig. 2.

Many of the features of the time series in Fig. 1 can be explained in terms of basic epidemiological 
theory. Briefly, when the new 2009 pandemic influenza strain confronted a large susceptible human pop-
ulation it was able to generate a large-scale global epidemic. This placed in motion a succession of epi-
demic “waves” that followed one after the other. Since infected individuals who recover from the disease 
gain temporary immunity, each new epidemic wave also served to build up further the level of immunity 
in the population. In effect, this served to reduce the number of susceptible individuals available for 
future infection. At some point, when the number of available susceptibles fell below a threshold level, 
it became impossible for a new outbreak of the pandemic strain to trigger. This explains the “skip” year 
in 2011/12 in which the strain was mostly absent (see Fig. 2). The H1N1pdm strain resurged in 2012/13 
presumably because recovered individuals gradually lost their immunity, providing enough new sus-
ceptibles to trigger further outbreaks. A systematic theory for understanding epidemic oscillations and 
skips has been developed over the last decade8, which we will use to explain these long term dynamics.

Our detailed spatio-temporal analysis is based on time series data obtained from FluNet, a compre-
hensive global surveillance tool for influenza developed by the World Health Organization (WHO) in 
19979, in which virological data are documented in real-time and publicly available. When discussing and 
presenting the FluNet data it is convenient to use the following notation. We denote H1N1pre as the pre-
2009-pandemic seasonal A strains, H1N1pdm as the pandemic strain (H1N1pdm09) responsible for the 
2009 influenza pandemic, and H3N2 as the seasonal H3N2 strains whose original form was responsible 
for the 1968 influenza pandemic.

We note that FluNet has previously been employed to study the spread of influenza on global or 
large-scale spatio-temporal patterns in three other studies that we know of. Finkelman et al.10 stud-
ied the pre-2009-pandemic period between January 1997 and July 2006 in 19 temperate countries in 
both Hemispheres. They identified large scale co-existence of influenza A and B, interhemispheric syn-
chronized pattern for subtype A H3N2, and latitudinal gradients in the epidemic timing for seasonal 
influenza A. A recent study11 that focused on the Western Pacific Region between January 2006 and 
December 2010, found that dominant strains of influenza A were reported earlier in Southern Asia than 
in other countries. Thus, status in South Asian countries may provide early warning for other countries. 
Bloom-Feshbach et al.12 examined latitudinal variations in seasonal activity of influenza and respiratory 
syncytial virus (RSV) and applied a time series model to the seasonal influenza data from 85 countries. 
They found evidence of latitudinal gradients in timing, duration, seasonal amplitude and between-year 

Figure 2. Countries where H1N1pdm skipped the 2011/12 season (ordered in latitude from North to 
South). Countries with α1 <  log1/10 are coded in red and countries with log1/10 <  α1 <  log1/5 are in blue. 
The color (grey) scheme is in a square-root scale.
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variability of epidemics. In terms of the temporal pattern in a single region, Dorrigatti et al.13 studied 
the third wave of infection by the H1N1pdm pandemic strain in England in the 2010/11 season. They 
found that increased transmissibility and loss-of-immunity among the population may be responsible 
for this unexpected wave.

However, to our knowledge, no study has been conducted focusing on the global pattern of seasonal 
activities of the H1N1pdm pandemic virus and interactions among different strains based on the FluNet 
large-scale dataset from 2010 to 2013. This is of special interest given that the surveillance scale was 
substantially improved since 2010. Such a study is important to aid the development of strategies for 
relieving the burden of seasonal influenza. Understanding the spatial pattern may be useful in a global 
effort to reduce the impact of a deadly influenza pandemic. The activity of H1N1pdm still causes sub-
stantial attention in the post-pandemic era and has led to substantial morbidity and mortality in most 
years since its appearance, including 2013/14.

On the global network of influenza transmission, it is known that China and Southeast Asia lie at 
the center of the global network and USA acts as the primary hub of temperate transmission14,15. The 
expansion of H1N1pdm during 2009 can be explained with data on human mobility (air travel) and 
viral evolution16.

Materials and Methods
Weekly time series data of lab-confirmed cases (isolates) of influenza were obtained from FluNet for 138 
countries that have non-zero cases between January 2006 and January 2015. The analysis included six 
different types of time series: i) total specimens processed, ii) H1N1pre strains, iii) H3N2 strains, iv) 
H1N1pdm strain, v) un-subtyped influenza A, and vi) influenza B (including two circulation lineages).

The number of un-subtyped influenza A is often substantial and needs to be accounted for. Following10, 
we proportionally assigned the un-subtyped influenza A to the three subtypes as follows. Let the number 
of lab-confirmed cases of subtypes H1N1pre, H1N1pdm, H3N2 and un-subtyped A for any country in 
a particular week be a1, a2, a3 and a0, respectively. Then the new revised number for each of the three 
subtypes was taken to be: ′ = + /∑a a a a ai i i i0  for i =  1, 2, 3.

The statistical analysis was implemented in the R programming language (http://www.r-project.org/). 
We generally preferred to focus on regions (macro geographical continental regions and geographi-
cal sub-regions) rather than their constituent countries (see Fig. 1) because aggregated regional data is 
less influenced by stochasticity. We observed that nearly all countries, especially those in the temperate 
regions, largely followed their regional patterns.

The breakdown of countries of the eight regions used in this study may be found in the Supplementary 
Material §S9.

To compare between hemispheres it was convenient to redefine the initiation and termination dates 
of calendar years in a manner that makes influenza seasons (usually winter) line up. We therefore moved 
forwards the beginning and end dates that define years for Northern Hemisphere (NH) countries to 
stretch from the 35th week of a calendar year to the 34th week of the following calendar year, roughly 
overlapping the school calendar year. For countries in the Southern Hemisphere (SH), the calendar year 
remains the reference frame. Thus the skip-year (skip-season) of H1N1pdm is 2011/12 in NH and is 
2012 in SH, see Fig. 2.

A skip-year, or simply a skip, is defined as a season with an uninitiated or minor epidemic. What 
constitutes a “minor” epidemic is difficult to quantify precisely. For the purposes of this study, we for-
mulated the following practical quantitative comparative definition. If, after an epidemic year the number 
of influenza cases drops by more than a factor of ten, we consider this to be a skip year. We thus use the 
following simple measure defined for H1N1pdm:

α = ( + )/( + ) , ( )h k h klog{ } 11 11 10

where h10, h11 are the total number of lab-confirmed cases of H1N1pdm in that region during the 2010/11 
and 2011/12 seasons, respectively. The index compares the ratio of the number of cases in 2011/12 season 
to those in the 2010/11 season in NH (or 2012 to 2011 in SH). Our criterion for a “skip” is generally 
that α1 <  log(1/10), i.e., an order of magnitude difference. We set k =  50 in α1 to reduce errors magni-
fied when case numbers are small. The merit of using skip index (which is a ratio of two years) rather 
than the actual number is clear. In this way, we can remove the differences in the testing effort among 
countries and we can also remove the effects of different population sizes among countries. We assume 
that the total numbers of specimens processed had not varied much from year to year, which was true 
from 2010 to 2012.

Similarly we define skip-indices α2, α3, α4, for subtype H3N2, influenza B and total specimens pro-
cessed, respectively. We argue that as long as surveillance efforts and testing policies were implemented 
consistently in each country between 2010 and 2013, then effects due to differences in testing policies are 
removed by taking the ratio of confirmed cases over total cases in consecutive years. To our knowledge, 
there were no dramatic changes in surveillance effort in most countries from 2010 to 2013 (as observed 
from the total number of specimens processed).

http://www.r-project.org/
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Results
Skip-and-resurgence pattern of H1N1pdm. Figure  1 panels (a–h) show weekly aggregated 
lab-confirmed cases of subtypes H1N1pdm (red triangle) and H3N2 (blue circle) in the eight geograph-
ical regions having the largest case numbers in the period January 2009 and January 2015. A similar set 
of panels for thirty different countries (having the largest number of confirmed cases) may be found in 
Fig. S2 in the Supplementary Material . It should be emphasised that the graphs are scaled to highlight 
the trends (and also accommodate the extremely high peak in 2009) by plotting the square-root of the 
weekly lab-confirmed cases. The figures immediately identify a number of clear features. With regard to 
H1N1pdm, we summarise here:

(i) All regions in Europe and Eastern Asia have identical trends and experienced skip-years in 2011/12. 
In more detail these regions experienced two initial waves of H1N1pdm in 2009/10, followed by a 
single wave in 2010/11, a skip-year in the 2011/12 season and then a reemergence of H1N1pdm in 
the following 2012/13 season. The skip was more evident in Eastern/Southern Europe than Western/
Northern Europe. Although the latter experienced a minor outbreak in 2011/12, its peak was an order 
of magnitude lower than the previous season, and thus by our criteria could be classified as a skip. The 
size of the mini-outbreak is misrepresented and appears exaggerated due to the square-root scaling.

(ii) In stark contrast, H1N1pdm failed to show any skip in Northern America. In fact H1N1pdm exhib-
ited annual oscillations in Northern America, with an early and large wave appearing in the 2013/14 
flu season.

(iii)  Central America, where H1N1pdm originated, shows a different pattern to that of Europe and 
Eastern Asia. Instead skips occurred both in 2010/11 and 2012/13 but not in 2011/12 (Fig. 1b). The 
dynamics over these years were essentially biennial.

(iv) South America shows an irregular pattern (Fig. 1c).

With regard to H3N2 dynamics, we observe:

(i) All regions in Europe and Eastern Asia experienced significant H3N2 epidemics in 2011/12, which 
was a skip-year for H1N1pdm. Moreover, apart from 2012-2014, the H3N2 dynamics were essentially 
negatively correlated with H1N1pdm.

(ii) In Northern America H3N2 tended to oscillate synchronously in-phase with H1N1pdm in 2010-
2012.

A spatial summary of the dynamics of each geographic region has been superimposed on the world 
map of Fig. 1 panel (i). The regions colour coded in cyan experienced a skip year in 2011/12 and con-
stitute a considerable proportion of the global map.

We identified 27 countries with α1 <  log(1/10) and thus skip years. Total confirmations of the skip year 
was one order of magnitude lower than that of the previous year. Using a higher threshold α1 <  log(1/5), 
the number increases to 45 countries. Namely 18 countries have α1 between log(1/10) and log(1/5). The 
weekly confirmations of these latter countries are displayed in Fig.  2 (in latitude order) which gives a 
remarkable demonstration of the broad geographic synchrony of the epidemic skip over the globe. We 
note that most of the 45 countries experienced a resurgence of H1N1pdm in 2012/13.

2011/12 skip year and strain dynamics. Fig.  2 makes clear how the influenza dynamics of many 
countries are strongly correlated in time and skip synchronously in the 2011/12 period. The time series 
in Fig.  1 and S2 (in Supplementary Material) suggest that for nearly all countries the H1N1pdm and 
H3N2 cases are negatively correlated over the full period Jan 2006 to Jan 2015. This is exemplified in 
the 2011/12 season where H1N1pdm skipped in most countries while H3N2 outbreaks occurred in its 
place. To study this relation in more detail, we tested whether these two strains are correlated across 
all countries in the 2011/12 season alone. That is, we asked whether countries with smaller H1N1pdm 
outbreaks tend to have larger H3N2 outbreaks, in 2011/12 in NH (or 2012 in SH). Using the skip-index, 
eqn. (1), our analysis showed that of the 108 countries which reported more than 500 cases of all strains, 
the correlation coefficient across all countries is r =  − 0.61. (Without the threshold of 500, the correlation 
is r =  − 0.63.)

For a more detailed analysis of the 2010–2012 years, we considered a linear model with α1 as the 
response, and having seven different predictors: α2 (H3N2), α3 (flu B), rank of population size in the year 
2005, rank of area, rank of absolute latitude, rank of distance from Mexico and geographical region code. 
Regarding the distance from Mexico, we considered both Euclidean distance (defined as +x y2 2  where 
x, y are in terms of longitude and latitude, respectively) and effective distance17 and found no significant 
difference.

α α α= + + + . + . + . + . … ( )c c c c c c cpopn rank area rank dist rank region code 21 1 2 2 3 3 4 5 6 7

where the ci are constants to be fitted.
The H3N2 skip index (α2) was found to be a significant predictor (p-value <  0.001) of α1 though 

negatively correlated, while α3 (influenza B) was not a significant predictor (p-value ≈  0.452). Region 
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code and area rank were also found to be significant predictors (p-value <  0.001 and ≈  0.01 respectively), 
while all other predictors were not significant. These results parallel our observations that in broad terms, 
countries in the same region share a common pattern.

In this study, we have focused largely on the 2011/12 skip. However, it is evident from Fig. 1 of10 and 
Fig. S3 in the Supplementary Material that H3N2 exhibited a similar skip in 2000/01. After obtaining 
FluNet data for the period between 1995 and 2005 (see Supplementary Material §S6) we repeated the 
above analysis. The H3N2 skip-index for 2000/01 season was found to be negatively correlated with 
both H1N1pdm (r =  − 0.407) and influenza B (r =  − 0.573) across 72 countries. The negative correlation 
is evident in a scatter plot (Fig. S1 in the Supplementary Material). With a generalized linear model 
(the skip-index of H3N2 as the response and those of H1N1 and influenza B and countries absolute 
latitude as factors) both H1N1 and B were significant (p-value <  0.001). New variants of both H1N1pre 
and influenza B emerged in 1999 (A/New Caledonia/20/99 and B/Sichuan/379/99, respectively), which 
possibly played a role in the skip of 2000/01 for H3N2 uniformly across all countries. It is worth noting 
that A/New Caledonia/20/99 had been in the vaccine components for seven seasons. The new variant of 
H3N2, which may have enhanced the 2011/12 skip of H1N1pdm in Europe and Eastern Asia, was most 
likely A/Perth/16/2009.

Mathematical Model. We made use of modern mathematical modelling techniques18 to fit a stochas-
tic single-strain Susceptible-Exposed-Infectious-Recovered model (SEIR) to the FluNet influenza data 
from 2009 until the end of 2013. Details of the model are given in the Supplementary Material §S4. The 
original goal was to understand better those factors that caused the 2011/12 skip. The model fits were 
made for the ten countries having the largest total confirmations since the invasion of the strain in 2009.

The following assumptions were made when fitting the model:

•	 The initial susceptible proportion of the population was taken to lie between 40% and 75% for all 
countries rather than 100%. This takes into account that many of the elderly population had pre-
existing cross-reactive antibodies19. In addition it was found that the cross-protection provided by 
the pre-pandemic vaccine was as high as 19%20. The model is used to estimate the actual number of 
initial susceptible in the population

•	 The transmission rate β(t) was taken to be seasonal and modelled by a periodic function of time, with 
a period of one year. Weather variations and school terms are understood to be responsible for the 
seasonal variability21,22. We adopted a seven-node cubic spline function, and fixed the parameter of 
node seven to be equal to node one. The function is second-order differentiable except for the seventh 
node. Thus there were six free parameters in the transmission rate β(t).

•	 The reporting rate ρ(t) of each country was modelled by a three-piece step function of the following 
form:

ρ
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Here, 2009-6-11 is the date WHO announced the initiation of the 2009 pandemic and 2009-8-31 is the 
end of the 2008/09 flu season and the start of 2009/10 flu season. This allows for the sudden increase 
of the reporting rate during the 2009 pandemic. For example, the reporting rate changed dramatically 
during 2009 in the UK13 and in Canadian provinces23,24.

•	 If the infection dies out in a country after the invasion in the simulation, we introduced a single 
infected individual. This mimics the transmission of influenza between countries, so that no country 
is completely isolated.

•	 We fix σ =  365 and γ  =  182.5. Thus the latent and infectious periods are approximately 1.58 and 2.54 
days which lie in biologically reasonable range25. We used eqn. A7 in18 to calculate the latent and 
infectious periods in a time discretized setting with a time step size of 1 day. Also choosing a smaller 
time step size (such as 0.5 day) has a negligible effect on the results23.

•	 We also fit the duration of the immunity (λ −1) by calculating the maximum log likelihood profile for 
it. Namely we fixed the duration to eight discrete values spanning from 1.5 to 7 years, and maximized 
the performance of the model while fitting other parameters. Then from this profile we estimated 
λ −1, and its 95% confidence interval18.

The model essentially finds the best fitting estimates of the transmission rate and reporting ratio 
(as defined above) to the influenza A time series data by maximizing the relevant log likelihood. The 
output of the model is a plot of the profile log likelihood as a function of the duration of immunity. 
For example, Fig. 3 shows the best fitting model to the FluNet time series data (plotted in black) from 
ten countries when aggregating influenza A (i.e., by combining H1N1pdm data with H3N2. The inset 
figure plots the likelihood profile and shows that the maximum occurs when the immunity duration 
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(λ −1) is approximately two years in most countries and four years in some countries. In a recent study 
on H1N1pdm, Dorigatti et al.13 found that “the half-life of the decay of prior immunity is estimated to 
be ~1 year” where the authors only considered the first three waves in England. Cowling et al.26 found 
that “homosubtypic immunity against (influenza) infection lasted for at least 18 months” in a three-year 
clinical study. In summary, our estimates of ~2 years (and some around 4 years) is not far away from 
other recent studies.

We plot time series data of the median value of reported cases for 1000 model simulations. The 
median values are plotted in red, while the grey shaded regions indicate the 95% confidence interval. The 
median values sit close to the observed values (black lines) for all ten countries. The observed data falls 
well within the envelope of simulated model runs (and their 95% CIs), and therefore this signals that the 
stochastic model is performing as it should; we cannot reject the model fit as statistically implausible.

The fitted reporting ratio is shown in the top-left corner. The simulations match most of the observed 
waves for all ten countries. The estimated seasonal amplitudes in the transmission rate are small and 
largely consistent across countries, which suggests that the post-pandemic waves are largely due to 
loss-of-immunity and its associated replenishment of the susceptible pool (possibly impacted by dynam-
ical resonance27). The estimated reporting ratio is small and varied considerably across countries. (Note 
that in13, it was found that only 0.7% infected individuals actually visited a General Practitioner.)

We also attempted to use the same model for fitting single strain data including H1N1pdm alone and 
H3N2 alone. However, when modelling a single strain (either H1 or H3), fits were generally poor. In 

Figure 3. Fitting an SEIR model, with a cubic-spline function in the transmission rate, to influenza A 
confirmations in 10 countries. Panel a, a flowchart of the model. Panel (b–k), the results in 10 countries. 
Each panel shows the simulation (red) versus the observed (black), with the best fitting parameters. The 
dotted vertical lines indicate the two timings for the reporting ratio changes. The simulations are median 
values for each week of 1000 simulations and shaded region show the 95% range. The inset panel shows the 
profile log-likelihood for the duration of immunity.
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particular, the model was unable to predict the skip in 2011/12 for any country. Since the main short-
coming of the model used is that it is only a single strain, we conclude that a multi-strain model that 
includes the interaction between the H1N1pdm and H3N2 strains is needed to capture the 2011/12 skip. 
The model will be substantially more complicated and is beyond the scope of this paper.

We also considered using a sinusoidal function (three parameters) to replace the seven-node (six free 
parameter) cubic spline function. We found that the cubic spline model performs better in 9 out of ten 
countries. The difference in the AICc

24, the estimated reproductive number 0 and initial susceptible 
proportions are given in Table S5 (Supplementary Material).

Synchrony Patterns. We examined the synchrony pattern across Northern Hemisphere (NH) coun-
tries (latitude >  29°) for the three strains, H1N1 (combined H1N1pdm and H1N1pre), H3N2, and influ-
enza B. We focused on the period from Jan 2006 to Jan 2015.

In order to quantify synchrony, following10 we made use of the Mean Confirmation Time index, or 
MCT. The MCT for country-j, is the mean time of infection of all infected persons over the course of 
the epidemic under examination. Thus, if in country-j there are ni confirmations in the wi th week of a 
season for a particular strain, then

∑ ∑= / .
( )

n w nMCT
4j

i
i i

i
i

If all countries have the same MCT, so that MCTj= c is the same constant for each country-j, then 
the distribution of the MCTj is just a single spike indicating that the countries are highly synchronized. 
Obviously, the smaller the standard deviation amongst the different MCTj the more synchronized are 
the different countries. The synchrony analysis examines the distribution of MCTj over all countries 
j =  1, 2,…, N (median and standard deviation) for different strains and different seasons. Countries with 
no cases were removed from the analysis. The results are shown in Fig. 4 and listed in Table S1 in the 
Supplementary Material . We examined the NH countries and for this purpose grouped H1N1pre and 
H1N1pdm together as H1N1.

Fig.  4 show that countries were more synchronized by H1N1pdm than by H3N2 or influenza B in 
2010/11 and 2012/13. Indeed, from Table S1 in the Supplementary Material, the standard deviation of 
MCT for the H1N1pdm strain in the 2010/11 and 2012/13 seasons were significantly smaller than the 
other seasons and any of the other strains. Table S2 showed the correlation between the epidemic size 
(total confirmations) versus the median and SD of MCT. From Table S2, we found negative correlations, 
which suggests that more intense epidemics tend to initiate earlier (small median of MCT) with stronger 
synchronized pattern (small variance of MCT). This effect is more evident for H1N1pdm and flu B rather 
than H3N2. This may reflect a more efficient transmissibility of the H1N1pdm virus which allows it to 
spread more rapidly between countries. These findings corroborate what is observed by eye in Fig.  2, 
and that the MCT of H1N1 only varies by some 5 weeks across all countries. Note that the median of 

Figure 4. Distribution of Mean Confirmation Time for three strains, H1N1 (H1N1pre and H1N1pdm), 
H3N2 and Influenza B, in Northern Hemisphere in eight flu seasons. 
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MCT of influenza B seems larger than the two influenza A strains (by two weeks), suggesting that the 
flu B epidemic lagged behind the other two flu A strains10. We reproduced the same tables for the other 
countries (latitude <  29) in Table S3 and S4 and did not notice any clear pattern.

Patterns of Strain Replacement. Table  1 lists the annual total confirmations of H1N1pre. It is 
interesting to note that the 2008 total (pre-pandemic) was double that in 2006, which was due to an 
increase in testing effort (total specimens processed). The high number in 2009 was most likely due to 
the extensive testing during the pandemic. The numbers decreased quickly after 2009 suggested that 
H1N1pre was replaced by H1N1pdm28 The low numbers in 2012–2014 are likely to be errors, either 
misclassification or mis-input. For example, six cases of H1N1pre were reported in Poland in the 7th 
week of 2014. However, close observation revealed that there were minor epidemics of both H1N1pdm 
and H3N2 in that period, yet data was unexpectedly missing in these categories. But despite its absence 
anywhere else, six cases of H1N1pre were recorded suggesting possible misdiagnosis. No evidence for 
an epidemic of H1N1pre after 2011 has been found so far. It is interesting to note that the original form 
of the H1N1pre subtype had an unusual re-emergence in 1977 some 20 years after its disappearance29.

Discussion
Fundamental epidemiological principles are able to explain the skip dynamics seen in Figs. 1,2 in rela-
tively simple terms. When the new strain H1N1pdm first appeared in March 2009, the population at 
large had no previous exposure to the strain. This allowed the pandemic to develop into a global-scale 
epidemic even though outside the normal influenza season in many countries. With the passage of time, 
each successive epidemic outbreak exposed the population at large further to the new H1N1pdm strain, 
thereby building up population immunity and reducing the number of susceptible individuals13. Thus by 
the end of 2011/12, the susceptible pool of individuals available for infection had reduced below a criti-
cal threshold level, so that the epidemic failed to trigger over the 2011 winter season. In epidemiological 
parlance, by “burning out” the available susceptible pool, the virus effectively reduced the effective repro-
ductive number  below unity making it impossible for the epidemic to initiate in the 2011/12 season. 
This set the stage for the opportunist H3N2 virus to outcompete and replace H1N1pdm, thus accounting 
for the H3N2 outbreak at the end of 2011. Fig.  1 makes clear the complex interaction between the 
H1N1pdm and H3N2 strains as they compete for the available pool of susceptible individuals as well as 
offer cross-protection.

It is interesting that in Central America where H1N1pdm first appeared, the outbreak progression 
was different to the above pattern. Two skip-seasons were observed in 2010/11 and 2012/13 (see Mexico 
in Fig. S2 in the Supplementary Material). These skips were in all likelihood an outcome of the same 
underlying process, namely a burn-out of susceptibles from the previous waves.

Other mechanisms such as climatic variation, poor surveillance (changes in reporting ratio) and 
results of new births unlikely played a key role here. There were no previous studies showing that these 
factors favor H3N2 rather than H1N1pdm. These factors are largely the same between Europe and 
Northern America. Sampling bias in different age groups might have played some role, as elderly is more 
vulnerable to H3N2 than H1N1pdm. Unfortunately FluNet data contains no age information.

The occurrence of skips gives information regarding the loss-of-immunity (strain specific) in the pop-
ulation, particularly if there might be only a single viral strain, or if the viral strain is stable and evolves 
only at a relatively slow rate. The latter is the case for the H1N1pdm strain which is believed to have been 
antigenically stable since its emergence in 200930. As an indication of its stability, the vaccine component 
against H1N1pdm recommended by the WHO and the United States Food and Drug Administration 
(FDA) was not updated since fall of 2009, while those vaccine components against H3N2 and influenza 
B have been updated more than twice already (see Table S10 in the Supplementary Material). If the 
H1N1pdm strain was indeed stable over these last years, and the virus evolved relatively slowly, then the 
main source of new susceptibles in the population was largely derived through natural loss of immunity. 
In these circumstances, the resurgence of H1N1pdm in 2012/13 after the skip in 2011/12 should be 
viewed as a consequence of the natural loss-of-immunity in the population26.

The differences in influenza dynamics between Northern America (no skip) and Europe (skip) given 
that they share many common factors with regard to economics, culture, climate and latitude are in some 
respects surprising. We speculate the different dynamics may be connected with the influenza vaccina-
tion coverage which was consistently higher in Northern America than in Europe (and the rest of the 
world). High coverage of vaccination (against H3N2) among general population could have slowed down 
the transmission of H3N2, thus saved H1N1pdm from skip a year in Northern America. Vaccination 

year 2006 2007 2008 2009 2010 2011 2012 2013 2014

H1N1pre 13268 18983 29807 37879 709 41 3 5 17

Total Specimens 355834 513430 671232 2290733 1186197 1270287 1350542 1672204 810570

Table 1.  Annual Total Confirmations of H1N1pre and Total Specimens Processed.
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coverage has been consistently close to 40% in the United States and 30% in Canada, but less than 30% 
in Europe (see Supplementary Material §S6) and other parts of the world, for example 14% in Hong 
Kong (http://www.chp.gov.hk/) (see the skip in Hong Kong in Fig. S3 in the Supplementary Material). 
Also intriguing is that many parts of Northern America and Central America had much higher attack 
rates of H1N1 in 2009 and influenza-associated mortality in 2009 was almost 20-fold higher in some 
countries in America than in Europe (see31). Additional work is still needed to understand which fac-
tors are responsible for the different spatio-temporal patterns of influenza seen in Europe and America. 
It should be noted that the vaccine is trivalent, and thus affords protection against H1N1pdm as well 
as H3N2. However, in 2011 it had most impact on the H3N2 susceptible members of the populations, 
since a significant proportion of the population (who received the vaccine such as school children and 
elderly) were previously infected, and thus naturally immunized against H1N1pdm. If vaccination has 
most impact on H3N2 susceptibles, then it may release H1N1pdm from competition with H3N2. Such a 
competitive release could favour the spreading of H1N1pdm, as was seen in the US and Canada.

Our attempts to fit the time series data of aggregated influenza A confirmed cases using the same 
simple SEIR model are shown in Fig.  3 and are reasonably well given that they capture the different 
trends observed in ten different countries. That the same SEIR model reproduced the different trends 
suggests that the dynamics of influenza epidemics have a large degree of determinism and the model is 
considerably robust. Moreover this indicates that the key assumptions behind the SEIR model are largely 
being met. Namely, the classical mathematical concept of infection being spread by a randomly mixing 
population and mean field dynamics appear to apply when modelling large real human populations. The 
different features of each country’s influenza A time series can be explained through a change in the 
SEIR model’s parameters. It is also interesting that the model fits (likelihood profiles) indicate a reason-
ably fast loss of immunity in the vicinity of 2–4 years. This could explain the fast susceptible buildup 
required during skip years, which would be necessary to generate the resurgent epidemics observed in 
the following years.

Our analysis has given interesting insights into the global patterns of the invasion of H1N1pdm, 
which first appeared as a pandemic and then, within a few years, apparently outcompeted and completely 
replaced the H1N1pre seasonal flu strain. The synchrony between countries of the H1N1pdm outbreaks 
is striking particularly as witnessed in the highly visible skip (Fig. 2), where for a large number of coun-
tries, H1N1pdm failed to outbreak in the 2011 flu season. Moreover, the synchrony between countries 
in H1N1pdm outbreak years was also very strong (see Fig.  3). The FluNet data gave a comprehensive 
picture of these phenomenon as they evolved in time over several years, and also in space over 138 
countries.
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