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Abstract  

In this paper, a numerical framework based on the lattice Boltzmann method is presented for modeling 

two-phase electroosmotic flow within microchannels. In the model, lattice Boltzmann schemes are 

designed for all the governing equations involved such as Navier-Stokes equations for momentum 

transport, Nernst-Planck equations for ion transport, the Cahn-Hilliard equation for the immiscible 

fluid interface motion, and Poisson equation for the electric potential referring the model proposed in 

Shao’s work [6]. Related boundary schemes are also proposed to modeling the slip effect on the 

microchannel surfaces. The theoretical analysis shows that the model has second order accuracy. 

 

Keyword: lattice Boltzmann method, electrokinetic phenomena, two-phase flow 

 

1. Introduction 

Electroosmotic flow in microchannels is an important phenomenon in many industry applications 

especially involving lab-on-a-chip. Owing to the scale effect, hydrodynamic slip boundary condition 

now usually cannot be neglected. In the meantime, the overlapped electric double layers (EDL) effect 

may appear and the widely used Poisson-Boltzmann model becomes invalid in describing the 

phenomenon. As in many applications, hydrophobic or hydrophilic wall surfaces will be used for 

special purposes such as accurate control on the flow rate in the channels. Thus two-phase or 

multiphase electroosmotic flow in the microchannels combined the boundary slip and overlapped 

electric double layers (EDL) effect poses an urgent task to find proper models to understand the 

underlying mechanism.  

Up to now, few works has been to include all above effects [1-6]. Among these works, Shao [6] first 

proposed a continuum hydrodynamic model for two-phase immiscible flows which can include the 

hydrodynamic slip boundary, the overlapped electric double layers effect. However, the corresponding 

numerical framework is not discussed in detail and the advanced frameworks can investigate the 

problem are still rare.   

As a popular mesoscopic method, lattice Boltzmann method has shown its ability in modeling the 

microfluidics and nanofluidics especially the electroosmotic flow[7-10]. However, no works have 

been done to investigate all above effect. In this paper, a lattice Boltzmann based numerical 

framework is presented to modeling the problem. The rest sections are organized as follows: In section 

2, the governing equations and related boundary conditions are introduced. In section 3, the lattice 

Boltzmann model to solve the equations is proposed and some implementation details are presented. 

Finally, in section 4, some useful conclusions are summarized. 
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2. Governing equations 

As mentioned in the introduction part, three kinds of effect are to be considered, which are overlapped 

EDL, hydrodynamic slip, two-phase flow.  In order to include all these effects, the governing 

equations are to be solved as follows referring Shao’s work [6]: 

−∇ ∙ (𝜖∇V) = ∑ 𝑒𝑞𝛼𝑐𝛼𝛼                              (1) 

   
  𝜕𝑐𝛼

𝜕𝑡 
+ 𝒖 ⋅ ∇𝑐𝛼 = ∇ ⋅ (𝐷𝛼∇𝑐𝛼 + 𝑒𝑞𝛼𝑀𝛼𝑐𝛼∇𝑉 +𝑀𝛼𝐵𝛼𝑐𝛼∇𝜙)                  (2) 

𝜕𝜙

𝜕𝑡
+ 𝒖 ⋅ ∇𝜙 = ∇ ⋅ (𝑀𝜙∇𝜇𝜙)                                        (3) 

∇ ⋅ 𝒖 = 0                                   (4) 

𝜌 (
𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ ∇𝒖 ) = ∇ ⋅ 𝝈 − ∇𝑝 + 𝜇∇𝜙 −

𝜖̃𝑬2

2
 ∇𝜙 − 𝑘𝐵𝑇∑ ∇𝑐𝛼 𝛼 + 𝜌𝑒𝑬   (5) 

In the governing equations, Eq. (1) is the Poisson equation governing the relationship between the 

electric potential 𝑉 and the net change density 𝜌𝑒 (where 𝜌𝑒 = ∑ 𝑒𝑞𝛼𝑐𝛼𝛼 , 𝑒𝑞𝛼 and 𝑐𝛼 are the 

corresponding charge and concentration of the 𝛼th ion species involved. Here 𝑒, 𝑞𝛼 are the 

elementary charge and the valence of the 𝛼th ion species) in the electrolyte solution. In the 

equation, 𝜖 is the dielectric constant. It should be noted that in the single phase flow problem, 𝜖 

in the whole region is a constant value indeed. However, 𝜖 in the phase interface region is not a 

constant any more because two-phase flow is introduced here. Therefore, if mean field theory is 

assumed, we can set  

𝜖(𝜙) =
𝜖1(1 − 𝜙)

2
+
𝜖2(1 + 𝜙)

2
= 𝜖̅ + 𝜖̃𝜙, 𝜖̅ =

𝜖1 + 𝜖2
2

, 𝜖̃ =
𝜖2 − 𝜖1
2

 

for simplicity, where 𝜙  is an order parameter determined by Eq. (3) in the phase field to 

distinguish between the two immiscible fluid components, 𝜖1, 𝜖2 are the dielectric constants of the 

two immiscible fluids respectively . 

Eq. (2) is the Nernst-Planck equation governing the ion transportation for each ion species. In the 

equation, 𝒖 is the velocity of the incompressible fluid in the microchannels. 𝐷𝛼 is the diffusion 

coefficient of the 𝛼th ion species and 𝑀𝛼 is the corresponding mobility which can be calculated 

by the Einstein relation 𝐷𝛼 = 𝑀𝛼𝑘𝐵𝑇 from 𝐷𝛼. Here 𝑘𝐵 , 𝑇 are the Boltzmann constant and the 

reference temperature. The term 𝑀𝛼𝐵𝛼𝑐𝛼∇𝜙 here reflects the block effect of the fluid-fluid 

interface on the ion transport. In the term, 𝐵𝛼 is a parameter to measure the phase field barrier 

height that keeps the ions within the electrolyte and keeps them from penetrating into the 

nonconductive fluid in the channels. Nernst-Planck equation here is solved instead of using the 

Boltzmann distribution to determine the ion distribution in the channel, therefore, the overlapped 

EDL effect can be described by this governing equation. 

To include the two-phase fluid flow in the microchannels, a phase field based model is used.  In 

the model, Eq.(3) , the Cahn-Hilliard equation is introduced to capture the immiscible fluid 
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interface motion; the Navier-Stokes equations (4)-(5) are introduced to model the fluid flow 

involved. Unlike the Cahn-Hilliard equation without considering the electric effect, here a general 

form of the diffusion term is used which reads 

 𝜇𝜙 = 𝜇 + ∑ 𝐵𝛼𝑐𝛼 −
𝜖

2

̃
𝑎  (∇𝑉)2                            (6) 

where  

𝜇 = −∇ ⋅ (𝐾∇𝜙) − 𝑟𝜙 + 𝑢𝜙3 

is the chemical potential in the bulk and the last two terms in the Eq. (6) model the electric effect 

on the interface motion of the two immiscible fluids. Here 𝐾, 𝑟, 𝑢  are material parameters 

associated with the fluid–fluid interface, the relationship between these parameters and the 

interfacial thickness 𝜉 and interfacial tension 𝛾 reads 

𝜉 = √𝐾/𝑟 ,              𝛾 =
2√2𝑟2𝜉

3𝑢
  

In the incompressible Navier-Stokes equation, Eq. (4) is the continuum equation and Eq.(5) is the 

momentum equation. In Eq. (5), 𝑝 is the pressure,  𝝈 = 𝜂(∇𝒖 + 𝒖∇) is the viscous stress tensor, 

𝜂 here is the dynamic viscosity of fluid involved. Owing to the two-phase flow is considered, by 

assuming the mean field theory, we can also set 𝜂 as a function of the order parameter 𝜙 for 

simplicity 

𝜂(𝜙) =
𝜂1(1 − 𝜙)

2
+
𝜂2(1 + 𝜙)

2
 

Similarly, the density of the fluid 𝜌 can also read as 

𝜌(𝜙) =
𝜌1(1 − 𝜙)

2
+
𝜌2(1 + 𝜙)

2
 

where 𝜂1, 𝜂2, 𝜌1, 𝜌2 are dynamic viscosity and density of the two immiscible fluids respectively. To 

address the electric effect and two-phase flow effect, four last terms in right hand side of Eq.(5) are 

introduced, where  𝜇∇𝜙  is for the capillary force, −
𝜖̃𝑬2

2
 ∇𝜙  models the Maxwell stress and 

−𝑘𝐵𝑇∑ ∇𝑐𝛼 𝛼  is due the osmotic pressure gradient, 𝜌𝑒𝑬  is the electric body force.  Here 

𝑬 = −(∇𝑉 + ∇𝜓) is the strength of the total electrical field and 𝜓 in the expression is the external 

applied electric potential.   

The corresponding boundary conditions at the microchannel walls for the governing equations 

(1)-(5) uses in this work are as follows: 

𝜕𝑛𝑉 =
𝜎

𝜖
                                 (7) 
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𝜕𝑛𝜇𝛼 = 0                                (8) 

𝜕𝜙

𝜕𝑡
+ 𝑢𝜏𝜕𝜏𝜙 = −Γ𝐿𝜙                         (9) 

𝜕𝑛𝜇𝜙 = 0                             (10) 

𝛽𝑣𝜏
𝑠𝑙𝑖𝑝

= −𝜂(𝜕𝑛𝑢𝜏 + 𝜕𝜏𝑢𝑛) + 𝐿𝜙𝜕𝜏𝜙                  (11) 

𝑢𝑛 = 0                           (12) 

Where Eq. (7) is for the Poisson equation (Eq. (1)), Eq. (8) is for the Nernst-Planck equations (Eq.(2)) 

for each ion species transport, Eq.(9-10) is for the Cahn-Hilliard equation (Eq.(3)) and Eq.(11-12) is 

for the Navier-Stokes equations (Eq.(4-5)). In the equations, 𝜎 is the surface charge density on the 

walls of the microchannels. Similarly, the density is a function of the order parameter 𝜙, here the 

nonlinear interpolation method is used and the expression reads 

𝜎(𝜙) = 𝜎1 (1 − sin
𝜋𝜙

2
) + 𝜎2 (1 + sin

𝜋𝜙

2
) = 𝜎̅ + 𝜎̃ sin

𝜋𝜙

2
, 𝜎̅ =

𝜎1 + 𝜎2
2

,   𝜎̃ =
𝜎2 − 𝜎1
2

 

In Eq. (8), 𝜇𝛼 is defined as the chemical potential for 𝑐𝛼 

𝜇𝛼 = 𝑘𝐵𝑇(ln 𝑐𝛼 + 1) + 𝑒𝑞𝛼𝑉 + 𝐵𝛼𝜙 

In Eq. (9), the relaxational boundary condition for the order parameter 𝜙 is used. Γ here is a positive 

rate coefficient and 𝐿𝜙 in the right hand side of the equation has the following form.  

𝐿𝜙 = 𝐾𝜕𝑛𝜙 + (𝑉𝜎̃ −
√2

3

𝑟2𝜉

𝑢
cos 𝜃𝑠)𝑠𝛾(𝜙) 

where 𝑠𝛾(𝜙) =
𝜋

2
cos

𝜋𝜙

2
 and 𝜃𝑠 is the static contact angle at the fluid-solid surface.  Eq.(10) is the 

boundary condition for the effective chemical potential 𝜇𝜙 at the fluid-solid surface. Eq. (11-12) 

describes the hydrodynamic slip boundary condition for tangential velocity at the fluid-solid surface 

and the boundary condition for normal velocity respectively. Here 𝛽 is the slip coefficient and also a 

local composition of 𝜙. Similarly, it reads 

                                𝛽(𝜙) =
𝛽1(1−𝜙)

2
+
𝛽2(1+𝜙)

2
 

If we denote,  

𝒙 = 𝒙′𝐿𝑟𝑒𝑓 , 𝒖 = 𝒖′𝑈𝑟𝑒𝑓 ,   𝑡 = 𝑡
′
𝐿𝑟𝑒𝑓

𝑈𝑟𝑒𝑓
,   

𝑝 = 𝑝′𝜌𝑟𝑒𝑓𝑈𝑟𝑒𝑓
2 , 𝑐𝛼 = 𝑐𝛼

′ 𝐶𝑟𝑒𝑓 , 𝑬 = 𝑬
′𝐸𝑟𝑒𝑓 , 𝑉 = 𝑉

′𝐿𝑟𝑒𝑓 𝐸𝑟𝑒𝑓 , 𝜎 = 𝜎
′𝑒𝐿𝑟𝑒𝑓𝐶𝑟𝑒𝑓  

Here 𝐿𝑟𝑒𝑓 , 𝑈𝑟𝑒𝑓 ,  𝜌𝑟𝑒𝑓 , 𝐸𝑟𝑒𝑓  are the reference parameters for length, velocity, density and the 
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strength of the electrical field, we will have 

∇=
∇′

𝐿𝑟𝑒𝑓
,
𝜕

𝜕𝑡
=

𝜕

𝜕𝑡′
𝑈𝑟𝑒𝑓

𝐿𝑟𝑒𝑓
 

Then we can get the dimensionless version of the above governing equations (the primes are dropped): 

 

−∇ ∙ (ℰ∇𝑉)   = ∑ 𝑞𝛼𝑐𝛼𝛼                              (13) 

𝜕𝑐𝛼

𝜕𝑡
+ 𝒖 ⋅ ∇𝑐𝛼 = ∇ ⋅ (𝒟𝛼∇𝑐𝛼 +𝒫𝛼𝑞𝛼𝑐𝛼∇𝑉 + 𝒞𝛼𝑐𝛼∇𝜙)             (14) 

                        
𝜕𝜙

𝜕𝑡
+ 𝒖 ⋅ ∇𝜙 = ℒ𝑑∇ ⋅ (∇𝜇) +  ∇ ⋅ (∇∑ ℒ𝛼𝑐𝛼𝑎 )  − ℒ𝑒∇ ⋅ (∇(∇𝑉)

2)          (15) 

∇ ⋅ 𝒖 = 0                               (16) 

𝜕𝒖

𝜕𝑡
+ 𝒖 ⋅ ∇𝒖 =∇ ⋅ (∇𝒖 + 𝒖∇) 

1

𝑅𝑒
  − ∇𝑝 + ℬ𝜇∇𝜙 − 𝒬𝑬2 ∇𝜙 − 𝒮 ∑ ∇𝑐𝛼𝛼 + ℱ∑ 𝑞𝛼𝑐𝛼𝛼 𝑬    (17) 

where 

ℰ =
𝜖𝐸𝑟𝑒𝑓

𝑒𝐿𝑟𝑒𝑓𝐶𝑟𝑒𝑓
,      𝒟𝛼 =

𝐷𝛼
𝐿𝑟𝑒𝑓𝑈𝑟𝑒𝑓

,     𝒫𝛼 =
𝑒𝐸𝑟𝑒𝑓𝑀𝛼

𝐿𝑟𝑒𝑓𝑈𝑟𝑒𝑓
 ,    𝒞𝛼 =

𝐵𝛼𝑀𝛼

𝐿𝑟𝑒𝑓𝑈𝑟𝑒𝑓
 

  

ℒ𝑑 =
𝑟𝑀𝜙

𝑈𝑟𝑒𝑓𝐿𝑟𝑒𝑓
 , ℒ𝛼 =

𝑀𝜙𝐶𝑟𝑒𝑓𝐵𝛼

𝑈𝑟𝑒𝑓𝐿𝑟𝑒𝑓
,   ℒ𝑒 =

𝑀𝜙𝜖̃𝐸𝑟𝑒𝑓
2

2𝑈𝑟𝑒𝑓𝐿𝑟𝑒𝑓
, 𝑅𝑒 =

𝜌𝐿𝑟𝑒𝑓𝑈𝑟𝑒𝑓

𝜂
  

 ℬ =
𝑟

𝜌𝑈𝑟𝑒𝑓
2 , 𝒬 =

1

𝜌𝑈𝑟𝑒𝑓
2

𝜖̃𝐸𝑟𝑒𝑓
2

2
,   𝒮 =

𝐶𝑟𝑒𝑓

𝜌𝑈𝑟𝑒𝑓
2 𝑘𝐵𝑇, ℱ =

𝐿𝑟𝑒𝑓

𝜌𝑈𝑟𝑒𝑓
2 𝑒𝐶𝑟𝑒𝑓𝐸𝑟𝑒𝑓 

Here we assume  𝑟 = 𝑢 in the derivation for simplicity and then 𝜇 reads as 

𝜇 = −
𝜉2

𝐿𝑟𝑒𝑓
2 ∇ ⋅ (∇𝜙) − 𝜙 + 𝜙3 

by using the expression     𝜉 = √𝐾/𝑟 . 

The corresponding boundary conditions can also be derived as follows: 

𝜕𝑛𝑉 =
𝜎

ℰ
                                 (7) 

𝒟𝛼 𝜕𝑛𝑐𝛼 + 𝑐𝛼   𝒫𝛼𝑞𝛼𝜕𝑛𝑉 + 𝑐𝛼   𝒞𝛼𝜕𝑛𝜙 = 0                  (8) 

𝜕𝜙

𝜕𝑡
+ 𝑢𝜏𝜕𝜏𝜙 = −𝒱𝑠𝐿 − 𝒱𝑒𝑉𝜎̃𝑠𝛾(𝜙)                       (9) 

𝜕𝑛(ℒ𝑑𝜇 + ∑ ℒ𝛼𝑐𝛼𝛼 − ℒ𝑒(∇𝑉)
2) = 0                     (10) 



- 187 - 
 

𝑢𝜏
𝑠𝑙𝑖𝑝

= −ℒ𝑠𝜕𝑛𝑢𝜏 + (ℬℒ𝑠𝐿 + ℱ𝑉𝜎̃𝑠𝛾(𝜙))𝜕𝜏𝜙                  (11) 

𝑢𝑛 = 0                           (12) 

where 𝐿 =
𝜉2

𝐿𝑟𝑒𝑓
2 𝜕𝑛𝜙 −

√2

3
cos 𝜃𝑠 𝑠𝛾(𝜙)  

 3. Lattice Boltzmann model 

To solve the above governing equations (13-17), a lattice Boltzmann based numerical framework is 

presented in this work. Four lattice Boltzmann schemes are constructed to recover the equations, the 

Poisson equation, the Nernst-Planck equation, Cahn-Hilliard equation and Navier-Stokes equation. In 

this part, we will introduce them one by one. In addition, the schemes which deal with the boundary 

conditions are presented in the end.   

As for the Poisson equation, many lattice Boltzmann models have been proposed in the literatures 

[9,10]. Here the model introduced by Chai [9] is used owing to its advantages in eliminating the 

transient term existing in the previous models. In the model, the traditional single relaxation time 

lattice Boltzmann model is used to solve Eq. (13). Thus the evolution equations of the corresponding 

density distribution functions read: 

𝑓𝑉𝑖(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝑉𝑖(𝒙, 𝑡) = −
1

𝜏𝑉
(𝑓𝑉𝑖(𝒙, 𝑡) − 𝑓𝑉𝑖

𝑒𝑞(𝒙, 𝑡)) − 𝛿𝑡 𝜔𝑖̅̅ ̅ ∑𝑞𝛼𝑐𝛼
𝛼

 

Here 𝜏𝑉 is the dimensionless relaxation time and  𝛿𝑡 𝜔𝑖̅̅ ̅ ∑ 𝑞𝛼𝑐𝛼𝛼  is for the source term in the right 

hand side of the Poisson equation.  𝑓𝑉𝑖
𝑒𝑞(𝒙, 𝑡) is the equilibrium distribution function associated with  

𝑖th discrete velocity direction 𝒄𝑖 at position 𝒙 and time 𝑡,  and can be written as  

𝑓𝑉𝑖
𝑒𝑞(𝒙, 𝑡) = {

(1 − 𝜔0)𝑉(𝒙, 𝑡),     𝑖 = 0 

𝜔𝑖𝑉(𝒙, 𝑡),          𝑖 = 1 − 8
 

for D2Q9 model, and 𝜔𝑖̅̅ ̅ and 𝜔𝑖 here are weighting coefficients involved and can be defined as, 

 

𝜔̅𝑖 = {
0,           𝑖 = 0
1

8
,       𝑖 = 1 − 8

,    𝜔𝑖 =
1

9
, 𝑖 = 0 − 8 

The discrete velocity 𝒄𝑖 here is defined as 

𝒄𝑖 =

{
 
 

 
 

(0, 0)𝑐,                                                                   𝑖 = 0

(cos [
(𝑖 − 1)𝜋

2
] , sin [

(𝑖 − 1)𝜋

2
] ) 𝑐,                       𝑖 = 1 − 4

√2(cos [
(𝑖 − 5)𝜋

2
+
𝜋

4
] , sin [

(𝑖 − 5)𝜋

2
+
𝜋

4
] ) 𝑐,   𝑖 = 5 − 8

 

where 𝑐 = 𝛿𝑥/𝛿𝑡 is the particle velocity and 𝛿𝑥, 𝛿𝑡 are the lattice spacing and time step. 𝜏𝑉 can be 

get by 

ℰ =
2

3
(𝜏𝑉 −

1

2
) 𝑐2𝛿𝑡 

The macro parameter solved here, the electrical potential 𝑉(𝑥, 𝑡) can be calculated as 

𝑉(𝒙, 𝑡) =
1

1 − 𝜔0 
∑𝑓𝑉𝑖

𝑒𝑞(𝒙, 𝑡)

𝑖=1
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As for the Nernst-Planck equation Eq.(14), the multiple relaxation time lattice Boltzmann model is 

used by referring the model proposed by Chai[11] for general convection-diffusion equations. In the 

model, the evolution equation of the corresponding density distribution function for 𝛼th ion transport, 

 

 𝑓𝐶𝑖(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝐶𝑖(𝒙, 𝑡)

= −[𝑀−1𝑆𝑐𝑀]𝑖𝑗 (𝑓𝐶𝑗(𝒙, 𝑡) − 𝑓𝐶𝑗
𝑒𝑞(𝒙, 𝑡)) + 𝛿𝑡 [𝑀−1 (1 − 

  𝑆𝑐

2
  )𝑀]

𝑖𝑗

𝑅𝐶𝑗(𝒙, 𝑡) 

Here 𝑓𝐶𝑖(𝒙, 𝑡) is the density distribution function associated with 𝑖th discrete velocity 𝒄𝑖 at position 

𝒙 and time 𝑡 and 𝑓𝐶𝑗
𝑒𝑞(𝒙, 𝑡) is the corresponding equilibrium distribution function with form as 

𝑓𝐶𝑖
𝑒𝑞(𝒙, 𝑡) = 𝜔𝑐𝑖𝑐𝛼 (1 +

𝒄𝑖 ⋅ 𝒖

𝑐𝑠
2 +

(𝒄𝑖 ⋅ 𝒖)
2

2𝑐𝑠
4 −

𝒖 ⋅ 𝒖

2𝑐𝑠
2 ) + 𝜔𝑐𝑖̅̅ ̅̅   

𝑐𝛼𝑝

𝜌𝑐𝑠
2 

Where the related weighting coefficients for D2Q9 model can be read as               

                         𝜔𝑐̅̅̅̅ 𝑖 =

{
 
 

 
 −

5

9
,           𝑖 = 0

   
1

9
,       𝑖 = 1 − 4

1

36
,       𝑖 = 5 − 8

,    𝜔𝑐𝑖 =

{
 
 

 
 

 

4

9
,           𝑖 = 0

   
1

9
,       𝑖 = 1 − 4

1

36
,       𝑖 = 5 − 8

, 

 

the transformation matrix 𝑀 can be written as  

𝑀 = 

(

 
 
 
 
 
 

1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 2 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1

 

)

 
 
 
 
 
 

 , 

 

𝑆𝑐 = 𝑑𝑖𝑎𝑔(𝑠0
𝑐 , 𝑠1

𝑐 , 𝑠2
𝑐 , 𝑠3

𝑐 , 𝑠4
𝑐 , 𝑠5

𝑐 , 𝑠6
𝑐 , 𝑠7

𝑐 , 𝑠8
𝑐)  in the evolution equation is the non-negative diagonal 

relaxation matrix. If we set 𝑠3
𝑐 = 𝑠5

𝑐 =
1

𝜏𝛼
, the relaxation parameters can be obtained by 

𝒟𝛼 = 𝑐𝑠
2 (𝜏𝛼 −

1

2
)𝛿𝑡 

The values for other relaxation parameters are chosen as shown in Chai’s work [4]. 𝑅𝐶𝑗(𝒙, 𝑡) in the 

discrete source term can be read as 

     

𝑅𝐶𝑗(𝑥, 𝑡) = 𝜔𝑐𝑗 [(1 +
𝒄𝑗 ⋅ 𝒖

𝑐𝑠
2 )𝑅 +

𝒄𝑗 ⋅ (
𝑝
𝜌
∇𝑐𝛼 +

𝑐𝛼(𝑭𝑎 + 𝑭)
𝜌

)

𝑐𝑠
2 ] 

Here  

𝑅 = ∇ ⋅ (𝒫𝛼𝑞𝛼𝑐𝛼∇𝑉 + 𝒞𝛼𝑐𝛼∇𝜙), 𝑭 = ℬ𝜇∇𝜙 − 𝒬𝑬
2 ∇𝜙 − 𝒮∑ ∇𝑐𝛼𝛼 + ℱ∑ 𝑞𝛼𝑐𝛼𝛼 𝑬, 𝑭𝑎 =
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𝜌𝐴−𝜌𝐵

𝜙𝐴−𝜙𝐵
(ℒ𝑑∇ ⋅ (∇𝜇) +  ∇ ⋅ (∇∑ ℒ𝛼𝑐𝛼𝑎 )  − ℒ𝑒∇ ⋅ (∇(∇𝑉)

2))𝒖 

The macro parameters 𝑐𝛼 can be evaluated by  

 

𝑐𝛼 =∑𝑔𝑖 +
𝛿𝑡

2
𝑅

𝑖

 

∇𝑉, ∇𝑐𝛼 involved in the equations can be calculated by 

∇𝑉 = −
1

2
3 𝑐

2𝜏𝑉𝛿𝑡
∑𝒄𝑗  (𝑓𝑉𝑗 − 𝑓𝑉𝑗

𝑒𝑞
)

𝑗

 

 

∇𝑐𝛼 = −
∑ 𝒄𝑖[𝑓𝐶𝑖 − 𝑓𝐶𝑖

𝑒𝑞
] +

𝛿𝑡
2 (

𝑐𝛼(𝑭𝑎 + 𝑭)
𝜌 + 𝒖𝑅)𝑖

𝛿𝑡 (𝜏𝛼𝑐𝑠
2 +

𝑝
2𝜌)

 

As for the Cahn-Hilliard equation, another multiple relaxation time lattice Boltzmann model is used 

referring the work by Liang [12]. In the model, the evolution equation for the corresponding density 

distribution is presented as 

ℎ𝑖(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − ℎ𝑖(𝒙, 𝑡) = −Λ𝑖𝑗
ℎ [ℎ𝑗(𝒙, 𝑡) − ℎ𝑗

𝑒𝑞(𝒙, 𝑡)] + 𝛿𝑡𝑅𝑖(𝒙, 𝑡) 

where ℎ𝑖(𝒙, 𝑡) is the density distribution function for the order parameter 𝜙 and ℎ𝑖
𝑒𝑞(𝒙, 𝑡) is the 

corresponding equilibrium distribution function,  

ℎ𝑖
𝑒𝑞(𝒙, 𝑡) = {

𝜙 + (𝜔0
ℎ − 1)𝜂𝜇𝜙,   𝑖 = 0

𝜔𝑖
ℎ𝜂𝜇𝜙 +𝜔𝑖

ℎ 𝑐𝑖 ⋅ 𝜙𝒖 

𝑐𝑠
2 , 𝑖 ≠ 0

 

where the weighting coefficients 𝜔𝑖
ℎ read 

                  𝜔𝑖
ℎ =

{
 
 

 
 

 

4

9
,           𝑖 = 0

   
1

9
,       𝑖 = 1 − 4

1

36
,       𝑖 = 5 − 8

, 

Here 𝑐𝑠
2 =

1

3
𝑐2  and  𝜇𝜙  in ℎ𝑖

𝑒𝑞(𝒙, 𝑡) has the following expression  

𝜇𝜙 = 𝜇 +∑
ℒ𝛼
 ℒ𝑑

𝑐𝛼
𝑎

+
ℒ𝑒
 ℒ𝑑

(∇𝑉)2 

 Λ𝑖𝑗
ℎ = 𝑀−1𝑆ℎ𝑀 is the collision operator, the transformation matrix 𝑀 has the same form as in 

previous models, the relaxation matrix 𝑆ℎ here is  

 

 𝑆ℎ = 𝑑𝑖𝑎𝑔(𝑠0
ℎ , 𝑠1

ℎ , 𝑠2
ℎ, 𝑠3

ℎ , 𝑠4
ℎ , 𝑠5

ℎ, 𝑠6
ℎ , 𝑠7

ℎ , 𝑠8
ℎ)  

If we set 𝜏ℎ =
1

𝑠3
ℎ =

1

𝑠5
ℎ, the relaxation parameters can be calculated by ℒ𝑑 = 𝜂𝑐𝑠

2 (𝜏ℎ −
1

2
) 𝛿𝑡. 

The discrete source term here reads as  
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 𝑅𝑖 = (𝑀
−1 (𝐼 −

𝑆ℎ

2
)𝑀)

𝑖𝑗

𝑅̅𝑗 

where 

𝑅̅𝑗 =
𝜔𝑗𝑐𝑗 ⋅ 𝜕𝑡𝜙𝒖

𝑐𝑠
2 , 

The macro parameter 𝜙 can be got by 

 

𝜙 =∑ℎ𝑖  

𝑖

   

In this model, we need calculate the time derivate and one or second order spacial derivatives for certain 

functions such as 𝜕𝑡𝜙𝒖 or ∇ ⋅ (∇𝜙). Here the explicit difference scheme is used for time derivate and 

second-order isotropic central schemes [13] are recommended for calculate one or second order spacial 

derivatives of certain functions. The schemes are as follows: 

 

𝜕𝑡𝜒(𝒙, 𝑡) = (𝜒(𝒙, 𝑡) − 𝜒(𝒙, 𝑡 − 𝛿𝑡))/𝛿𝑡 

∇𝜒(𝒙, 𝑡) =∑
𝜔𝑖
ℎ𝑐𝑖𝜒(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡)

𝑐𝑠2𝛿𝑡
𝑖≠0

 

∇2𝜒(𝒙, 𝑡) =∑
2𝜔𝑖

ℎ[𝜒(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡) − 𝜒(𝒙, 𝑡)]

𝑐𝑠2𝛿𝑡2
𝑖≠0

 

Here 𝜒(𝒙, 𝑡) is an arbitrary function. 

As for the Navier-Stokes equation, multiple relaxation time lattice Boltzmann model again is used 

referring the work by Liang [12]. In the model, the evolution equation for the corresponding density 

distribution is  

𝑔𝑖(𝒙 + 𝒄𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑔𝑖(𝒙, 𝑡)

= −[𝑀−1𝑆𝑔𝑀]𝑖𝑗[𝑔𝑗(𝒙, 𝑡) − 𝑔𝑗
𝑒𝑞(𝒙, 𝑡)] + 𝛿𝑡 [𝑀−1 (1 − 

  𝑆𝑔

2
  )𝑀]

𝑖𝑗
𝐹𝑗(𝒙, 𝑡) 

where the equilibrium distribution function 𝑔𝑖
𝑒𝑞(𝒙, 𝑡) is defined as  

𝑔𝑖
𝑒𝑞(𝒙, 𝑡) =

{
 

 𝜌𝑠𝑖(𝒖) +
(𝜔𝑖

𝑔
− 1)𝑝

𝑐𝑠2
,   𝑖 = 0

𝜌𝑠𝑖(𝒖) + 𝜔𝑖
𝑔 𝑝 

𝑐𝑠2
,            𝑖 ≠ 0

 

In the expression 𝜔𝑖
𝑔
= 𝜔𝑖

ℎ , 𝑠𝑖(𝒖) = 𝜔𝑖
𝑔
(
𝒄𝑖⋅𝒖

𝑐𝑠
2 +

(𝒄𝑖⋅𝒖)
2

2𝑐𝑠
4 −

𝒖⋅𝒖

2𝑐𝑠
2) ,  𝑀  has the same form as the 

transformation matrix in the previous models. The relaxation matrix is defined as  

𝑆𝑔 = 𝑑𝑖𝑎𝑔(𝑠0
𝑔
, 𝑠1
𝑔
𝑠2
𝑔
, 𝑠3
𝑔
, 𝑠4
𝑔
, 𝑠5
𝑔
, 𝑠6
𝑔
, 𝑠7
𝑔
, 𝑠8
𝑔
) 

If we set 𝜏𝑔 =
1

𝑠7
𝑔 =

1

𝑠8
𝑔, we can calculate the relaxation parameter by 

1

𝑅𝑒
= 𝑐𝑠

2 (𝜏𝑔 −
1

2
) 𝛿𝑡,   

As for the discrete force term 𝐹𝑗, we can define it as  
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𝐹𝑗 =
(𝒄𝑗 − 𝒖)

𝑐𝑠
2

⋅ {[Γ𝑗(𝒖) − Γ𝑗(0)]∇(𝜌𝑐𝑠
2) + (𝑭𝑎 + 𝑭)Γ𝑗(𝒖)},   

where Γ𝑗(𝒖) =
𝑓𝑖
𝑒𝑞

𝜌
  and 𝑓𝑖

𝑒𝑞
= 𝜔𝑖𝜌 + 𝜌𝑠𝑖(𝒖) 

The macro parameters  𝒖 and 𝑝 can be got by 

𝒖 =
[∑ 𝑐𝑖𝑔𝑖 +

1
2𝛿𝑡𝑭𝑖 ]

[𝜌 −
1
2𝛿𝑡

(𝜌𝐴 − 𝜌𝐵)∇ ⋅
𝑀𝜙∇𝜇𝜙
𝜙𝐴 − 𝜙𝐵

]

 

𝑝 =
𝑐𝑠
2

1 − 𝜔0
𝑔 [∑𝑔𝑖 +

1

2
𝛿𝑡𝒖 ⋅ ∇𝜌 + 𝜌𝑠0(𝒖)

𝑖≠0

] 

As for the boundary condition implementation scheme, the non-equilibrium extrapolation method is 

used which is proposed by Guo [14]. As an example, we present here the implementation procedure of 

the method for Eq.(9-10). In the method, the density distribution function ℎ𝑖(𝒙𝑩, 𝑡) at certain wall 

node is first decomposed into its equilibrium and non-equilibrium parts  

ℎ𝑖(𝒙𝑩, 𝑡) = ℎ𝑖
𝑒𝑞(𝒙𝑩, 𝑡) + ℎ𝑖

𝑛𝑒𝑞(𝒙𝑩, 𝑡) 

As for the non-equilibrium part, we can approximate it by the corresponding non-equilibrium parts at 

the nearest fluid node 𝒙𝑭 

ℎ𝑖
𝑛𝑒𝑞(𝒙𝑩, 𝑡) ≈ ℎ𝑖(𝒙𝑭, 𝑡) − ℎ𝑖

𝑒𝑞(𝒙𝑭, 𝑡) 

As for the equilibrium part, we only need to get approximate values of the macro parameters 𝜙, 𝜇𝜙 

on the wall node by applying certain finite difference schemes on Eq.(9-10). Once the values is 

obtained, we can calculate the ℎ𝑖
𝑒𝑞(𝒙𝑩, 𝑡). 

Through Chapman-Enskog expansion analysis and Taylor approximation method, Eq. (13)-(17)    

can finally be recovered with second order accuracy by the lattice Boltzmann based numerical 

framework proposed referring the similar procedures used in the literatures [9,10,11,12]. 

 

4. Conclusions  

In this work, a numerical framework based on the lattice Boltzmann method is proposed to simulating 

two-phase electroosmotic flow in microchannels with hydrodynamic slip boundary conditions.  In the 

framework, a single relaxation time lattice Boltzmann model is presented for the Poisson equation 

which governing the electrical potential in the channels, and multiphase relaxation time lattice 

Boltzmann models are introduced for the Nernst-Planck equation which describes the ion 

transportation, the Cahn-Hilliard equation which models the interface motion between two immiscible 

phases, and Navier-Stokes equations which models the fluid flow transportation. By using this model, 

all three effects mentioned in the introduction part, the overlapped EDL, two-phase flow, 

hydrodynamic slip effect can be investigated. Theoretical analysis can show that the numerical 

framework can recover the governing equations involved with second order numerical accuracy.    
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