Generalized Gauge for Multi-scale Inhomogeneous Media

W. C. Chew1, Q. I. Dai1, S. Sun2, A. Y. Liu1,
C. J. Ryu1, S. Chen1, Y. L. Li2, and W. E. I. Sha2

1University of Illinois at Urbana-Champaign, USA
2The University of Hong Kong, Hong Kong SAR, China

Abstract—The vector potential A has no direct physical meaning in classical electromagnetics. However, it manifests itself in quantum physics in terms of the Aharonov-Bohm effect. The vector potential A is similar to momentum. By itself, it is hard to detect classically, but its time variation generates a force in terms of electric field. Hence, the electric field is of the form

$$E = -\partial_t A - \nabla \Phi$$

where the electric field, which exerts a force on a charge, is generated by a time varying A and the gradient of the scalar potential Φ. The magnetic flux is given by $B = \nabla \times A$

By using Lorentz gauge

$$\nabla \cdot A = -\mu \varepsilon \partial_t \Phi$$

Maxwell’s equations in vacuum reduce to

$$\nabla^2 \Phi - \mu \varepsilon \partial_t^2 \Phi = -\rho / \varepsilon,$$

$$\nabla^2 A - \mu \varepsilon \partial_t^2 A = -\mu J$$

For inhomogeneous medium, we pick the generalized gauge

$$\varepsilon^{-1} \nabla \cdot \varepsilon A = -\mu \varepsilon \partial_t \Phi.$$

Then it can be shown that Maxwell’s equations reduce to

$$\varepsilon^{-1} \nabla \cdot \varepsilon \nabla \Phi - \mu \varepsilon \partial_t^2 \Phi = -\rho / \varepsilon,$$

$$-\mu \nabla \times \mu^{-1} \nabla \times A - \mu \varepsilon \partial_t^2 A + \mu \varepsilon \nabla \frac{1}{\mu \varepsilon} \varepsilon^{-1} \nabla \cdot \varepsilon A = -\mu J.$$

For homogeneous medium, (6) and (7) reduce to (3) and (4).

The above equations have no low-frequency breakdown when solved numerically irrespective of how small the meshes are. Moreover, since A and Φ are needed in writing the Hamiltonian of an atom-field system, it is particularly suited for solving Maxwell-Schrodinger system of equations.

The discretization of the above equations can be inspired by differential forms from differential geometry. The vector potential A can be regarded as a one form which is curl-conforming. But the permittivity function can be regarded as a Hodge operator that converts a one form to a two form. Hence, εA becomes a two form which has to be divergence conforming. The Hodge operator can also be implemented numerically.