<table>
<thead>
<tr>
<th>Title</th>
<th>The role of regulatory B cells on hepatocellular carcinoma progression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Shao, Y; Lo, CM; Ling, C; Liu, X; Ng, KTP; Guo, J; Ma, YY; Li, C; Fan, ST; Man, K</td>
</tr>
<tr>
<td>Citation</td>
<td>The 21st Hong Kong International Cancer Congress (HKICC 2014), Hong Kong, 21 November 2014.</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/210472</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
The role of regulatory B cells on hepatocellular carcinoma progression

Y Shao, CM Lo, CC Ling, XB Liu, KTP Ng, J Guo, YY Ma, CK Li, ST Fan and K Man
Department of Surgery, The University of Hong Kong, Hong Kong

Background
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with a poor prognosis of limited survival. Human regulatory B cells (Bregs), a new subset of B cells, play an important role in autoimmune disease. However, the role of Bregs in the HCC progression and the underlying mechanisms is still unknown.

Objective
➢ To study the roles of Bregs in liver tumor growth and invasion
➢ To investigate the underneath mechanisms of Bregs regulating HCC progression

Results

1. Human intrahepatic B cells and peripheral B cell subsets participated in HCC progression.

2. Human Bregs engrafted in SCID mice and promoted tumor growth.

3. Bregs promoted proliferation and invasion of HCC cells.

4. CD154 neutralization abolished Bregs induced tumor growth.

5. Bregs interacted with HCC cells through CD40-CD154 signaling.

Conclusion
➢ Abundance of B cells at HCC tumor margin was associated with cancer progression.
➢ Circulating regulatory B cells (Bregs) were associated with HCC progression.
➢ Bregs promoted HCC progression through CD40-CD154 interaction in vivo and in vitro.
➢ Suppression of Bregs may be an appealing therapeutic strategy in the treatment of HCC.

Acknowledgment
The study is supported by HKU3/CRF11R, HKU1/CRF10 and GRF/HKU775011M. Special appreciation would be given to Faculty of Core Facility, the University of Hong Kong.