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Abstract: Dielectrophoresis is one of the popular ways to manipulate bio-particles. In this work, numerical 

simulations of two-dimensional interactive motion of multiple dielectrophoretic particles in an electrolyte 

subjected to a uniform DC electric field are performed. The dielectrophoretic forces on particles are calculated 

by an integral of the Maxwell Stress Tensor (MST) on both sides of the particle surfaces. It is shown that 

behaviors of interactive motion of dielectrophoretic particles are strongly affected by the difference in 

permittivity between the particles and the electrolyte. Similar particles (all positive or negative electrophoresis) 

will finally form a chain parallel to the electric field, whereas dissimilar particles (mixed positive and negative 

electrophoresis) will form a chain that is perpendicular to the electric field.  The particle velocity and time 

behavior of interactive motion are investigated.  The key findings are as follows.  First, the time required to 

form a negative particle chain (N-N) is smaller than that for a positive particle chain (P-P) under the same 

conditions of applied field and permittivity ratio ( ): .p mε ε  Second, as the ratio ( ):p mε ε  increases, the 

chain-formation time decreases for a P-P particle chain, but increases for an N-N particle chain. Third, the 

chain-formation time will decrease with increase of the particle size ratio ( )max min:a a  for a three-particle 

chain with different particle sizes. 
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1. INTRODUCTION  

Dielectrophoresis (DEP) is a phenomenon where a force is exerted on a dielectric particle in a nonuniform 

electric field [1-3]. The DEP phenomenon was first defined by Pohl [4] based on the equivalent dipole method 

(EDM).  Electrical polarization of finite-size particles can distort the local electric field, resulting in a further 

nonuniform field around particles. Consequently, an interactive DEP force between particles can be induced 

even in a uniform electric field. Traditionally the EDM has been widely used for DEP force calculation owing 

to its simplicity, but it is not accurate in some situations like a high number density or large size of particles 

[5,6], where the gap between particles is comparable to or smaller than the particle size, and the particles are 

likely to interact with each other.  EDM becomes inapplicable when there is interaction between 

dielectrophoretic particles.  In addition, the Clausius-Mossotti (CM) factor in EDM may not be exactly 

applicable to non-spherical particles.  DEP force calculation based on the Maxwell stress tensor (MST) [6] 

gives accurate results in all situations in theory, but is cumbersome in implementation. The particles 

experience hydrodynamic and DEP forces during electrophoresis, while particle motion may distort both the 

electric and flow fields, which will in turn affect the forces acting on the particles.  Fluid-particle-electric field 

interactions as well as DEP should be fully taken into account in order to accurately predict the electrokinetic 

particle transport in a microfluidic system.  Kang and Li [7] investigated relative motions of a pair of spherical 

particles in DEP by applying a semi-analytical  approximation  to  the  solution of  a  dielectric  force acting on 

particles and  their  trajectories.  However, their approximate solution is valid only when the initial gap 

between particles is larger than the particle size.  Furthermore, the assumption of a constant Stokes drag is not 

applicable for DEP particle–particle interaction. House et al. [8] studied the DEP particle–particle interactions 

for ellipsoidal particles using the boundary element method. The boundary element method, however, can only 

be used in a linear problem in which a thin electric double layer (EDL) is assumed for the DEP interaction 

force. Using an arbitrary Lagrangian–Eulerian (ALE) method, Ai and Qian [9-12] performed direct numerical 

simulations of two-dimensional liquid-solid interaction of a pair of cylindrical particles in an externally applied 

uniform electric field.  In their problem, the flow, electric field and particle motions are solved simultaneously. 

Later, Kand and Maniyeri [13] performed direct numerical simulations to investigate the DEP interaction of 

three particles.  They employed a finite difference method and a smoothed representation technique to solve 

for the electric field. Moreover, the particles were considered as completely insulating medium, and therefore 

the field inside the particles could be ignored.  In general, particle polarization in a field is mainly due to a 

difference in permittivity between the particle and the surrounding electrolyte.  The particle permittivity should 

therefore be taken into account for a complete DEP study.  Recently, Hossan and Dillon [14] investigated the 

DEP motions of multiple particles using a hybrid immersed interface–immersed boundary method with an aim 

to examine DEP particle interaction including effect of permittivity difference between the particles and the 

electrolyte.  To the best knowledge of the authors, DEP particle interaction of multi-particles with different 

sizes has not been studied in the existing literature.  The main objective of this work is to explore dynamic 



 

 3 

behavior of interactive motion of multiple particles with different sizes in an applied uniform electric field via 

numerical solutions based on the full Navier-Stokes equation and an Arbitrary Lagrangian–Eulerian algorithm 

for liquid-solid interaction. 

2.  VALIDATION OF NUMERICAL ACCURACY OF DIELECTROPHORETIC FORCE BY MAXWELL 

STRESS TENSOR (MST)  

To verify the numerical accuracy of MST in calculating electrophoretic force, a comparison is made between 

the dipole approximation method and the MST method when they are applied to a numerical example as 

detailed in Refs. [15,16]. A cylindrical particle with permittivity pε  is immersed in an electrolyte with 

permittivity fε  Based on the equivalent dipole method, the DEP force acting on the particle can be written as 

follows [15]: 
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where φ is the applied electric potential without particles, and the constant C is given by 
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The subscripts f and p denote the fluid and the particle, respectively, and a is the particle radius. Beause the 

permittivity and electrical field are discontinuous across the particle-fluid interface, one needs to calculate 

MST on both sides of  the particle surface [ 15,16].  The Maxwell stress tensors read as follows: 
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where I denotes the second-order unit tensor, and Ef and Ep are the electric field in the fluid and in the particle, 

respectively. The electrophoretic force of particle is obtained by an integral of MST over the particle surface: 

( )∫ ⋅−= dsE
f

E
p nTTFdep                                                                                                      (6) 

where n is the unit normal vector on the particle surface pointing to the fluid. The numerical example used for 

validation and the pertained parameters are given in Ref. [15]. A particle is located in an electric field, as 

shown in Fig. 1.  For simplicity, the numerical details are not presented here.  

 

Fig.1 Computational domain and boundary conditions of the numerical example for validation. 

 

A comparison of the electrophoretic force on a cylindrical particle as calculated by the MST and the dipole 

approximation is shown in Fig. 2. 

--  

Fig. 2 Comparison of DEP force on a circular cylinder  particle calculated using dipole approximation and 

MST methods, as a function of particle radius. 
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It can be seen that dipole approximation method and MST method give almost the same DEP force for a small 

particle, ma µ4≤ in the present example.  Deviation of results generated by the two methods increases with 

increase of the particle radius. It has been known that the dipole approximation is based on the point–dipole 

assumption, which is applicable only for a single small particle, while the MST is theoretically exact in general. 

 

3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS FOR PARTICLE INTERACTION IN 

AN ELECTRIC FIELD 

Consider a pair of similar particles suspended in a viscous incompressible fluid in an L L× square domain 

(ABCD).  A uniform electric field E is applied, as shown in Fig. 3, where a  is the particle radius, R is the 

distance between the two particle centers, θ is the initial directional angle between the connecting line of the 

two particles and the x-axis, Ω1, Ω2 and Ω3 denote the fluid domain and the two particle domains, respectively, 

and 1 2,Γ Γ  denote the surfaces of the two particles.  

 

Fig. 3 A pair of similar particles suspended in electrolyte subjected to an externally applied electric field E. 

 

Let us use the particle radius a  as the length scale, the electric potential 0ϕ  as the potential scale, 

( )2
0 0fU aε ϕ η=  as the velocity scale, and 0U aη  as the pressure scale. Then, the normalized electric 

potential is governed by the Laplace equation:   
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02 =∇ φ                                                                                                                                        (7) 

The electric potentials on AB and CD are specified as φ =1 and φ =0, respectively. The other boundaries are 

insulated walls: 0=∇⋅ φn ,   , p f
p f p fn n

ϕ ϕ
ϕ ϕ ε ε

∂ ∂
= =

∂ ∂
 on the particle surfaces 1 2,  Γ Γ . The Reynolds 

number of fluid flow in dielectrophoresis is typically so low that the fluid inertia can be neglected. The 

equations governing mass and momentum conservation of the fluid are as follows: 

0=⋅∇ u                                                                                                                                        (8) 
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where 0Re /aUρ η= , in which ,ρ η  are the fluid density and dynamic viscosity. The fluid velocity on the 

particle surface is related to the translational and rotational velocities of the particle, expressed as [12]: 

( )pisipipii xxωUu −×+=      1,2i =   on 1 2,Γ Γ                                                                  (10) 

where Upi and ωpi are the translational velocity and rotational velocity of the ith particle, and xsi and xpi are the 

position vector of the surface, and of the center of the ith particle, respectively. A symmetry condition is 

imposed on the boundaries BC and AD, and zero pressure is specified on the boundaries AB and CD. The 

particles are assumed to be far away from the boundaries. The force and torque being normalized by 0Uη  

and 0a Uη , respectively, the translation and rotation of the ith particle are governed by [12]: 
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where the mass mpi and the moment of inertia Ipi of the ith particle are normalized by 0a Uη  and 3
0a Uη , 

respectively.  FHi and FEi are the hydrodynamic force and the DEP force, which are obtained by integrating the 

hydrodynamic stress tensor (TH ) and the MST (TE ) over the surface of the ith particle: 
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4. RESULTS AND DISCUSSION 

4.1. Interactive motions of a pair of similar particles  

A particle with permittivity ratio / 1p fε ε >  is defined as a positive dielectrophoretic particle, abbreviated as a 

P particle in this paper. A particle with / 1p fε ε < is defined as a negative dielectrophoretic particle, or an N 

particle.  Particles are called similar when they are either all P particles (P-P), or all N particles (N-N).  

Particles are called dissimilar when there are P and N particles in the group (P-N).  A pair of identical particles 

initially located at 3R a=  and 85θ = °  will turn around clockwise, finally forming a particle chain aligned 

with the electric field, as shown in Fig. 4, where the colors are contours of the electric field and the lines are 

flow streamlines. 

 

 

                       
 

Fig. 4a Initial configuration of  
a pair of N-N particles.  
 

Fig. 4b Final alignment of a particle 
chain of a pair of N-N particles 

/ 0.1p fε ε = . 
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It can be seen from Figs. 4(c, d) that the particles will attract each other.  The N-N particles tend to move 

toward a lower field, while the P-P particles tend to move toward a higher field.  The motion trajectories of a 

pair of identical particles are shown in Fig. 5.     

 

Fig. 5  Trajectories of interactive motion of a pair of identical N-N particles  
initially located at 3R mµ=  and θ = 85°. 

 

In the region of 45 90θ° < < ° , the particles will experience a repulsive force, by which they move outward 

and revolve in the clockwise direction.  In the region of 45θ < ° , the particles will on the contrary experience 

an attractive force, by which they move inward and move clockwise.  Finally, the two particles will get close 

to each other forming a chain that is aligned with the electric field, as is shown in Figs. 4(c, d).   These 

Fig.4d Final alignment of a 
particle chain of a pair of P-P 
particles / 10p fε ε = . 

Fig. 4c Initial configuration of  
a pair of P-P particles.  
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Fig. 7  The time variations of the x-velocity of the 
lower particle in a pair of P-P particles. 

behaviors are consistent with those reported previously in Refs. [12-14]. Motion trajectories of the upper 

particle of the similar particle chain are shown in Fig. 6 for different values of the permittivity ratio ( p mε ε ).  

It can be seen that the trajectory length of P-P particles ( 1p mε ε > ) is shorter than that of N-N particles 

( 1p mε ε < ) for the same permittivity ratio. Moreover, the trajectory length increases with a decreasing ratio 

of p mε ε . The trajectory behavior of the lower particle is the same as that of the upper one. 
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Fig. 6.   Motion trajectories of the upper particle in a similar particle chain   
for different permittivity ratio p mε ε .  

 
 

The time variations of the velocity of the lower particle in a pair of similar particles in the chain-forming 

process are shown in Figs. 7–10. 
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Fig. 8  The time variations of the x-velocity of  
the lower particle in a pair of N-N 
particles. 

 



 

 10 

 

                    

 

When the particle velocity decreases to zero, a stable particle chain is formed.  It can be seen from Fig. 9 that 

the traveling time of P-P particles in the course of chain formation increases with decrease of the ratio p mε ε .  

The decrease of the ratio p mε ε   implies a decrease of ( p fε ε ε∆ = − ), and hence as the DEP force and the 

particle velocity decreases, the traveling time for chain formation will increase.  To the contrary, the traveling 

time for chain formation of N-N particles decreases as the ratio p mε ε decreases, see Fig. (10). For N-N 

particles, the decrease of ratio p mε ε  leads to an increase of ( p fε ε ε∆ = − ), and therefore as the DEP force 

and the particle velocity increase, the chain formation time will decrease. 

 

4.2. Interactions of a pair of dissimilar particles 

For a pair of P-N particles initially located at 3 , 10R a θ= = °  with 1 2: : 1:10 :100,p f pε ε ε =  the particles will 

turn around counterclockwise, as is shown in Fig. (8). 
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Fig. 10 The time variations of the y-
velocity of lower particle in a pair 
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Fig. 9 The time variations of the y-velocity 
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Fig. 8(b) shows that a stable dissimilar-particle-chain is finally formed, aligned in a direction perpendicular to 

the electric field.  The P particle (deep blue) tends to move toward a higher field (green), while the N particle 

(yellow) tends to move toward a lower field (green).  The motion trajectories of a pair of dissimilar particles 

are shown in Fig. 9. 

 

 

Fig. 9. Trajectories of a pair of dissimilar particles initially located at 3 , 10R a θ= = ° .  

It can be seen that in the region 0 45θ° < < ° , the particles experience a repulsive force by which they move 

outward, and turn around counterclockwise.  In the region of 45θ < ° , the particles experience an attractive 

force, by which they move inward while revolving.  Finally, an N-P particle chain is formed. 

Initial position 
Final position 

Fig. 8b Final alignment of a particle 
chain of a pair of N-P particles 
with 

1 2: :  1:10 :100p f pε ε ε = . 

 

Fig. 8a  Initial configuration of 
a pair of N-P particles with 

1 2: :  1:10 :100p f pε ε ε = . 
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4.3. Three identical particles interactions and relative motions 

Consider three identical particles in a uniform electrical field, as is shown in Fig. 10. 

 

 

 

 

 

 

              

The initial configuration of three N particles and the final particle chain are shown in Figs. 11-12, where 

:  1:10 p fε ε =  

 

 

                                  

The initial configuration of three dissimilar particles and the final particle chain are shown in Figs. 13-14, 

where 1 2 3: : : 1:1:10 :100.p p f pε ε ε ε =  

Fig. 10  Three particles suspended in a square domain of electrolyte  
in a uniform electric field. 

Fig. 11 Three N particles initially  
located  at 05 , 60R a θ= =  
in a uniform electrical field.  

Fig. 12  Final alignmnet of a particle 
chain of three N particle in a 
uniform electrical field.  

 

E
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The trajectories of three particles are shown in Figs. 15-16. 

 

                                   

The initial configuration and the final particle chain of three similar particles with different sizes are shown in 

Figs. 17-18 , where 0.1,p fε ε = and max min: 2.a a =   

Fig. 16 Motion trajectories of 
three dissimilar particles.  

Fig. 15 Motion trajectories of 
             three similar particles.  

Fig.14  Final alignment of a particle chain 
of three dissimilar particles in a 
uniform electrical field.  

 

Fig.13 Three dissimilar particles initially  
located at 05 , 30R a θ= = in a 
uniform electrical field.  
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The initial configuration and the final particle chain of three dissimilar particles with different sizes are shown 

in Figs. 19-20, where 1 2 3: : : 1:1:10 :100,p p f pε ε ε ε =  and max min: 2.a a =  

           

                                          

 

 

 

 

Fig.18  Final alignment of a particle chain of 
three N particles of different sizes in a 
uniform electrical field.  

 

Fig. 20  Final alignment of a particle 
chain of three dissimilar particles 
of different sizes in a uniform 
electrical fields  

 

 

Fig. 19  Three dissimilar particles of 
different sizes initially located at 

05 , 30R a θ= =  in a uniform 
electrical field.  

Fig.17 Three N particles of different sizes 
initially located at 05 , 60R a θ= =  
in a uniform electrical field.  
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The variations with time of the velocity of the lower particle in a group of three similar particles with different 

sizes are shown in Fig. 21. 

 

 
                                    (a)                                                                               (b) 

 
It can be seen that the velocities of the particles with a size ratio of max min 2a a =  are larger than those of 

particles with a size ratio of max min 1a a = , and  the chain formation time for the particles of max min 2a a =  is 

much shorter than that for the particles of max min 1a a = . Similar to the two-particle cases, a similar three-

particle chain is aligned with the electric field, while a dissimilar three-particle chain is aligned perpendicular 

to the electric field.  Also, as the particle size ratio increases, the particle velocity increases, while the particle 

trajectories and the chain formation time decreases. The non-uniformity of local electric field increases as the 

particle size ratio increases. 

 

5. CONCLUSIONS 

Effects on DEP particle interaction motion in a uniform electric field due to difference in permittivity between 

particle and fluid and the particle size ratio are numerically studied. Similar particle chains are ultimately 

aligned with the electric field, while dissimilar particle chains are aligned perpendicular to the electric field. 

The time required to form a negative particle chain (N-N) is smaller than that for a positive particle chain (P-P) 

for the same applied field and permittivity ratio ( mp εε : ).  As the ratio ( mp εε : ) increases, the chain-

formation time decreases for P-P similar particle chains, but increases for N-N similar particle chains. The 

chain-formation time will decrease with an increasing particle size ratio ( max min:a a ) for a three-particle chain. 

 

 

Fig. 21 Time variations of velocity of the lower particle in a group of three N particles with 
different sizes (    1:10p fε ε = ): (a) X-velocity, (b) Y-velocity. 
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