<table>
<thead>
<tr>
<th>Title</th>
<th>Extensions of the I-MMSE Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Han, G; Song, J</td>
</tr>
<tr>
<td>Citation</td>
<td>IEEE International Symposium on Information Theory (ISIT), Honolulu, USA, 29 June-4 July 4 2014. In IEEE International Symposium on Information Theory Proceedings, 2014, p. 2202-2206</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2014</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/204177</td>
</tr>
<tr>
<td>Rights</td>
<td>IEEE International Symposium on Information Theory Proceedings. Copyright © IEEE.; ©2014 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Extensions of the I-MMSE Relation

Guangyue Han
The University of Hong Kong
Email: ghan@hku.hk

Jian Song
The University of Hong Kong
Email: txjsong@hku.hk

Abstract—Unveiling a fundamental link between information theory and estimation theory, the I-MMSE relation by Guo, Shamai and Verdú [4] has great theoretical significance and numerous practical applications. On the other hand, its influences to date have been restricted to channels without feedback or memory, due to the lack of extensions of the I-MMSE relation to such channels. In this paper, we propose extensions of the I-MMSE relation for discrete and continuous-time Gaussian channels with feedback or memory. Our approach is based on a very simple observation, which can be applied to other scenarios, such as a simple and direct proof of the classical de Bruijn’s identity.

I. INTRODUCTION

Consider the following discrete-time memoryless Gaussian channel
\[Y = \sqrt{\text{snr}} X + Z, \] (1)
where \(\text{snr} \) denotes the signal-to-noise ratio of the channel, \(X \) and \(Y \) denote the input and output of the channel, respectively, and the standard normally distributed noise \(Z \) is independent of \(X \). An interesting recent result by Guo, Shamai and Verdú [4] states that for any channel input \(X \) with \(E[X^2] < \infty \),
\[\frac{d}{dsnr} I(X;Y) = \frac{1}{2} \mathbb{E}[(X - E[X|Y])^2], \] (2)
where the left hand side is the derivative of \(I(X;Y) \) with respect to \(\text{snr} \), and the right-hand side is half the so-called minimum mean-square error (MMSE), which corresponds to the best estimation of \(X \) given the observation \(Y \). The I-MMSE relation as in (2) carries over verbatim to linear vector Gaussian channels and has been widely extended to continuous-time Gaussian channels [4], abstract Gaussian channels [17], additive channels [5], arbitrary channels [10], derivatives with respect to arbitrary parameterizations [9], higher order derivatives [11], and so on.

Unveiling an important link between information theory and estimation theory, the I-MMSE relation as above and its numerous extensions are of fundamental significance to relevant areas in these two fields and have been exerting far-reaching influences over a wide-range of topics. Representative applications include, but not limited to, power allocation of parallel Gaussian channels [8], analysis of extrinsic information of code ensembles [12], Gaussian broadcast channels [6], Gaussian wiretap channels [6], [1], Gaussian interference channels [2], interference alignment [16], a simple proof of the classical entropy power inequality [15]. For a comprehensive reference to the applications of the I-MMSE relation and its extensions, we refer to [13].

On the other hand, all the applications of the I-MMSE relation to date haven been restricted to channels without feedback or memory, due to the lack of extensions of the I-MMSE relation to such channels. In this regard, a “plain” generalization of the original I-MMSE relation to feedback channels should not be expected, which has been noted in [4], where an example is given to show that the exact I-MMSE relation fails to hold for some continuous-time feedback channel. In this paper, we remedy the situations with some explicit correctional terms (which vanish if the channel does not have feedback or memory) and extend the I-MMSE relation to channels with feedback or memory. Despite the fact that the I-MMSE relation have been examined from a number of perspectives (see its multiple proofs in [4]), our approach is still novel and powerful. As a matter of fact, other than recovering and extending the I-MMSE relation, our approach can be applied else where, such as yielding a simple and direct proof of the classical de Bruijn’s identity [14], [3]; see Section II-B.

Our approach is based on a surprisingly simple idea, which can be roughly stated as follows: before taking derivative of an information-theoretic quantity with respect to certain parameters, we represent it as an expectation with respect to a probability space independent of the parameters. For illustrative purpose, in what follows, we consider the discrete-time Gaussian channel in (1) and review a “conventional” proof of (2) in [4] and compare it with ours.

First, note that for the channel in (1), taking derivative of \(I(X;Y) \) is equivalent to that of \(H(Y) \), which can be written as the expectation of \(-\log f_Y(Y)\):
\[H(Y) = -\mathbb{E}[\log f_Y(Y)]. \]
In their fourth proof of (2), the authors of [4] choose the probability space, with respect to which the expectation as above is taken, to be the sample space of \(Y \) (with naturally induced measure), which obviously depends on \(\text{snr} \). Under this probability space, \(H(Y) \) is naturally expressed as:
\[H(Y) = -\int_{\mathbb{R}} f_Y(y) \log f_Y(y) dy. \]
Then, under some mild assumptions, the derivative of \(H(Y) \) with respect to \(\text{snr} \) can penetrate into the integral, and then (2) follows from integration by parts and other straightforward computations.
Under our approach, we would rather choose a probability space independent of \(\text{snr} \). For example, choosing the probability space to be the sample space of \((X, Z) \), we will express \(H(Y) \) as

\[
H(Y) = -\int f_X(x) f_Z(z) \log f_Y(\sqrt{\text{snr}}x + z) dz.
\]

It turns out such a seemingly innocent shift of viewpoint will render the follow-up computations rather simple and direct before reaching (2); and most importantly, when applied to channels with feedback or memory, it naturally leads to extensions of the I-MMSE relation. For instance, consider the discrete-time Gaussian channel with feedback:

\[
Y_i = \sqrt{\text{snr}} X_i(M, Y_{i-1}^i) + Z_i, \quad i = 1, 2, \ldots, n
\]

where the channel input \(X_i \) depends on the message \(M \) and the previous channel outputs \(Y_{i-1}^i \). Using the above-mentioned approach, we will obtain the following extension (see Remark III.2) of the I-MMSE relation:

\[
\frac{d}{d\text{snr}} I(X^n \rightarrow Y_1^n) = \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[(X_i - \mathbb{E}[X_i|Y_1^n])^2 \right]
\]

\[
+ \text{snr} \sum_{i=1}^n \mathbb{E} \left[(X_i - \mathbb{E}[X_i|Y_1^n]) \frac{d}{d\text{snr}} X_i \right],
\]

where \(X_i \) is the abbreviated form of \(X_i(M, Y_{i-1}^i) \) and \(I(X^n \rightarrow Y^n) \) is the directed information between \(X^n \) and \(Y^n \). Directed information is a notion generalized from mutual information for feedback channels, and the second term in the right hand side of (3) is a correctional term, which vanishes when \(X_i \) does not depend on \(Y_{i-1}^i \) (i.e., there is no feedback), so (3) is indeed an extension of the I-MMSE relation in (2) to discrete-time Gaussian channels with feedback. As elaborated later, the I-MMSE relation can also be extended to the continuous-time Gaussian channels with feedback or memory.

The remainder of the paper is organized as follows. In Section II, based on the proposed approach, we give a new proof of the I-MMSE relation for discrete-time Gaussian channels, and a new proof of the classical de Bruijn’s identity. We will present our extensions of the I-MMSE relation, the main results in this paper, in Section III, which will be followed by an outlook for some promising future directions in Section IV.

Here, we remark that some proofs and technical details have been omitted due to the space limit; for a full version of this manuscript, we refer to http://arxiv.org/abs/1401.3527.

II. NEW PROOFS OF EXISTING RESULTS

In this section, we provide new proofs of some existing results: the original I-MMSE relation in (2) and the classical de Bruijn’s identity. To enhance the readability and emphasize the main idea, we omit some technical details, such as checking the conditions required for the interchange of differentiation and integration.

A. A new proof of the I-MMSE relation

In this section, we consider the Gaussian channel specified in (1) and give a new proof of (2). Here and throughout the paper, we replace \(\sqrt{\text{snr}} \) with \(\rho \) to avoid notational cumber- some during the computation; the derivative with respect to \(\text{snr} \) can be readily obtained with an application of the chain rule. Then, under the new notation, we only have to prove that

\[
\frac{d}{d\rho} I(X; Y) = \rho \mathbb{E}[(X - \mathbb{E}[X|Y])^2].
\]

Obviously, the conditional density of \(Y \) given \(X = x \) is \(f_{Y|X}(y|x) = \frac{1}{\sqrt{2\pi}} e^{-(y-x)^2/2} \), and the density function of \(Y \) can be computed as

\[
f_Y(y) = \int f_{Y|X}(y|x) f_X(x) dx.
\]

It follows from the assumption that the channel is memoryless that

\[
I(X; Y) = H(Y) - H(Y|X) = H(Y) - H(Z),
\]

which, together with the fact that \(Z \) does not depend on \(\rho \), implies that

\[
\frac{d}{d\rho} I(X; Y) = -\frac{d}{d\rho} \mathbb{E} \left[\log f_Y(Y) \right] = -\mathbb{E} \left[\frac{1}{f_Y(Y)} \frac{d}{d\rho} f_Y(Y) \right].
\]

Now, some straightforward computations yield

\[
\frac{d}{d\rho} f_Y(Y) = \frac{d}{d\rho} \int f_{Y|X}(Y|x) f_X(x) dx
\]

\[
= -\int \rho X + Z - \rho x)(X - x) f_{Y|X}(Y|x) f_X(x) dx
\]

\[
= -f_Y(Y) \int (\rho X + Z - \rho x)(X - x) f_{Y|X}(Y|x) f_X(x) dx.
\]

It then follows that

\[
\frac{d}{d\rho} I(X; Y) = \mathbb{E} \left[\int (\rho X + Z - \rho x)(X - x) f_X(x) f_{Y|X}(Y|x) dx \right]
\]

\[
= \mathbb{E}[YX - Y\mathbb{E}[X|Y] - \rho X \mathbb{E}[X|Y] + \rho X \mathbb{E}[X^2|Y]]
\]

\[
= \mathbb{E}[X^2] - \mathbb{E}[X|Y] = \mathbb{E}[\rho^2 \mathbb{E}[X^2|Y]] + \mathbb{E}[\rho \mathbb{E}[X^2|Y]]
\]

\[
= \rho \mathbb{E}[X^2] - \rho \mathbb{E}[X|Y] = \rho \mathbb{E}[(X - \mathbb{E}[X|Y])^2],
\]

as desired.

B. A new proof of de Bruijn’s identity.

The following de Bruijn’s identity is a fundamental relationship between the differential entropy and the Fisher information. Based on the proposed approach, we will give a new proof of this classical result.

Theorem II.1. Let \(X \) be any random variable with a finite variance and let \(Z \) be an independent standard normally distributed random variable. Then

\[
\frac{d}{dt} H(X + \sqrt{t} Z) = \frac{1}{2} J(X + \sqrt{t} Z),
\]

where \(J(\cdot) \) is the Fisher information.
Proof: First of all, define

\[Y = X + \sqrt{i}Z, \]

whose density function can be computed as

\[f_Y(y) = \int_{\mathbb{R}} f_X(x)f_{Y|X}(y|x)dx = \int_{\mathbb{R}} f_X(x)e^{-(y-x)^2/(2t)} dx. \]

Immediately, we have

\[f_Y(Y) = f_Y(X + \sqrt{i}Z) = \int_{\mathbb{R}} f_X(x)e^{-(X+\sqrt{i}Z-x)^2/(2t)} dx. \]

Now, similarly as in the previous proof, we obtain

\[\frac{d}{dt}f_Y(Y) = f_Y(Y) \int_{\mathbb{R}} \left(\frac{(X-x)(Y-x)}{2t^2} + \frac{1}{2t} \right) f_{X|Y}(x|Y)dx. \]

It then follows that

\[\frac{d}{dt}H(Y) = -E \left[\frac{1}{f_Y(Y)} \frac{d}{dt}f_Y(Y) \right] = E \left[\int_{\mathbb{R}} \left(\frac{X-Y}{2t^2} + \frac{1}{2t} \right) f_{X|Y}(x|Y)dx \right] \]

\[= \frac{E(-XY + (X+Y)E[X|Y] - E[X^2|Y]) + 1}{2t} \]

\[= \frac{-E[X^2] + E[E^2[X|Y]]}{2t^2} + \frac{1}{2t}. \]

(6)

On the other hand, similarly as above,

\[f'_Y(Y) = f_Y(Y) \int_{\mathbb{R}} \frac{x-Y}{t} f_{X|Y}(x|Y)dx, \]

It then follows that the right hand side of (5) can be computed as

\[J(Y) = E \left[\left(\frac{f_Y'(Y)}{f_Y(Y)} \right)^2 \right] \]

\[= \frac{E[E^2[X|Y] + Y^2 - 2E[X|Y]Y]}{t^2} \]

\[= \frac{E[E^2[X|Y]] + E[Y^2] - 2E[X]Y}{t^2}, \]

which, by the fact that \(t = \text{E}[(X-Y)^2] \), is equal to (6), the left hand side of (5). The theorem then immediately follows.

III. MAIN RESULTS

In this section, using the ideas and techniques illustrated in Section II, we give extensions of the I-MMSE relations to channels with feedback or output memory.

A. Extensions to discrete-time channels

We start with the following general theorem on a discrete-time system:

Theorem III.1. Consider the following discrete-time system

\[Y_i = \rho g_i(W_i, Y_{i-1}) + Z_i, \quad i = 1, \cdots, n, \]

where all \(W_i \) are independent of all \(Z_i \), which are i.i.d. standard normal random variables and \(g_i(\cdot, \cdot) \) is a deterministic function differentiable in its second parameter. Then we have

\[\frac{d}{d\rho} I(W^n_1; Y^n_1) = \rho \sum_{i=1}^n E \left[(g_i - E[g_i|Y^n_1])^2 \right] \]

\[+ \rho^2 \sum_{i=1}^n E \left[(g_i - E[g_i|Y^n_1]) \frac{d}{d\rho} g_i \right], \]

where we have written \(g_i(W_i, Y^{i-1}_1) \) simply as \(g_i \).

Proof: Note that

\[I(W^n_1; Y^n_1) = H(Y^n_1) - \sum_{i=1}^n H(Y_i|W^n_1, Y^{i-1}_1) \]

\[= H(Y^n_1) - nH(Z_1), \]

which immediately implies

\[\frac{d}{d\rho} I(W^n_1; Y^n_1) = -E \left[\frac{1}{f_Y(Y_1^n)} \frac{d}{d\rho} f_{Y^n_1}(Y^n_1) \right]. \]

Here, the above interchange between the expectation and differentiation needs verifications, which however are omitted due to the space limit.

In the remainder of the proof, we will omit the subscripts of the density functions. For instance, \(f(y^n_1) \) means the density function of \(Y^n_1 \), \(f(Y^n_1) \) means the density function of \(Y^n_1 \) evaluated at \(Y^n_1 \), \(f(y^n_1|w^n_1) \) means the conditional density function of \(Y^n_1 \) given \(W^n_1 = w^n_1 \).

Using the system assumption, we have

\[f(y^n_1|w^n_1) = \frac{1}{(\sqrt{2\pi})^n} \prod_{i=1}^n e^{-(y_i - \rho g_i(w_i, Y^{i-1}_1))^2}/2, \]

and further straightforward computations lead to

\[\frac{d}{d\rho} f(Y^n_1|w^n_1) = \frac{1}{(\sqrt{2\pi})^n} \frac{d}{d\rho} \prod_{i=1}^n e^{-(Y_i - \rho g_i(w_i, Y^{i-1}_1))^2}/2 \]

\[= \frac{1}{(\sqrt{2\pi})^n} \frac{d}{d\rho} \prod_{i=1}^n e^{-(\rho g_i(W_i, Y^{i-1}_1) - \rho g_i(w_i, Y^{i-1}_1)+Z_i)^2}/2 \]

\[= -f(Y^n_1|w^n_1) \sum_{i=1}^n (Y_i - \rho g_i(w_i, Y^{i-1}_1))(g_i(W_i, Y^{i-1}_1) - g_i(w_i, Y^{i-1}_1)) \]

\[\quad + \rho \frac{d}{d\rho} (g_i(W_i, Y^{i-1}_1) - g_i(w_i, Y^{i-1}_1)). \]

It then follows that

\[\frac{d}{d\rho} f(Y^n_1) = \frac{d}{d\rho} \int_{\mathbb{R}^n} f(Y^n_1|w^n_1)f(w^n_1)dw^n_1 \]

\[= \int_{\mathbb{R}^n} \frac{d}{d\rho} f(Y^n_1|w^n_1)f(w^n_1)dw^n_1 \]

\[= -f(Y^n_1) \sum_{i=1}^n (Y_i - \rho \hat{g}_i) \left[g_i - \hat{g}_i \right] f(w^n_1|Y^n_1)dw^n_1, \]
where \(g_i(W_i, Y_{i-1}^i) \) and \(g_i(w_i, Y_{i-1}^i) \) have been written as \(g_i \) and \(\tilde{g}_i \), respectively. And using the fact that for any measurable function \(\varphi \),
\[
\int_{\mathbb{R}^n} \varphi(w^n_1, Y^n_1) f(w^n_1 | Y^n_1) dw^n_1 = \mathbb{E}[\varphi(W^n_1, Y^n_1) | Y^n_1],
\]
we further compute
\[
\frac{d}{d\rho} f(Y^n_1) = -f(Y^n_1) \sum_{i=1}^n \left((g_i + \rho \frac{d}{d\rho} g_i)(Y_i - \rho g_i) | Y^n_1 \right)
- \mathbb{E} \left((g_i + \rho \frac{d}{d\rho} g_i)(Y_i - \rho g_i) \right) Y^n_1
\]
\[
= \rho \sum_{i=1}^n \mathbb{E} \left[(g_i - \mathbb{E}(g_i | Y^n_1))^2 \right]
+ \rho^2 \sum_{i=1}^n \mathbb{E} \left[(g_i - \mathbb{E}(g_i | Y^n_1)) \frac{d}{d\rho} g_i \right],
\]
as desired.

Remark III.2. Consider the discrete-time system as in (7). Rewriting all \(W_i \) as \(M \) and each \(g_i \) as \(X_i \), we then have the following discrete-time Gaussian channel with feedback:
\[
Y_i = \sqrt{\text{snr}} X_i(M, Y_{i-1}^i) + Z_i, \quad i = 1, 2, \ldots, n
\]
where \(M \) is interpreted as the message be transmitted and \(X_i, Y_i \) are the channel inputs, outputs, respectively. It is well known that for such a feedback channel,
\[
I(X^n_1 \rightarrow Y^n_1) = I(M; Y^n_1),
\]
where \(I(X^n_1 \rightarrow Y^n_1) \) is the directed information between \(X^n_1 \) and \(Y^n_1 \). Then, applying Theorem III.1 and the chain rule for taking derivative, we have
\[
\frac{d}{d\text{snr}} I(X^n_1 \rightarrow Y^n_1) = \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[(X_i - \mathbb{E}(X_i | Y^n_1))^2 \right]
+ \text{snr} \sum_{i=1}^n \mathbb{E} \left[(X_i - \mathbb{E}(X_i | Y^n_1)) \frac{d}{d\text{snr}} X_i \right],
\]
where \(X_i = X_i(M, Y_{i-1}^i) \). This yields an extension of the I-MMSE relation to discrete-time Gaussian channels with feedback.

Remark III.3. Alternatively, rewriting each \(W_i \) as \(X_i \), we will have the following discrete-time Gaussian channel with output memory (it has been observed that such channels are suitable for modeling certain storage systems, such as flash memory):
\[
Y_i = \sqrt{\text{snr}} g_i(X_i, Y_{i-1}^i) + Z_i, \quad i = 1, 2, \ldots, n
\]
where \(g_i \) is interpreted as “part” of the channel and \(X_i, Y_i \) are the channel inputs, outputs, respectively. Then, by Theorem III.1 and the chain rule, we obtain
\[
\frac{d}{d\text{snr}} I(X^n_1 \rightarrow Y^n_1) = \frac{1}{2} \sum_{i=1}^n \mathbb{E} \left[g_i - \mathbb{E}(g_i | Y^n_1) \right]^2
+ \text{snr} \sum_{i=1}^n \mathbb{E} \left[g_i - \mathbb{E}(g_i | Y^n_1) \right] \frac{d}{d\text{snr}} g_i,
\]
where \(g_i = g_i(X_i, Y_{i-1}^i) \). This yields an extension of the I-MMSE relation to discrete-time Gaussian channels with output memory.

B. Extensions to continuous-time channels

We start with a general theorem on a continuous-time system:

Theorem III.4. Consider the following continuous-time system:
\[
Y(t) = \rho \int_0^t g(s, W(s), Y^n_0) ds + B(t), \quad t \in [0, T],
\]
where \(W(t) \) is independent of \(B(t) \), which is the standard Brownian motion, and \(g(\cdot, \cdot, \cdot) \) is a deterministic function differentiable in the third parameter (in the sense of Fréchet). We then have
\[
\frac{d}{d\rho} I(W^n_0; Y^n_0) = \rho \int_0^T \mathbb{E} \left[(g(s) - \mathbb{E}[g(s) | Y^n_0])^2 \right] ds + \rho^2 \int_0^T \mathbb{E} \left[(g(s) - \mathbb{E}[g(s) | Y^n_0]) \frac{d}{d\rho} g(s) \right] ds,
\]
where we have written \(g(s, X(s), Y^n_0) \) simply as \(g(s) \).

Proof: Fix \(W = w \) and let \(\tilde{Y} \) be such that
\[
\tilde{Y}(t) = \int_0^t g(s, w(s), \tilde{Y}(s)) ds + B(t), \quad t \in [0, T].
\]
Then, by Girsanov’s theorem (see, e.g., Theorem 7.1 in [7]), we have
\[
\frac{d\mu_{Y \mid W}}{d\mu_B}(\tilde{Y} \mid w) = \exp \left\{ \rho \int_0^T g(s, w(s), \tilde{Y}_0^s) d\tilde{Y}(s)
- \frac{\rho^2}{2} \int_0^T g(s, w(s), \tilde{Y}_0^s) ds \right\}.
\]
It then follows from the fact that \(\mu_{Y \mid \omega} \sim \mu_B \sim \mu_Y \) (“\(\sim \)” means equivalent) and Lemma 4.10 in [7] that
\[
\frac{d\mu_{Y \mid W}}{d\mu_B}(Y \mid w) = \exp \left\{ \rho \int_0^T g(s, w(s), Y_0^s) dY(s)
- \frac{\rho^2}{2} \int_0^T g(s, w(s), Y_0^s) ds \right\}.
\]
It then follows that
\[
I(W_0^T; Y_0^T) = E \left[\log \frac{d\mu_{WY}}{d\mu_B}(W_0^T, Y_0^T) \right] \\
= E \left[\log \frac{d\mu_{YW}}{d\mu_B}(Y_0^T W_0^T) \right] - E \left[\log \frac{d\mu_Y}{d\mu_B}(Y_0^T) \right] \\
= \frac{\rho^2}{2} \int_0^T E[g_2^2(s)] ds - E \left[\log \frac{d\mu_Y}{d\mu_B}(Y_0^T) \right].
\]

Taking derivative with respect to \(\rho\), we then have
\[
\frac{d}{d\rho} I(W_0^T; Y_0^T) = \rho \int_0^T E[g_2^2(s)] ds + \frac{\rho^2}{2} \int_0^T E \left[g(s) \frac{d}{d\rho} g(s) \right] ds - \frac{d}{d\rho} E \left[\log \frac{d\mu_Y}{d\mu_B}(Y_0^T) \right].
\]

Following the same flow of the proof of Theorem III.1, we eventually reach
\[
\frac{d}{d\rho} I(W_0^T; Y_0^T) = \rho \int_0^T E[(g(s) - E[g(s)|Y_0^T])^2] ds + \frac{\rho^2}{2} \int_0^T E \left[(g(s) - E[g(s)|Y_0^T]) \frac{d}{d\rho} g(s) \right] ds,
\]
as desired.

Remark III.5. Parallel to Remarks III.2, the continuous-time system in (8) can be interpreted as the following continuous-time Gaussian channel with feedback (below \(Y_0^*\) in (8) is replaced by \(Y_0^{\star-}\), which can be justified under very mild conditions by a continuity argument):
\[
Y(t) = \sqrt{\text{snr}} \int_0^t X(s, M, Y_0^{\star-}) ds + B(t), \quad t \in [0, T].
\]

An application of Theorem III.4 then yields
\[
\frac{d}{d\text{snr}} I(M; Y_0^T) = \frac{1}{2} \int_0^T E[(X(s) - E[X(s)|Y_0^T])^2] ds + \text{snr} \int_0^T E \left[(X(s) - E[X(s)|Y_0^T]) \frac{d}{d\text{snr}} X(s) \right] ds,
\]
where \(X(s)\) is the abbreviated form of \((X(s, M, Y^{\star-}))\). This gives an extension of the I-MMSE relation to continuous-time Gaussian channels with feedback.

Parallel to Remarks III.3, it can be also interpreted as the following continuous-time Gaussian channel with output memory:
\[
Y(t) = \sqrt{\text{snr}} \int_0^t g(s, X(s), Y_0^{\star-}) ds + B(t), \quad t \in [0, T].
\]

An application of Theorem III.4 then yields
\[
\frac{d}{d\text{snr}} I(X_0^T; Y_0^T) = \frac{1}{2} \int_0^T E[(g(s) - E[g(s)|Y_0^T])^2] ds + \text{snr} \int_0^T E \left[(g(s) - E[g(s)|Y_0^T]) \frac{d}{d\text{snr}} g(s) \right] ds,
\]
where \(g(s)\) is the abbreviated form of \((g(s, M, Y^{\star-}))\). This gives an extension of the I-MMSE relation to continuous-time Gaussian channels with output memory.

IV. CONCLUSIONS AND FUTURE WORK

Based on a simple yet powerful idea, we extend the well-known I-MMSE relation to channels with feedback or memory. Given the wide-range applications of the classical I-MMSE relation to various scenarios, one natural future direction is to examine the possible applications of the extensions to these scenarios when the feedback or memory are present. The new proof of the classical de Bruijn’s identity also suggests possible applications of our approach to other scenarios.

REFERENCES

