<table>
<thead>
<tr>
<th>Title</th>
<th>Predisposing factors, microbial characteristics and clinical outcome of microbial keratitis in Hong Kong: a 10-year experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ng, ALK; Wong, IYH</td>
</tr>
<tr>
<td>Citation</td>
<td>The 7th World Cornea Congress (WCC-7), San Diego, CA., 15-17 April 2015.</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2015</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/210649</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Predisposing Factors, Microbial Characteristics, and Clinical Outcome of Microbial Keratitis in Hong Kong: A 10-Year Experience

Alex LK Ng, Ian YH Wong

Department of Ophthalmology, The University of Hong Kong

All authors have no proprietary interests in the materials discussed in this presentation
Background

Microbial keratitis

• Knowledge of microbial distribution and antibiotic susceptibility pattern essential to guide initial treatment before corneal scraping results available
• Geographical variations exist
 → Local epidemiological data essential

Purpose

• To study the predisposing factors, microbial characteristics and clinical outcome of microbial keratitis in a tertiary centre in Hong Kong in the past 10 years
Method

- Retrospective study
- Period: Jan 2004 – Dec 2013 (10 years)
- Venue: Queen Mary Hospital, Hong Kong
- All corneal scrapings results reviewed
 - Culture results
 - Antibiotic susceptibility patterns
- Case notes review
 - Risk factors
 - Presenting features
 - Clinical outcome
Result (1) – Culture Results

- Total scraps: **347**
- Age: 46 +/- 21
- **32.3%** culture positive
- 130 micro-organisms
- 4.6% polymicrobial

Overall most prevalent:
1. Coagulase-negative *Staphylococcus*
2. *Pseudomonas*
3. *Staphylococcus aureus*

- **90.8%** Bacteria
 - **57.6%** Gram-positive
 - 50% coagulase-negative *Staphylococcus*
 - 25% *Staphylococcus aureus*
 - **42.4%** Gram-negative
 - 66% *Pseudomonas*

- **9.2%** Fungus
 - **33%** *Fusarium*
Result (1) – Culture Results

No shifting trends observed:
Gram-positive: $p=0.634$, $r=0.172$
Gram-negative: $p=0.722$, $r=-0.129$
Result (2) – Antibiotic Susceptibility

- Overall:
 - Fluoroquinolones: 93.6% (tested in 47 Gram -isolates)
 - Aminoglycoside:
 - Overall 88% (tested in 92 isolates)
 - Gram – only: 93.3% (45 tested)
 - Ceftazidime: 100% (tested in 38 Gram – isolates)

- For *Pseudomonas*:
 - 100% susceptibility to all commonly employed agents:
 - Fluoroquinolones
 - Aminoglycosides
 - Ceftazidime

- For *S. aureus*:
 - Only 1 case *MRSA* (5.9%)
Result (2) – Antibiotic Susceptibility

Figure 2. Susceptibility and resistance to fluoroquinolone, vancomycin, gentamicin, cefuroxime, ceftazidime, and fusidic acid in bacterial isolates tested.
82.3% cases had at least 1 identifiable risk factors.

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>% of cases</th>
<th>age</th>
<th>% culture positive rate</th>
<th>Commonest growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Contact-lens wear</td>
<td>42.7%</td>
<td>28.4</td>
<td>34.2</td>
<td>Pseudomonas</td>
</tr>
<tr>
<td>2. Keratopathies / Ocular surface diseases</td>
<td>31.5%</td>
<td>58.0</td>
<td>52.3</td>
<td>Coagulase-negative Staphylococcus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>3. Systemic conditions*</td>
<td>18.5%</td>
<td>62.4</td>
<td>56.3</td>
<td>Coagulase-negative Staphylococcus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staphylococcus aureus</td>
</tr>
<tr>
<td>4. Traumatic</td>
<td>10.4%</td>
<td>40.3</td>
<td>22.2</td>
<td>Staphylococcus aureus</td>
</tr>
</tbody>
</table>

*immunocompromised state or mental illness resulting in poor self-care. Includes: diabetes mellitus, end-stage malignancy, chronic renal or liver impairment, bed-bound or institutionalized patients (incapable of self-care), chronic steroid therapy
Result (4) – Clinical Presentation

- **Lesion size**
 - 87.6% ulcer < 3mm
 - 12.4% ulcer > 3mm

- **Hypopyon**
 - 13% cases
 - Significantly associated with *Pseudomonas*
 - 48.3% in *Pseudomonas* vs 13.5% in non-*Pseudomonas*, p <0.0005 (chi-square test)

- **Treatment regime**
 - 91.5% started topical fluoroquinolones as first line
 - 38% of these combined with aminoglycosides
 - 6.5% started with combined fortified antibiotics (ceftazidime plus tobramycin or vancomycin).

- **90% cases good initial response**
 - Improvement in pain, infiltrate size, epithelial defect size or amount of hypopyon
 - 12% cases needed to step up treatment

- **lack of treatment response after 48-72 hours,**
 - or guided by the antibiotic susceptibility result
Result (5) – Clinical Outcomes

• 90.7% good outcome
 – resolved keratitis without loss in VA

• 9.3% poor outcome
 – dropped VA
 – serious complication
 • Endophthalmitis: 2
 • Therapeutic PK: 1
 • Enucleation: 1

• Associated with poor outcome (dropped VA)
 – Age (average 62.7 in poor outcome cases), p=0.05
 – Traumatic, p=0.009
 – Larger presenting lesion size, p=0.044

*Univariate logistic regression
Conclusion

• Slightly Gram-positive predominant

• Commonest:
 – Coagulase-negative *Staphylococcus*
 – *Pseudomonas*
 – *Staphylococcus aureus*

• No shifting trend in the isolate distribution nor emergence of resistant strains in the past 10 years

• Commonest risk factor: Contact lens-wear
 – *Pseudomonas* being the most frequent isolate in this group.

• *Pseudomonas* remained 100% susceptible to fluoroquinolones, aminoglycosides and ceftazidime

• Risk factors for poor outcome:
 – Age
 – Traumatic keratitis
 – Large presenting ulcer size
THANK YOU

Contact:

Dr Alex Ng, nlk008@hku.hk
Dr Ian Wong, wongyhi@hku.hk